首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tissue of glass sponges (Class Hexactinellida) is unique among metazoans in being largely syncytial, a state that arises during early embryogenesis when blastomeres fuse. In addition, hexactinellids are one of only two poriferan groups that already have clearly formed flagellated chambers as larvae. The fate of the larval chambers and of other tissues during metamorphosis is unknown. One species of hexactinellid, Oopsacas minuta, is found in submarine caves in the Mediterranean and is reproductive year round, which facilitates developmental studies; however, describing metamorphosis has been a challenge because the syncytial nature of the tissue makes it difficult to trace the fates using conventional cell tracking markers. We used three‐dimensional models to map the fate of larval tissues of O. minuta through metamorphosis and provide the first detailed account of larval tissue reorganization at metamorphosis of a glass sponge larva. Larvae settle on their anterior swimming pole or on one side. The multiciliated cells that formed a belt around the larva are discarded during the first stage of metamorphosis. We found that larval flagellated chambers are retained throughout metamorphosis and become the kernels of the first pumping chambers of the juvenile sponge. As larvae of O. minuta settle, larval chambers are enlarged by syncytial tissues containing yolk inclusions. Lipid inclusions at the basal attachment site gradually became smaller during the six weeks of our study. In O. minuta, the flagellated chambers that differentiate in the larva become the post‐metamorphic flagellated chambers, which corroborate the view that internalization of these chambers during embryogenesis is a process that resembles gastrulation processes in other animals.  相似文献   

2.
Sponges are suspension feeders that use flagellated collar-cells (choanocytes) to actively filter a volume of water equivalent to many times their body volume each hour. Flow through sponges is thought to be enhanced by ambient current, which induces a pressure gradient across the sponge wall, but the underlying mechanism is still unknown. Studies of sponge filtration have estimated the energetic cost of pumping to be <1% of its total metabolism implying there is little adaptive value to reducing the cost of pumping by using "passive" flow induced by the ambient current. We quantified the pumping activity and respiration of the glass sponge Aphrocallistes vastus at a 150 m deep reef in situ and in a flow flume; we also modeled the glass sponge filtration system from measurements of the aquiferous system. Excurrent flow from the sponge osculum measured in situ and in the flume were positively correlated (r>0.75) with the ambient current velocity. During short bursts of high ambient current the sponges filtered two-thirds of the total volume of water they processed daily. Our model indicates that the head loss across the sponge collar filter is 10 times higher than previously estimated. The difference is due to the resistance created by a fine protein mesh that lines the collar, which demosponges also have, but was so far overlooked. Applying our model to the in situ measurements indicates that even modest pumping rates require an energetic expenditure of at least 28% of the total in situ respiration. We suggest that due to the high cost of pumping, current-induced flow is highly beneficial but may occur only in thin walled sponges living in high flow environments. Our results call for a new look at the mechanisms underlying current-induced flow and for reevaluation of the cost of biological pumping and its evolutionary role, especially in sponges.  相似文献   

3.
4.
Abstract. Recent molecular data suggest that the Porifera is paraphyletic (Calcarea+Silicea) and that the Calcarea is more closely related to the Metazoa than to other sponge groups, thereby implying that a sponge‐like animal gave rise to other metazoans. One ramification of these data is that calcareous sponges could provide clues as to what features are shared among this ancestral metazoan and higher animals. Recent studies describing detailed morphology in the Calcarea are lacking. We have used a combination of microscopy techniques to study the fine structure of Syconcoactum Urban 1905, a cosmopolitan calcareous sponge. The sponge has a distinct polarity, consisting of a single tube with an apically opening osculum. Finger‐like chambers, several hundred micrometers in length, form the sides of the tube. The inner and outer layers of the chamber wall are formed by epithelia characterized by apical–basal polarity and occluding junctions between cells. The outer layer—the pinacoderm—and atrial cavity are lined by plate‐like cells (pinacocytes), and the inner choanoderm is lined by a continuous sheet of choanocytes. Incurrent openings of the sponge are formed by porocytes, tubular cells that join the pinacoderm to the choanoderm. Between these two layers lies a collagenous mesohyl that houses sclerocytes, spicules, amoeboid cells, and a progression of embryonic stages. The morphology of choanocytes and porocytes is plastic. Ostia were closed in sponges that were vigorously shaken and in sponges left in still water for over 30 min. Choanocytes, and in particular collar microvilli, varied in size and shape, depending on their location in the choanocyte chamber. Although some of the odd shapes of choanocytes and their collars can be explained by the development of large embryos first beneath and later on top of the choanocytes, the presence of many fused collar microvilli on choanocytes may reflect peculiarities of the hydrodynamics in large syconoid choanocyte chambers. The unusual formation of a hollow blastula larva and its inversion through the choanocyte epithelium are suggestive of epithelial rather than mesenchymal cell movements. These details illustrate that calcareous sponges have characteristics that allow comparison with other metazoans—one of the reasons they have long been the focus of studies of evolution and development.  相似文献   

