首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of N-phenyl-N'-l,2,3,-thidiazol-5-ylurea (thidiazuron; Dropp; SN 49537) on fatty acids of membrane lipids and sterol content in apple ( Malus domestica Borkh cv. Golden Delicious) buds associated with bud break and bud development were determined. The predominant fatty acids in the membrane lipids of apple buds were palmitic acid (C16:0), linoleic acid (C18:2) and linolenic acid (C18:3). β -Sitosterol and sitosteryl ester were the predominant sterols. An accumulation of unsaturated polar membrane fatty acids started after thidiazuron treatment. A decrease in the percentage of the sitosterol was accompanied by an increase in campesterol and stigmasterol at the beginning of rapid growth. An increase in the ratio of campesterol and stigmasterol to sitosterol and a decrease in the ratio of free sterols to membrane lipids upon breaking of dormancy also occurred in apple buds induced by thidiazuron.  相似文献   

2.
The lipid composition of Avena sativa stem segments was manipulated using BASF 13-338 (formerly Sandoz 9785) and growth temperature, in order to establish whether there were correlations between responsiveness of the tissue to gibberellic acid (GA3) and the presence, before hormone treatment, of specific lipid components. High correlations were obtained between GA3-induced growth and total phospholipid, individual phospholipids, and fatty acids (except for linolenic acid), total saturated fatty acids, stigmasterol content, and the unsaturated/saturated fatty acid ratio. It was concluded that, although the lipid composition, and particularly the total saturated fatty acid content, seem to be important contributory determinants of the GA3-induced growth response in this system, they may not be obligatory prerequisites, nor the only endogenous factors capable of influencing the response. However, the results are consistent with the hypothesis that membranes are involved in the hormonal mechanism and/or very early stages of the mode of GA3 action in this tissue.  相似文献   

3.
Stem segments taken from Avena sativa plants grown at 10°, 20° or 30° varied in their phospholipid composition depending on the growth temperature; as temperature was lowered, there was a shift towards a greater proportion of unsaturated fatty acids. A significant increase was observed in the concentration of linolenic acid (18:3) as growth temperature was lowered. Although prolonged treatment of oat plants with GA3 produced marked changes in phospholipid composition of stem segments, these changes did not always accompany the GA3-induced growth response of segments. Treatment of stem segments with GA3 for only 20 hr produced a significant growth response with little or no effect on phospholipid composition over this time. The data support the hypothesis that GA3-induced growth in Avena stem segments can occur without a concomitant change in phospholipid composition.  相似文献   

4.
The cell wall loosening enzymes viz. glycosidases, polygalacturonase and xylanase were analyzed in cytoplasmic and wall bound fractions extracted from control and hormone (GA3 NAA, PAA) treated internodes, as they are known to play a key role in cell wall metabolism. Among the glycosidases, wall bound β-glucosidase and α-galactosidase activities were significantly correlated with age of control internodes. Cytoplasmic α-galactosidase showed significant correlation in hormone treated internodes. Maximum correlation was observed in GA3, followed by PAA and NAA. Wall bound xylanase activity was well correlated with length only in NAA treated internodes and less after GA3 treatment while cytoplasmic xylanase showed correlation with intrnode length only in control and after NAA treatment. Cytoplasmic polygalacturonase showed correlation with internode length only after GA3 treatment while wall bound polygalacturonase showed correlation with internode length after NAA treatment. The possible role of these enzymes in internode development is discussed.  相似文献   

5.
Abstract The effects of gibberellic acid (GA3) on whole sunflower (Helianthus annuus L.) plants grown at three potassium (K) levels (0.0, 0.5 and 5.0 mM) were studied. A tenfold increase in the length of the first internode was observed when plants grown without K were treated with GA3. The uneven K distribution along the plant (higher K content in the higher internodes) was enhanced by GA3 treatment. Gibberellic acid increased the content of reducing sugars, especially in K-deficient plants. An increase in the K level in the nutrient solution resulted in a decrease of the osmotic potential of stem segments. Osmotic potential differences within the elongating first internode were increased by GA3 treatment.  相似文献   

6.
The internodes of Merremia emarginata plant showed exceptionally high stretchability throughout the development period. Therefore, it provides excellent material to study the changes undergoing during cell elongation. In this study, the influence of the hormone treatments (GA3, PAA and NAA) on the wall component synthesis was analyzed in relation to elongation growth during internode development. A clear increasing trend of wall components was observed with increase in internode length. The non-esterified pectic substances were markedly correlated with internode length while esterified pectic substances showed correlation only in hormone treated internodes. Low molecular weight xyloglucans content showed correlation only in GA3 and NAA treated internodes, while high molecular weight xyloglucans were significantly correlated with length of internodes treated with PAA and NAA.  相似文献   

