首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel acylated cyanidin 3-sambubioside-5-glucoside was isolated from the purple-violet flowers of Matthiola longipetala subsp. bicornis (Sm) P. W. Ball. (family: Brassicaceae), and determined to be cyanidin 3-O-[2-O-(2-O-(trans-feruloyl)-β-xylopyranosyl)-6-O-(trans-feruloyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] by chemical and spectroscopic methods. In addition, two known acylated cyanidin 3-sambubioside-5-glucosides, cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-β-xylopyranosyl)-6-O-(trans-feruloyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] and cyanidin 3-O-[2-O-(β-xylopyranosyl)-6-O-(trans-feruloyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] were identified in the flowers.  相似文献   

2.
A novel tetra-acylated cyanidin 3-sophoroside-5-glucoside was isolated from the purple-violet flowers of Moricandia arvensis (L.) DC. (Family: Brassicaceae), and determined to be cyanidin 3-O-[2-O-(2-O-(4-O-(6-O-(4-O-(β-glucopyranosyl)-trans-caffeoyl)-β-glucopyranosyl)-trans-caffeoyl)-β-glucopyranosyl)-6-O-(trans-caffeoyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] by chemical and spectroscopic methods.  相似文献   

3.
Partial hydrolysis of a larch arabino(4-O-methylglucurono)xylan afforded two series of oligouronides composed of 4-O-methyl- d-glucuronic acid and d-xylose residues. The first series included aldouronic acids up to the aldopentaouronic acid. Methylation analysis indicated that the aldopentao- and aldotetrao-uronic acids were mixtures of isomers. One aldotetraouronic acid was isolated and identified as O-β-d-Xylp-(1 → 4)-O-β-d-Xylp-(1 → 4)-O-(4-O-Me-α-d-GlcAp)-(1 → 2)-d-Xyl. The two isomeric aldotriouronic acids were separated from each other. The acids of the second series, which were composed of two uronic acids and 2-4 d-xylose residues, were identified as follows: O-β-d-Xylp-(1 → 4)-O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-d-Xyl, O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O-β-d -Xylp-(1 → 4)-D-Xyl, O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O-(4-O-Mec-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-D-Xyl, and O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O-(4-O-Me-α-d-GlcAp)-(1 → 2)-D-Xyl. The first three compounds were new acidic oligosaccharides. The 4-O-methyl-d-glucuronic acid in the second series was present in a larger proportion than in the first series, indicating that a large proportion of the uronic acid side-chains were located on two contiguous D-xylose residues in the backbone of the softwood xylan.  相似文献   

4.
Investigation of the acetolysis products of a partially desulphated sample of the polysaccharide isolated from Pachymenia carnosa led to the isolation and characterization of the following oligosaccharides: 3-O-α-D-galactopyranosyl-D-galactose (1), 4-O-β-D-galactopyranosyl-D-galactose (2), 3-O-(2-O-methyl-α-D-galactopyranosyl)-D-galactose (3), a 4-O-galactopyranosyl-2-O-methylgalactose (4), 3-O-α-D-galactopyranosyl-6-O-methyl-D-galactose (5), 4-O-β-D-galactopyranosyl-2-O-methyl-D-galactose (6), 2-O-methyl-4-O-(6-O-methyl-β-D-galactopyranosyl)-D-galactose (14), O-β-D-galactopyranosyl-(1→4)-O-α-D-galactopyranosyl-(1→3)-D-galactose (8), O-α-D-galactopyranosyl-(1→3)-O-β-D-galactopyranosyl-(1→4)-D-galactose (9), O-β-D-galactopyranosyl-(1→4)-O-α-(2-O-methyl-D-galactopyranosyl)-(1→3)-D-galactose (11), O-α-(2-O-methyl-D-galactopyranosyl)-(1→3)-O-β-D-galactopyranosyl-(1→4)-D-galactose (12), O-α-D-galactopyranosyl-(1→3)-O-β-D-galactopyranosyl-(1→4)-2-O-methyl-D-galactose (13), O-α-(2-O-methyl-D-galactopyranosyl)-(1→3)-O-β-D-galactopyranosyl-(1→4)-2-O-methyl-D-galactose (16), and O-β-D-galactopyranosyl-(1→4)-O-α-D-galactopyranosyl-(1→3)-O-β-D-galactopyranosyl-(1→4)-D-galactose (10). In addition, evidence was obtained for the presence of 4-O-(6-O-methyl-β-D-galactopyranosyl)-D-galactose (7) and O-β-D-galactopyranosyl-(1→4)-O-α-D-galactopyranosyl-(1→3)-6-O-methyl-D-galactose (15).  相似文献   