5.
The dorid nudibranchs Peltodoris lentiginosa and Archidoris odhneri were found on glass sponges (Porifera, Hexactinellida) during remotely operated vehicle surveys of three reefs in the Strait of Georgia, British Columbia, Canada. Eight nudibranchs were sampled from 2009 to 2011. Identification of sponge spicules found in their gut and fecal contents confirmed the nudibranchs to be predators of the reef‐forming hexactinellids Aphrocallistes vastus and Heterochone calyx, as well as of the demosponge Desmacella austini, which encrusts skeletons of the glass sponges. Four of five nudibranchs dissected for gut content analysis had stomachs containing sponge spicules. Counts from high‐definition video footage taken during systematic surveys done in 2009 showed that nudibranchs were found in only two of the three glass sponge reefs. These data provide the first quantitative evidence of a molluscan predator on glass sponges found outside of Antarctica, and establish the first trophic link between glass sponges and their associated community of animals in a sponge reef ecosystem on the western Canadian continental shelf.  相似文献   

6.
Observations are reported for Dysidea avara sponges where once functioning oscula (outlets) are converted through internal re-plumbing into functioning oversized ostia (OSO; inlets). Flow tank studies employed high-speed photography and particle tracking of laser-illuminated 0.5-6.0 microm diameter glass beads to trace particles streaming into OSO. A fluorescein dye/glass bead uptake experiment showed that an oversized ostium was connected through internal structures to the lone osculum. Beginning 30 s after uptake and continuing over a 20 min period, dye streamed from the osculum, but no beads emerged. Scanning electron microscopy revealed that beads were deposited only on the inhalant side of particle filtering choanocyte chambers and not on the exhalant side, suggesting that internal re-plumbing had occurred. Functioning OSO were also found on freshly collected specimens in the field, making it highly unlikely that formation of OSO was only an artefact of sponges being held in a laboratory tank.  相似文献   

7.
SUMMARY. 1. The annual cycle of the freshwater sponge, Anheteromeyenia ryderi , was studied in a seepage pond in Connecticut. The adult form of the sponge persisted throughout the year, although some specimens at the edge of the pond degenerated by late summer. During the middle of the winter, adult sponges had a simplified tissue morphology with reduced numbers of flagellated chambers.
2. Gemmules of A. ryderi were also present during all seasons. Gemmule germination occurred during the spring, and some specimens produced new gemmules by late spring.
3. The gemmules of A. ryderi underwent a protracted diapause which was broken under both natural and laboratory conditions by several months exposure to low temperatures (≤5°C).
4. The gemmules of Heteromeyenia tubisperma were also shown to undergo diapause, but in this case diapause was broken by a relatively short cold treatment (1 month).  相似文献   