7.
It has been found in recent studies that the inflorescence and nodes (node-pulvini) are the primary sources for native gibberellins in the Avena shoot, and that GA3 is the predominant gibberellin in the inflorescence. In the present work, linear growth of next-to-last internode is drastically reduced by removal of the inflorescence and last leaf. This growth is completely abolished when the nodes are also excised. It is restored fully by the addition of GA3 when the nodes are present, and restored only partially when the nodes are deleted. Internodal growth in Avena stem segments with basal node present is also restored by native GA3-like substances extracted from Avena inflorescences and partially purified by silica gel partition column chromatography. Evidence from these studies, taken in toto, indicates that the inflorescence, nodes, and leaves supply gibberellins, leaves supply substrate, and nodes modulate the gibberellin growth response in next-to-last Avena internodes.  相似文献   

8.
Lipids from callus cultures and suspension cultures of higher plants constitute 5 to 8% of the dry tissue's weight.The predominant lipid classes are the sterols, steryl esters, steryl glycosides and esterified steryl glycosides. Considerable amounts of a variety of sterylglycolipids, whose structures are not completely elucidated, are also present. Triglycerides and phospholipids occur in small proportions, whereas monogalactosyl diglycerides, digalactosyl diglycerides and sulfoquinovosyl diglycerides are present only in traces, if at all.β-Sitosterol is the predominant constituent sterol, stigmasterol and campesterol as well as a variety of as yet unidentified sterols occur in smaller proportions. The major constituent fatty acids are palmitic, oleic, linoleic and linolenic acids. Saturated very long-chain fatty acids are found in smaller proportions. Unusual fatty acids, such as epoxy acids, which occur in the seed lipids of certain plants, are not found in tissue cultures derived from these plants. Clucose and traces of galactose are the only sugars obtained by acid hydrolysis of the glycolipids occurring in plant tissue cultures.  相似文献   

9.
Tomato (Lycopersicon esculentum Mill.) plants homozygous for the mutant pro gene, exhibiting the distinctive procera phenotype, appeared virtually identical to gibberellic acid (GA3)-treated isogenic normal plants. The pro gene and GA3 caused analogous increases in internode length, and in the length and number of cells in the outer cell layers of each internode. Internode number was also increased by pro and GA3 over the period of the experiment. Despite their greater length, the internodes of GA3-treated and pro plants reached their final size within a time period similar to that of internodes of untreated normal plants. The pro mutant itself was responsive to GA3, especially in the seedling stage, but the proportional increase in height seen in the later stages of growth was less than that of normal plants.Abbreviations GA gibberellin - GA3 gibberellic acid - LSD least significant difference  相似文献   

10.
Auxin-Gibberellin Interactions in Pea: Integrating the Old with the New   总被引:4,自引:1,他引:3  
Recent findings on auxin-gibberellin interactions in pea are reviewed, and related to those from studies conducted in the 1950s and 1960s. It is now clear that in elongating internodes, auxin maintains the level of the bioactive gibberellin, GA1, by promoting GA1 biosynthesis and by inhibiting GA1 deactivation. These effects are mediated by changes in expression of key GA biosynthesis and deactivation genes. In particular, auxin promotes the step GA20 to GA1, catalyzed by a GA 3-oxidase encoded by Mendel’s LE gene. We have used the traditional system of excised stem segments, in which auxin strongly promotes elongation, to investigate the importance for growth of auxin-induced GA1. After excision, the level of GA1 in wild-type (LE) stem segments rapidly drops, but the auxin indole-3-acetic acid (IAA) prevents this decrease. The growth response to IAA was greater in internode segments from LE plants than in segments from the le-1 mutant, in which the step GA20 to GA1 is impaired. These results indicate that, at least in excised segments, auxin partly promotes elongation by increasing the content of GA1. We also confirm that excised (light-grown) segments require exogenous auxin in order to respond to GA. On the other hand, decapitated internodes typically respond strongly to GA1 application, despite being auxin-deficient. Finally, unlike the maintenance of GA1 content by auxin, other known relationships among the growth-promoting hormones auxin, brassinosteroids, and GA do not appear to involve large changes in hormone level.  相似文献   