5.
Synthetic routes are discussed to the branched d-mannopentaoside methyl 6-O-(2,6-di-O-α-d-mannopyranosyl-α-d-mannopyranosyl)-3-O-α-d-mannopyranosyl-α-d-mannopyranoside and d-mannohexaoside methyl 6-O-(2,6-di-O-α-d-mannopyranosyl-α-d-mannopyranosyl)-3-O-(2-O-α-d-mannopyranosyl-α-d-mannopyranosyl)- α-d-mannopyranoside, employing the properly benzylated d-mannobioside methyl 2,4-di-O-benzyl-6-O-(3,4-di-O-benzyl-α-d-mannopyranosyl)-α-d-mannopyranoside and d-mannotrioside methyl 2,4-di-O-benzyl-6-O-(3,4-di-O-benzyl-α-d-mannopyranosyl)-3-O-(3,4,6-tri-O-benzyl-α-d-mannopyranosyl)-α-d- mannopyranoside as key intermediates.  相似文献   

6.
The oligosaccharide β-d-Man-(1 → 4)-α-l-Rha (1 → 3)-d-Gal-(6 ← 1)-α-d-Glc, which is the repeating unit of the O-specific polysaccharide chain of the lipopolysaccharide from Salmonella senftenberg, was obtained by glycosylation of benzyl 2,4-di-O-benzyl-6-O-(2,3,4-tri-O-benzyl-6-O-p-nitrobenzoyl-α-d-glucopyranosyl)-β-d-galactopyranoside or benzyl 2-O-acetyl-6-O-(2,3,4-tri-O-benzyl-6-O-p-nitrobenzoyl-α-d-glucopyranosyl)-β-d-galactopyranoside with 3-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-β-d-mannopyranosyl)-β-l-rhamnopyranose 1,2-(methyl orthoacetate) followed by removal of protecting groups.  相似文献   

7.
After partial, acid hydrolysis of the extracellular, acid polysaccharide from Rh. trifolii Bart A, the following products were isolated and characterized: 3,4-O-(1-carboxyethylidene)-d-galactose, 4,6-O-(1-carboxyethylidene)-d-galactose, 3-O-[3,4-O-(1-carboxyethylidene)-β-d)-galactopyranosyl]-d-glucose, 3-O-[4,6-O-(1-carboxyethylidene)-β-d-galactopyranosyl]-d-glucose, O-[3,4-O-(1-carboxyethylidene)-β-d-galactopyranosyl ]-(1→3)-O-d-glucopyranosyl-(1→4)-d-glucose, and O-[4,6-O-(1- carboxyethylidene)-β-d-galactopyranosyl]-(1→3)-O-β-d-glucopyranosyl-(1→4)-d-glucose. The presence of pyruvic acid linked either to O-3 and O-4 or to O-4 and O-6 of the d-galactopyranosyl group of these saccharides indicates that both structures may be present in the original polysaccharide.  相似文献   

8.
Synthetic routes are described to the d-mannopentaoside methyl 3-O-(3,6-di-O-α-d-mannopyranosyl-α-d-mannopyranosyl)-6-O-α-d-mannopyranosyl-α-d-mannopyranoside, and the d-mannohexaoside methyl 3-O-(3,6-di-O-α-d-mannopyranosyl-α-d-mannopyranosyl)-6-O-(2-O-α-d-mannopyranosyl-α-d-mannopyranosyl)-α- d-mannopyranoside, formed in a regio- and stereo-controlled way by employing the properly protected d-mannobioside methyl 2,4-di-O-benzyl-3-O-(2,4-di-O-benzyl-α-d-mannopyranosyl)-α-d-mannopyranoside and d-mannotrioside methyl 2,4-di-O-benzyl-3-O-(2,4-di-O-benzyl-α-d-mannopyranosyl)-6-O-(3,4,6-tri-O-benzyl-α-d- mannopyranosyl)-α-d-mannopyranoside as key intermediates.  相似文献   