8.
9.
The Cambrian Series 3 Zhangxia Formation in Shandong Province, North China, includes small‐scale lithistid sponge–microbial reefs. The lithistid sponges grew on oolitic and bioclastic sediments, which were stabilized by microbial activities. The relative abundances of microbial components (e.g. calcimicrobe Epiphyton and stromatolites) vary among the reefs. However, the microbial components commonly encrusted or bound the lithistid sponges, formed remarkable encrustations on the surfaces of the sponges. Epiphyton especially grew upward and downward. The lithistid sponges thus provided substrates for the attachment and development of microbes, and the microbes played essential roles as consolidators, by encrusting reef‐building sponges. Additionally, the lithistid sponges were prone to degradation via microbial activities and diagenetic processes, and were thus preserved as micritic bodies, showing faint spicular networks or abundant spicules. Such low preservation potential within the reef environment obscured the presence of the sponges and their widespread contribution as reef‐building organisms during the Cambrian. During the prolonged interval after the demise of archaeocyaths, purely microbial reefs, such as stromatolites and thrombolites have been considered to be the principal reef builders, in association with rare lithistid sponge–microbial associations. However, recent findings, including those from Shandong Province and Korea, suggest that the lithistid sponge‐bearing reefs were more extensive during the Epoch 3 to the Furongian than previously thought. These lithistid sponge–microbial reefs were precursors of the sponge–microbial reefs that dominated worldwide in the Early Ordovician.  相似文献   

10.
Summary The freshwater sponges (Spongillidae) feed by filtering out small particles from the water passing through them by means of strainer devices in the flagellated chambers. These are filamentous, fine-meshed structures at the distal ends of the choanocyte collars formed of a mucous material similar to that in the glycocalyx. Each strainer separates its flagellated chamber into an outer and an inner zone. The strainers are an extremely efficient filtering mechanism.  相似文献   

11.
Vernalized gemmules of the marine sponge Haliclona loosanoffi were cultured at 20°C, fixed at 24-hour intervals (0–11 days), and processed for light microscopy by using a variety of absorption and fluorescent staining methods. The cytochemistry and morphology of development were compared to the well-studied developmental patterns of freshwater sponges and to the patterns described in the marine sponge Suberites domuncula. The precocious development of H. loosanoffi gemmules involves early morphogenesis occurring within the unhatched gemmule, as opposed to the patterns in freshwater sponges, where most development occurs after the gemmule hatches. Definitive sponge tissue surrounding a single osculum is present 9 days after release from dormancy.  相似文献   

12.
The nature of a number of fundamental processes occurring during reproduction in sponges still remains in doubt. Among the more significant of these are: the true status of sponges described as dioecious, namely whether some are actually successive hermaphrodites; the origin of oogonia, which have recently been claimed to be derived from choanocytes; the origin and mechanism of formation of large spermatogenic masses; the specific pathway leading to fertilization taken by sperm cells within the sponge tissue of viviparous species; the role played during larval metamorphosis by somatic cells which are incorporated into embryos; the cell lineage of choanocytes which form flagellated chambers during larval metamorphosis; the specific relationship of somatic growth and dormancy to gametogenesis; the role of budding and fragmentation in population maintenance; the role, if any, of gemmules in dispersion. It is considered mandatory that new techniques be developed in order to further elucidate these and other reproductive processes and to gather definitive data concerning them. The employment of only microscopic techniques is ultimately insufficient for investigating the dynamic relationships of reproductive processes.  相似文献   

13.
Sponges play important roles in marine ecosystems by contributing to habitat complexity and benthopelagic coupling of nutrients. Yet, the reproduction and settlement behaviors of diverse sponge species are not well understood. Here, we examined the brooding demosponge Haliclona amboinensis, which is common on shallow reefs in Bolinao, northwestern Philippines. Gravid sponges were found between the months of May and August, coinciding with warmer sea surface temperature. Sponges released parenchymella larvae from brood chambers in the mid‐morning, suggesting that light and temperature may serve as cues to initiate hatching. Larvae immediately swam toward the surface upon emergence and migrated to the bottom of the tanks 1–2 hr after release. The presence of light and crustose coralline algae induced high larval settlement. Metamorphosis proceeded rapidly in vitro, with larval cells spreading laterally on the substrate. The osculum was first visible at 3 days after settlement. The short pelagic duration of larvae in H. amboinensis promotes local recruitment and may be important for the maintenance of sponge populations in the face of disturbances.  相似文献   