11.
Aloni R 《Plant physiology》1979,63(4):609-614
The hypothesis that auxin and gibberellic acid (GA3) control the differentiation of primary phloem fibers is confirmed for the stem of Coleus blumei Benth. Indoleacetic acid (IAA) alone sufficed to cause the differentiation of a few primary phloem fibers. In long term experiments auxin induced a considerable number of fibers in mature internodes. GA3 by itself did not exert any effect on fiber differentiation. Combinatiosn of IAA with GA3 completely replaced the role of the leaves in primary phloem fiber differentiation qualitatively and quantitatively. Although the combined effect of the two growth hormones diminished considerably with increasing distance from the source of induction, auxin with GA3 or IAA alone induced fibers in a few internodes below the application site. When various combinations of both hormones were applied, high concentrations of IAA stimulated rapid differentiation of fibers with thick secondary walls, while high levels of GA3 resulted in long fibers with thin walls. The size of the primary phloem fibers correlated with the dimensions of the differentiating internode, thereby providing evidence that both growth regulators figure in the control of stem extension. High IAA/low GA3 concentrations have an inhibitory effect on internode elongation, whereas low IAA/high GA3 concentrations promote maximal stem elongation.  相似文献   

12.
13.
The recovery from “lodging,” or bending over, by shoots of 42-day-old Avena sativa plants is controlled primarily by a negatively geotropic differential growth of the lower halves of the p-1 node-pulvinus and the base of the p-1 internode, relative to the upper halves. Although geostimulation causes a significant reduction in p-1 internode length, dry matter accumulation in the p-1 node-pulvinus is increased, apparently at the expense of the sheath. Recovery to an angle of 30° is associated with changes in endogenous gibberellin-like substances (GAs), and in differential metabolism of applied [3H]GA4 (1.4 Curie per millimole). Although geostimulation depressed total GAs (relative to upright plant parts) to 0.40 and 0.13 for node-pulvini and sheaths, respectively, it increased them 2-fold for internodes. Within the plant part geostimulation increased GAs (relative to upper halves) 29- and 7-fold in lower halves of node-pulvini and internodes, respectively, but reduced GAs to 0.3 in lower halves of sheaths. At age 42 days a GA4/7-like (nonpolar) substance predominates, with lesser amounts of a GA3-like (polar) substance. Native GAs of Avena include GA3, GA4, and GA7. Geostimulation enhanced the ratio of nonpolar to polar GAs for both halves of internodes, but tended to depress it for sheaths and nodepulvini.  相似文献   

14.
Xanthium plants were grown vegetatively and their developmental stages were designated by a previously described plastochron index (PI). Internodes of plants, both treated with gibberellic acid (GA3) and untreated, were marked with India ink and photographed during 3 successive days. The relative elemental rates of elongation d(dX/dt)/dX were estimated between 15.7 and 19.0 plastochrons. The rate of growth of the GA3-treated internodes was at least twice that of the control. The emerging pattern of acropetal internode elongation was similar in both GA3-treated and control plants. Only rates of growth were significantly higher in the GA3-treated plants. The acropetal pattern of internode elongation was the opposite of the basipetal pattern observed in Xanthium leaves but followed the acropetal pattern observed in Helianthus and Phaseolus internode growth.  相似文献   

15.
Gibberellic acid (GA3) stimulated shoot elongation in both dwarf and tall cultivars of pea, but more so in the dwarf cultivar. The sterol composition of shoots of both cultivars was similar, with sitosterol being the most abundant compound, followed by stigmasterol and campesterol. Cholesterol could not be detected. Following GA3 application, levels of free sterols in whole shoots increased whereas glycoside levels tended to fall. The magnitudes of the changes in both classes of sterol were similar in both cultivars. Analyses of stems and leaves separately revealed a greater growth response to GA3 in the former but no effect of the hormone on the sterol composition of either organ. It is concluded that GA3 enhancement of shoot growth in pea is not mediated through quantitative changes in cell sterols.  相似文献   

16.
The enhancement of internodal elongation in floating or deepwater rice (Oryza sativa L. cv. Habiganj Aman II) by treatment with ethylene or gibberellic acid (GA3) at high relative humidity (RH) is inhibited by abscisic acid (ABA). Here, we examined the interactive effects of ethylene, gibberellin (GA) and ABA at low RH on internodal elongation of deepwater rice stem segments. Although ethylene alone hardly promoted internodal elongation of stem sections at 30% RH, it enhanced the internodal elongation induced by GA3. Application of ABA alone to stem segments had no effect on internodal elongation. However, in the presence of ethylene and GA3 at 30% RH, ABA further promoted internodal elongation. This promotive effect of ABA was not found in the internodes of stem segments treated either with ethylene or with GA3 at 30% RH or in the internodes of stem segments treated with ethylene and/or GA3 at 100% RH.  相似文献   