9.
Twenty-two ornamental flowers from different Adenium obesum, Mandevilla sanderi, and Nerium oleander cultivars/seedlings were analyzed for the presence of anthocyanins, flavonols, and chlorogenic acid using nuclear magnetic resonance (NMR) and mass spectrometry (MS). Cyanidin 3-O-[6-O-(rhamnosyl)-galactoside] and cyanidin 3-O-(galactoside) were identified as the major and minor anthocyanins, respectively, in three A. obesum seedlings that had red and red-purple flowers.Cyanidin 3-O-[2-O-(xylosyl)-galactoside] was identified as the major anthocyanin, whereas cyanidin 3-O-[6-O-(rhamnosyl)-galactoside] and cyanidin 3-O-(galactoside) were identified as the minor anthocyanins in 8 M. sanderi cultivars that had red and red-purple flowers. Cyanidin 3-O-[6-O-(rhamnosyl)-galactoside] and cyanidin 3-O-(galactoside) were identified as the major anthocyanins, whereas cyanidin 3-O-[2-O-(xylosyl)-galactoside] was identified as the minor anthocyanin in 8 N. oleander cultivars with red and red-purple flowers. Low levels of anthocyanins were detected in the N. oleander and M. sanderi cultivars that had white flowers, and there were no anthocyanins detected in the N. oleander cultivars with yellow flowers. Chlorogenic acid and four flavonols, quercetin 3-O-[6-O-(rhamnosyl)-galactoside], quercetin 3-O-[6-O-(rhamnosyl)-glucoside], kaempferol 3-O-(galactoside), and kaempferol 3-O-[6-O-(rhamnosyl)-galactoside], were identified in the flowers from all 22 cultivars/seedlings investigated.  相似文献   

10.
Anthocyanins in Caprifoliaceae   总被引:1,自引:0,他引:1  
The qualitative and relative quantitative anthocyanin content of 19 species belonging to the genera Sambucus, Lonicera and Viburnum in the family Caprifoliaceae has been determined. Altogether 12 anthocyanins were identified; the 3-O-glucoside (2), 3-O-galactoside (5), 3-O-(6″-O-arabinosylglucoside) (7), 3-O-(6″-O-rhamnosylglucoside) (9), 3-O-(2″-O-xylosyl-6″-O-rhamnosylglucoside) (10), 3-O-(2″-O-xylosylgalactoside) (11), 3-O-(2″-O-xylosylglucoside) (12), 3-O-(2″-O-xylosylglucoside)-5-O-glucoside (14), 3-O-(2″-O-xylosyl-6″-O-Z-p-coumaroylglucoside)-5-O-glucoside (15) and 3-O-(2″-O-xylosyl-6″-O-E-p-coumaroylglucoside)-5-O-glucoside (16) of cyanidin, in addition to the 3-O-glucosides of pelargonidin and delphinidin (1 and 3). Pigment 7 is the first complete identification of the disaccharide vicianose, 6″-O-α-arabinopyranosyl-β-glucopyranose, linked to an anthocyanidin.  相似文献   

11.
《Carbohydrate research》1986,154(1):93-101
O-β-d-Galactopyranosyl-(1→4)-O-[α-l-fucopyranosyl-(1→3)]-d-glucose has been synthesised by reaction of benzyl 2,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-β-d-galactopyranosyl)-β-d-glucopyranoside with 2,3,4-tri-O-benzyl-α-l-fucopyranosyl bromide in the presence of mercuric bromide, followed by hydrogenolysis. Benzylation of benzyl 3′,4′-O-isopropylidene-β-lactoside, via tributylstannylation, in the presence of tetrabutylammonium bromide or N-methylimidazole, gave benzyl 2,6-di-O-benzyl-4-O-(6-O-benzyl-3,4-O-isopropylidene-β-d-galactopyranosyl)-β-d-glucopyranoside (6). α-Fucosylation of 6 in the presence of tetraethylammonium bromide provided either benzyl 2,6-di-O-benzyl-4-O-[6-O-benzyl-3,4-O-isopropylidene-2-O-(2,3,4-tri-O-benzyl-α-l-fucopyransoyl)-β-d- galactopyranosyl]-β-d-glucopyranoside (13, 73%) or a mixture of 13 (42%) and benzyl 2,6-di-O-benzyl-4-O-[6-O-benzyl-3,4,-O-isopropylidene-2-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d- galactopyranosyl-3-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d-glucopyranoside (16, 34%). α-Fucosylation of 13 in the presence of mercuric bromide and 2,6-di-tert-butyl-4-methylpyridine gave 16 (73%). Hydrogenolysis and acid hydrolysis of 13 and 16 afforded O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→4)-d-glucose and O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→4)-O-[α-l-fucopyranosyl-(1→3)]-d-glucose, respectively.  相似文献   