14.
A photoelectrical method has been developed of registration of the linear growth and cell mass movements in the actively zones (growing tips, edges, etc). The device proposed transforms to electrical signals the changes in lighting of microscopic visual field caused by shifting the growing structures in the area restricted by the aperture of the ocular field diaphragm of the "cat-eye" type. By means of this technique, oscillograms of growth of the number of multicellular organisms have been obtained for the first time. In many cases (blastodisc edge and tail bud of the salmon Oncorhynchus gorbusha, mantle edge of Mytilus edulis, osculum edge of the sponge Tethya, apical area of brown alga Fucus and of red algae Polyides and Ahnfeltsia), a pulsatory character of growth (with periods of some minutes) were registered. A similar growth character was also confirmed for several species of Thecaphora hydroids. No pulsations was registered during the linear growth of a brown alga Laminaria (which contrary to Fucus is growing intercalarly), of Nitella (Charophyta) and of several high plants.  相似文献   

15.
Sponges are a prominent component of coral reef ecosystems. Like reef-building corals, some sponges have been reported to bleach and die. The giant barrel sponge Xestospongia muta is one of the largest and most important components of Caribbean coral reef communities. Tissues of X. muta contain cyanobacterial symbionts of the Synechococcus group. Two types of bleaching have been described: cyclic bleaching, from which sponges recover, and fatal bleaching, which usually results in sponge death. We quantified hsp70 gene expression as an indicator of stress in X. muta undergoing cyclic and fatal bleaching and in response to thermal and salinity variability in both field and laboratory settings. Chlorophyll a content of sponge tissue was estimated to determine whether hsp70 expression was related to cyanobacterial abundance. We found that fatally bleached sponge tissue presented significantly higher hsp70 gene expression, but cyclically bleached tissue did not, yet both cyclic and fatally bleached tissues had lower chlorophyll a concentrations than nonbleached tissue. These results corroborate field observations suggesting that cyclic bleaching is a temporary, nonstressful state, while fatal bleaching causes significant levels of stress, leading to mortality. Our results support the hypothesis that Synechococcus symbionts are commensals that provide no clear advantage to their sponge host. In laboratory experiments, sponge pieces incubated at 30 °C exhibited significantly higher hsp70 expression than control pieces after 1.5 h, with sponge mortality after less than 15 h. In contrast, sponges at different salinities were not significantly stressed after the same period of time. Stress associated with increasing seawater temperatures may result in declining sponge populations in coral reef ecosystems.  相似文献   

16.
Sponges often exhibit tissue regression in response to stressful conditions. This study investigated whether handling stress invoked tissue regression in Ianthella basta and assessed whether sponges could recover from this regressed tissue state. Six necrotic specimens and 12 healthy explants were collected at Orpheus Is. Australia and transported to aquarium facilities. Sponges were photographed daily and an integrated density (ID) measurement was used to quantify tissue regression. Histological samples were taken from sponge explants to compare cellular organization. Bacterial communities of regressed and recovered tissue were compared using Denaturing Gradient Gel Electrophoresis (DGGE). After 12 h both necrotic and healthy sponges displayed substantial tissue regression. However, within 72 h all sponges recovered to their original condition. The ID of the sponge tissue doubled, confirming tissue recovery in I. basta. Sponges affected by tissue regression had significantly fewer choanocyte chambers and more densely packed granulated cells than recovered sponges. DGGE revealed the same microbial symbionts in both regressed and recovered sponges. Handling stress associated with collection and transportation is sufficient to invoke tissue regression in this species, but sponges can rapidly recover. This study contributes to our understanding of how sponges respond to environmental pressures, influencing population resilience and persistence.  相似文献   

17.
Ocean warming (OW) and ocean acidification (OA) are threatening coral reef ecosystems, with a bleak future forecast for reef‐building corals, which are already experiencing global declines in abundance. In contrast, many coral reef sponge species are able to tolerate climate change conditions projected for 2100. To increase our understanding of the mechanisms underpinning this tolerance, we explored the lipid and fatty acid (FA) composition of four sponge species with differing sensitivities to climate change, experimentally exposed to OW and OA levels predicted for 2100, under two CO2 Representative Concentration Pathways. Sponges with greater concentrations of storage lipid, phospholipids, sterols and elevated concentrations of n‐3 and n‐6 long‐chain polyunsaturated FA (LC PUFA), were more resistant to OW. Such biochemical constituents likely contribute to the ability of these sponges to maintain membrane function and cell homeostasis in the face of environmental change. Our results suggest that n‐3 and n‐6 LC PUFA are important components of the sponge stress response potentially via chain elongation and the eicosanoid stress‐signalling pathways. The capacity for sponges to compositionally alter their membrane lipids in response to stress was also explored using a number of specific homeoviscous adaptation (HVA) indicators. This revealed a potential mechanism via which additional CO2 could facilitate the resistance of phototrophic sponges to thermal stress through an increased synthesis of membrane‐stabilizing sterols. Finally, OW induced an increase in FA unsaturation in phototrophic sponges but a decrease in heterotrophic species, providing support for a difference in the thermal response pathway between the sponge host and the associated photosymbionts. Here we have shown that sponge lipids and FA are likely to be an important component of the sponge stress response and may play a role in facilitating sponge survival under future climate conditions.  相似文献   