17.
The ontogeny of peroxidase activity and isoenzyme pattern wasinvestigated in the stem of dwarf pea plants. Peroxidase activityper unit soluble protein was a given internode is highest inthe youngest growth stage, drops during elongation, remainsconstant upon cessation of growth, and increase at senescence.The lower the internode on the stem the higher is its peroxidaseactivity. These developmental differences are already apparentat the youngest growth stage of the internodes adn increaseduring elongation. Several anodic and five cathodic isoperoxidasesare apparent after starch gel electrophoresis. This patternis constant for all internodes at all growth stages, but therelative importance of particular isoenzymes changes with time. Gibberellic acid (GA3) treatment causes greatly elongated internodes,decreased soluble protein, and inhibition of the rise in peroxidaseactivity within 4–8 h. Application of GA3 to young internodesleads to a persistent depression in peroxidase activity, whiletreated older internodes suffer only a temporary depression.GA3 causes no qualitative changes in the isoenzyme pattern butproduces some quantitative alterations in internodes in whichits influence on peroxidase activity is persistent. Decapitation of untreated and GA3-treated dwarfs has littleinfluence on internode elongation, causes an increase in peroxidaseactivity, especially in the upper internodes, and alters therelative activity of particular isoenzymes. By contrast, decapitationinhibits elongation of young internodes in genetically tallpea plants.  相似文献   

18.
The levels of the biologically active gibberellin (GA), GA1, and of its precursor, GA20, were monitored at several stages during ontogeny in the apical portions of isogenic tall (Le) and dwarf (le) peas (Pisum sativum L.) using deuterated internal standards and gas chromatography-selected ion monitoring. The levels of both GAs were relatively low on emergence and on impending apical arrest. At these early and late stages of development the internodes were substantially shorter than at intermediate stages, but were capable of large responses to applied GA3. Tall plants generally contained 10–18 times more GA1 and possessed internodes 2–3 times longer than dwarf plants. Further, dwarf plants contained 3–5 times more GA20 than tall plants. No conclusive evidence for the presence of GA3 or GA5 could be obtained, even with the aid of [2H2]GA3 and [2H2]GA5 internal standards. If GA3 and GA5 were present in tall plants, their levels were less than 0.5% and 1.4% of the level of GA1, respectively. Comparison of the effects of gene le on GA1 levels and internode length with the effects of ontogeny on these variables shows that the ontogenetic variation in GA1 content was sufficient to account for much of the observed variation in internode length within the wild-type. However, evidence was also obtained for substantial differences in the potential length of different internodes even when saturating levels of exogenous GA3 were present.Abreviations GAn gibberellin An We thank Noel Davies, Omar Hasan, Leigh Johnson, Katherine McPherson and Naomi Lawrence for technical help, Professor L. Mander (Australian National University, Canberra) for deuterated GA standards and the Australian Research Council for financial assistance.  相似文献   

19.
In the stem of Phaseolus vulgaris L. the specific activity ofacid invertase was highest in the most rapidly elongating internode.Activity of the enzyme was very low in internodes which hadcompleted their elongation, in young internodes before the onsetof rapid elongation, and in the apical bud. From shortly afterits emergence from the apical bud the elongation of internode3 was attributable mainly to cell expansion. Total and specificactivities of acid invertase in this internode rose to a maximumat the time of most rapid elongation and then declined. Transferof plants to complete darkness, or treatment of plants withgibberellic acid (GA3), increased the rate of internode elongationand final internode length by stimulating cell expansion. Bothtreatments rapidly increased the total and specific activitiesof acid invertase in the responding internodes; peak activitiesof the enzyme occurred at the time of most rapid cell expansion. In light-grown plants, including those treated with GA3, rapidcell and internode elongation and high specific activities ofacid invertase were associated with high concentrations of hexosesugar and low concentrations of sucrose. As cell growth ratesand invertase activities declined, the concentration of hexosefell and that of sucrose rose. In plants transferred to darkness,stimulated cell elongation was accompanied by a rapid decreasein hexose concentration and the disappearance of sucrose, indicatingrapid utilization of hexose. No sucrose was detected in theapical tissues of light-grown plants. The results are discussed in relation to the role of acid invertasein the provision of carbon substrates for cell growth. Key words: Cell expansion, Acid invertase, Hexose, Sucrose, Phaseolus  相似文献   

20.
The internodes of Cephaelis ipecacuanha elongated when cultured on Gamborg B5 solid medium supplemented with 0.5 or 1 mg/L gibberellic acid (GA3). The size of the elongated internode doubled in length compared to the untreated shoots, and the adventitious shoots formed on the elongated internodes. The shoots grew easily into plantlets without the use of auxin for rooting. The ex vitro regenerates cultivated in the greenhouse showed normal characteristics. Emetic alkaloids were detected in the leaves of in vitro shoots and the roots of regenerates cultivated in the greenhouse. This method using GA3 propagated numerous plants at a rate of more than 100 times compared to the method without GA3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号