12.
Two new flavonol tetraglycosides, quercetin 3-O-(4-O-trans-p-coumaroyl)-α-l-rhamnopyranosyl (1→2) [α-l-rhamnopyranosyl (1→6)]-β-d-glucopyranoside-7-O-α-l-rhamnopyranoside (krathummuoside A) and quercetin 3-O-(4-O-cis-p-coumaroyl)-α-l-rhamnopyranosyl (1→2) [α-l-rhamnopyranosyl (1→6)]-β-d-glucopyranoside-7-O-α-l-rhamnopyranoside (krathummuoside B) were isolated from the leaves of Mitragyna rotundifolia in addition to eight known compounds, quercetin 3-O-α-l-rhamnopuranosyl (1→2) [α-l-rhamnopyranosyl (1→6)]-β-d-glucopyranoside-7-O-α-l-rhamnopyranoside, rutin, (−)-epi-catechin, 3,4,5-trimethoxyphenyl β-d-glucopyranoside, (6S, 9R)-roseoside, 3-O-β-d-glucopyranosyl quinovic acid 28-O-β-d-glucopyranosyl ester, (+)-lyoniresinol 3α-O-β-d-glucopyranoside, and (+)-syringaresinol-4-O-β-d-glucopyranoside. The structure elucidation of these compounds was based on analyses of spectroscopic data including 1D- and 2D-NMR.  相似文献   

13.
2-O-Benzoyl-3,6-di-O-benzyl-4-O-(chloroacetyl)-, 4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-, and 2-O-benzoyl-3,4,6-tri-O-benzyl-α-d-galactopyranosyl chloride were converted into the corresponding 2,2,2-trifluoroethanesulfonates, and these were treated with allyl 2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside, to give allyl 2-O-benzoyl-4-O-[2-O-benzoyl-3,6-di-O-benzyl-4-O-(chloroacetyl)-β-d-galactopyranosyl]-3,6-di-O-benzyl- α-d-galactopyranoside (26; 41% yield), allyl 4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di-O-benzyl- α-d-galactopyranoside (27; 62% yield), and allyl 2-O-benzoyl-4-O-(2-O-benzoyl-3,4,6-tri-O-benzyl-β-d-galactopyranosyl)-3,6-di-O-benzyl-α-d-galactopyranoside (28; 65% yield). All disaccharides were free from their α anomers. Disaccharides 26 and 27 were found to be base-sensitive, and were de-esterified by KCN in aqueous ethanol, and debenzylated with H2-Pd. Attempts to produce (1→4)-β-d-galactopyranosides from the coupling of a number of fully esterified d-galactopyranosyl sulfonates to allyl 2,3,6-tri-O-benzoyl-α-d-galactopyranoside were unsuccessful.  相似文献   

14.
Li JB  Hashimoto F  Shimizu K  Sakata Y 《Phytochemistry》2008,69(18):3166-3171
Five anthocyanins, cyanidin 3-O-(2-O-β-xylopyranosyl-6-O-(Z)-p-coumaroyl)-β-galactopyranoside (2), cyanidin 3-O-(2-O-β-xylopyranosyl-6-O-(E)-p-coumaroyl)-β-galactopyranoside (3), cyanidin 3-O-(2-O-β-xylopyranosyl-6-O-(E)-caffeoyl)-β-galactopyranoside (4), cyanidin 3-O-(2-O-β-xylopyranosyl-6-O-acetyl)-β-galactopyranoside (5), and cyanidin 3-O-(2-O-β-xylopyranosyl-6-O-acetyl)-β-glucopyranoside (6), together with the known cyanidin 3-O-(2-O-β-xylopyranosyl)-β-galactopyranoside (1), were isolated from red flowers of Camellia cultivar ‘Dalicha’ (Camellia reticulata) by chromatography using open columns. Their structures were subsequently determined on the basis of spectroscopic analyses, i.e., 1H NMR, 13C NMR, HMQC, HMBC, HR ESI-MS and UV-vis.  相似文献   