18.
Abstract Fragments of sponge tissue were cultured between glass slides and coverslips, permitting direct observation of cytoplasmic movements and tissue organization in vitro. The cut surfaces healed and the cultures lived for periods of several weeks. Cytoplasmic organization appeared similar to that described from study of sectioned material. Uptake of food particles (Escherichia coli, Isochrysis galbana) and latex beads took place primarily in the region of the flagellated chambers. Cytoplasmic streams were seen throughout the preparation and may serve for distribution of nutrients in these syncytial animals. It is proposed that the sandwich cultures are valid models of the intact sponge. Copyright © 1996 The Royal Swedish Academy of Sciences. Published by Elsevier Science Ltd.  相似文献   

19.
Predator–prey interactions can play a significant role in shaping the structure of both terrestrial and marine communities. Sponges are major contributors to benthic community structure on temperate reefs and although several studies have investigated how abiotic processes control sponge distributions on these reefs, the role of predation is less clear. We investigated the relationship between sponge predators and the distribution of sponges on temperate reefs in the South Atlantic Bight (SAB), off Georgia, USA. We documented sponge species richness and abundance, spongivorous fish density, and examined the ability of 19 sponge species to chemically and structurally deter predation by fishes. We also conducted reciprocal transplant experiments to determine if predation by fishes contributes to the observed zonation of sponge species on these reefs. Our surveys revealed two distinct sponge assemblages: one characterized by amorphous and encrusting sponge morphotypes colonizing the vertical, rocky outcroppings (scarp sponge community), while the other consisted of pedunculate, digitate, and arborescent growth forms occurring on the sediment-laden reef top (plateau sponge community). Spongivorous fishes were more abundant on the scarp than the plateau and scarp sponges were found to be more effective than plateau sponges at chemically deterring generalist fishes. In contrast, plateau sponges were more reliant on structural defenses: a result consistent with the higher spicule content of their skeletons. Transplant experiments confirmed that predators prevent some plateau sponges from colonizing the scarp even though they possess structural defenses. Thus, predation appears to play a role in shaping sponge community structure on SAB reefs by restricting those species lacking adequate chemical defenses to habitats where there is a paucity of spongivores.  相似文献   

20.
Uwe Saller 《Zoomorphology》1990,109(6):295-301
Summary The buds ofRadiospongilla cerebellata are formed asexually. Budding can be induced experimentally by injuring the sponge. The first sign of budding is a slight elevation of some surface areas, which proceed to rise rapidly so that they soon protrude conspicuously from the surface of the sponge. As a bud develops, the broad base joining it to the mother sponge narrows to a stalk, which finally breaks. The free buds drift in the water for 15–20 min and then settle, forming new sessile sponges. The buds, 1.5–2.5 mm in diameter, have an internal organization identical with that of the mother sponge. They are enclosed in a layer of pinacoderm perforated by dermal pores. Under the pinacorderm there is a shallow subdermal space, which is in communication with the incurrent canals leading to the choanocyte chambers. The water sucked into these chambers proceeds into the excurrent canal system and emerges from the sponge through the oscular tube. Spicules projecting radially from the bud bear apical tufts of microscleres. The skeletal spicules of the buds, like their choanocyte chambers, are smaller than those in the mother sponge. The chambers expand to their mature size by choanocyte mitosis. Buds and sponges are colored green by intracellular symbiotic algae of the genusChlorella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号