15.
Binding of herpes simplex virus 1 (HSV-1) envelope glycoprotein D (gD) to the receptor 3-O-sulfated heparan sulfate (3-OS HS) mediates viral entry. 3-O-Sulfation of HS is catalyzed by the 3-O-sulfotransferase (3-OST) enzyme. Multiple isoforms of 3-OST are differentially expressed in tissues of zebrafish (ZF) embryos. Here, we performed a comprehensive analysis of the role of ZF 3-OST isoforms (3-OST-1, 3-OST-5, 3-OST-6, and 3-OST-7) in HSV-1 entry. We found that a group of 3-OST gene family isoforms (3-OST-2, -3, -4, and -6) with conserved catalytic and substrate-binding residues of the enzyme mediates HSV-1 entry and spread, while the other group (3-OST-1, -5, and -7) lacks these properties. These results demonstrate that HSV-1 entry can be recapitulated by certain ZF 3-OST enzymes, a significant step toward the establishment of a ZF model of HSV-1 infection and tissue-specific tropism.  相似文献   

16.
《Phytochemistry》1987,26(4):1185-1188
In continuation of our chemosystematic study of Stachys (Labiatae) we have isolated the previously reported isoscutellarein 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-β-D-glucopyranoside] (1) and 3′-hydroxy-4′-O-methylisoscutellarein 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-β-D-glucopyranoside] (4) and four new allose-containing flavonoid glycosides from S. anisochila. The new glycosides are hypolaetin 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-β-D-glucopyranside] (6) as well as the three corresponding diacetyl analogues of 1, 4 and 6, isoscutellarein 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-6″-O-acetyl-β-D-glucopyranoside], 3′-hydroxy-4′-O-methylisoscutellarein 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-6″-O-acetyl-β-D-glucopyranoside] and hypolaetin 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-6″-O-acetyl-β-D-glucopyranoside]. Extensive two-dimensional NMR studies (proton-carbon correlations, COSY experiments) allowed assignment of all 1H NMR sugar signals and a correction of the 13C NMR signal assignments for C-2 and C-3 of the allose.  相似文献   

17.
《Phytochemistry》1986,25(12):2861-2865
Five new glycosides were isolated from the Chinese crude drug ‘Tong-guang-san’: the stems of Marsdenia tenacissima (Roth.) Wight et Arn. (Asclepiadaceae). The structures of tenacissosides A-E were deduced on the basis of chemical and spectral evidence as tenacigenin B-I 3-O-β-D-glucopyranosyl-(1→4)-3-O-methyl-6-deoxy-β-D- allopyranosyl-(1→4)-β-D-oleandropyranoside, tenacigenin B-II 3-O-β-D-glucopyranosyl-(1 →4)-3-O-methyl-6-deoxy- β-Dallopyranosyl-(1 →4)-β-D-oleandropyranoside, tenacigenin B-III 3-O-β-Dglucopyranosyl-(1→4)-3-O-methyl-6- deoxy-β-D-allopyranosyl-(1 → 4)-β-D-oleandropyranoside, tenacigenin B-IV 3-O-β-D-glucopyranosyl-(1 →4)-3-O- methyl-6-deoxy-β-D-allopyranosyl-(1 → 4)-β-D-oleandropyranoside and tenacigenin B-V 3-O-β-D-glucopyranosyl- (1 → 4)-3-O-methyl-6-deoxy-allopyranosyl-(1 → 4)-β-D-oleandropyranoside, respectively.  相似文献   

18.
The molecular complexation of triterpene glycosides α-hederin (hederagenin 3-O-α-L-rhamnopyranosyl-(l → 2)-O-α-L-arabinopyranoside), hederasaponin C (hederagenin 3-O-α-L-rhamnopyranosyl-(l → 2)-O-α-L-arabinopyranosyl-28-O-α-L-rhamnopyranosyl-(l → 4)-O-β-D-glucopyranosyl-(l → 6)-O-β-D-glucopyranoside), and glycyram (monoammonium glycyrrhizinate) with sildenafil citrate was investigated for the first time using electrospray ionization mass spectroscopy. The glycosides form a complex in a 1: 1 molar ratio. The influence of the complex on Avena sativa seeds germination and its ichthyotoxicity against Poecilia reticulata were studied.  相似文献   

19.
Three covalent anthocyanin–flavonol complexes (pigments 1–3) were extracted from the violet-blue flower of Allium ‘Blue Perfume’ with 5% acetic acid-MeOH solution, in which pigment 1 was the dominant pigment. These three pigments are based on delphinidin 3-glucoside as their deacylanthocyanin and were acylated with malonyl kaempferol 3-sophoroside-7-glucosiduronic acid or malonyl-kaempferol 3-p-coumaroyl-tetraglycoside-7-glucosiduronic acid in addition to acylation with acetic acid.By spectroscopic and chemical methods, the structures of these three pigments 1–3 were determined to be: pigment 1, (6I-O-(delphinidin 3-O-(3I-O-(acetyl)-β-glucopyranosideI)))(2VI-O-(kaempferol 3-O-(2II-O-(3III-O-(β-glucopyranosylV)-β-glucopyranosylIII)-4II-O-(trans-p-coumaroyl)-6II-O-(β-glucopyranosylIV)-β-glucopyranosideII)-7-O-(β-glucosiduronic acidVI))) malonate; pigment 2, (6I-O-(delphinidin 3-O-(3I-O-(acetyl)-β-glucopyranosideI)))(2VI-O-(kaempferol 3-O-(2II-O-β-glucopyranosylIII)-β-glucopyranosideII)-7-O-(β-glucosiduronic acidVI))); and pigment 3, (6I-O-(delphinidin 3-O-(3I-O-(acetyl)-β-glucopyranosideI)))(2VI-O-(kaempferol 3-O-(2II-O-(3III-O-(β-glucopyranosylV)-β-glucopyranosylIII)-4II-O-(cis-p-coumaroyl)-6II-O-(β-glucopyranosylIV)-β-glucopyranosideII)-7-O-(β-glucosiduronic acidVI))) malonate.The structure of pigment 2 was analogous to that of a covalent anthocyanin–flavonol complex isolated from Allium schoenoprasum where delphinidin was observed in place of cyanidin. The three covalent anthocyanin–flavonol complexes (pigment 1–3) had a stable violet-blue color with three characteristic absorption maxima at 540, 547 and 618 nm in pH 5–6 buffer solution. From circular dichroism measurement of pigment 1 in the pH 6.0 buffer solution, cotton effects were observed at 533 (+), 604 (−) and 638 (−) nm. Based on these results, these covalent anthocyanin–flavonol complexes were presumed to maintain a stable intramolecular association between delphinidin and kaempferol units closely related to that observed between anthocyanin and hydroxycinnamic acid residues in polyacylated anthocyanins. Additionally, an acylated kaempferol glycoside (pigment 4) was isolated from the same flower extract, and its structure was determined to be kaempferol 3-O-sophoroside-7-O-(3-O-(malonyl)-β-glucopyranosiduronic acid).  相似文献   

20.
Four anthocyanins, cyanidin 3-O-(2″-(5?-(E-p-coumaroyl)-β-apiofuranosyl)-β-xylopyranoside)-5-O-β-glucopyranoside, cyanidin 3-O-(2″-(5?-(E-p-coumaroyl)-β-apiofuranosyl)-β-xylopyranoside), cyanidin 3-O-(2″-(5?-(E-caffeoyl)-β-apiofuranosyl)-β-xylopyranoside) and cyanidin 3-O-(2″-(5?-(E-feroyl)-β-apiofuranosyl)-β-xylopyranoside) were isolated from leaves of African milk bush, (Synadeniumgrantii Hook, Euphorbiaceae) together with the known cyanidin 3-O-β-xylopyranoside-5-O-β-glucopyranoside and cyanidin 3-O-β-xyloside. The four former pigments are the first reported anthocyanins containing the monosaccharide apiose, and the three 5?-cinnamoyl derivative-2″-(β-apiosyl)-β-xyloside subunits have previously not been reported for any compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号