首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrate and nitrate-less barley (Hordeum vulgare cv Golden Promise) shoot extracts were examined by Sephadex G200 gel filtration and sucrose density gradient analysis and the MWs of NR and CR species present were determined from their Stokes radii and sedimentation coefficients by the method of Siegel and Monty. Nitrate-less plant extracts possessed a CR species of MW 27 800 whilst nitrate-plant extracts possessed CR species of MW 203 000, 61 000, 40 000 and 27 800. The MW 203 000 CR species was associated with NADH-NR, FMNH-NR and MV°-NR activities and represents the NR complex. The MW 40 000 and 61 000 CR species were shown to be derived from the NR complex. We suggest that the MW 40 000 and 61 000 CR species represent either subunits of the NR complex or domains cleaved from the intact NR complex by endogenous proteinases.  相似文献   

2.
Banding patterns of nitrate reductase (NR), nitrite reductase (NiR), and glutamine synthetase (GS) from leaves of diploid barley (Hordeum vulgare), tetraploid wheat (Triticum durum), hexaploid wheat (Triticum aestivum), and tetraploid wild oats (Avena barbata) were compared following starch gel electrophoresis. Two NR isozymes, which appeared to be under different regulatory control, were observed in each of the three species. The activity of the more slowly migrating nitrate reductase isozyme (NR1) was induced by NO3- in green seedlings and cycloheximide inhibited induction. However, the activity of the faster NR isozyme (NR2) was unaffected by addition of KNO3, and it was not affected by treatments of cycloheximide or chloramphenicol. Only a single isozyme of nitrite reductase was detected in surveys of three tetraploid and 18 hexaploid wheat, and 48 barley accessions; however, three isozymes associated with different ecotypes were detected in the wild oats. Inheritance patterns showed that two of the wild oat isozymes were governed by a single Mendelian locus with two codominant alleles; however, no variation was detected for the third isozyme. Treatment of excised barely and wild oat seedlings with cycloheximide and chloramphenicol showed that induction of NiR activity was greatly inhibited by cycloheximide, but only slightly by chloramphenicol. Only a single GS isozyme was detected in extracts of green leaves of wheat, barley, and wild oat seedlings. No electrophoretic variation was observed within or among any of these three species. Thus, this enzyme appears to be the most structurally conserved of the three enzymes.  相似文献   

3.
Crude extracts from leaves of 6-day barley seedlings of parental genotypes (cv. Aramir and primitive line R567) and selected doubled haploid (DH) lines were not found to have significant differences in the NADH:NR activity, while considerable differences between these genotypes were shown by the NAD(P)H:NR activity. The cv. Aramir and DH lines did not differ by nitrate accumulation in the leaves. However, the primitive line R567, as compared to the remaining genotypes, was characterized by an appreciably lower ability to accumulate nitrates. In partially purified leaf extracts, significant differences in total NADH:NR activity and in distal activity dependent on methyl viologen (MV:NR) were found between the parental genotypes and selected DH lines. The studied genotypes differed also in dehydrogenase NR activity, i.e. cytochrome c reductase activity in crude extracts. In the studied genotypes, the NADH:NR activity in partially purified leaf extracts did not substantially differ by Km values for nitrates. Calculated Vmax values for NADH:NR in these genotypes were similar to total NR activity in partially purified extracts. Significant differences between the parental genotypes and selected DH lines were found in the thermal NADH:NR stability in crude and partially purified leaf extracts. From the performed studies it follows that different NR stability was one of the reasons of revealed differences in total activity and in partial NR activities in the leaf extracts between the studied genotypes of spring barley. Besides, it is suggested that varied NR gene expression in the leaves of these barley genotypes could also influence NR activity.  相似文献   

4.
Diurnal variations of nitrate reductase (NR) activity and stability have been studied in leaves of barley seedlings ( Hordeum vulgare L. cv. Herta) grown in an 8 h light/16 h darkness regime. Stability (decay) of NR was tested both in the extracts and in the plants. In the morning, when the plants were transferred to light, NR activity increased rapidly during the first hour and then remained constant. After the photoperiod, activity decreased rapidly during the first hour of darkness and then remained fairly constant during the rest of the dark period. The high NR activity during the photoperiod was associated with low NR stability both in the extracts and in the plants. On the other hand the low NR activity during the dark period was associated with high stability in the extracts and in the plants.  相似文献   

5.
Feeding 5-aminoimidazole-4-carboxiamide ribonucleoside (AICAR) through the petiole of detached young barley leaves rapidly increased activities of NADH-nitrate reductase (NR) and glutamine synthetase (GS) in leaf extracts and at least partly prevented the usual slow decrease of these enzyme activities during prolonged illumination. Further, AICAR caused drastic changes in amino acid levels: glutamine and serine levels were increased whereas glutamate and glycine were decreased, probably indicating a higher GS activity and more rapid conversion of glycine into serine. The latter may be responsible for the higher ammonium contents found in AICAR treated leaves. We tentatively suggest that GS (located in the chloroplast) and glycine decarboxylase (located in the mitochondria) are regulated in a manner similar to NR. This is discussed in the light of recent reports that 14-3-3 isoforms exist in chloroplasts and that GS binds to 14-3-3s in vitro.  相似文献   

6.
Experiments conducted to determine the effects of leupeptin,a specific inhibitor of thiol proteinase, on extractable nitratereductase (NR) activity in leaves of Hordeum distichum duringdarkness revealed that leupeptin (0.01 mg.ml–1) appliedto detached leaves significantly reduced the loss of NR activity.At the same time it also reduced the formation of small cytochromec reductase species, which is a degradation product of NR complex,Upon nitrate induction, extractable NR activity increased butthe content of thiol proteinase decreased. This inverse correlationwas also observed upon transfer of nitrate-grown barley seedlingsto nitrate-free nutrient solution. Furthermore, cycloheximide(0.1 mg.ml–1) treatment of barley seedlings reduced thecontent of thiol proteinase and retarded the loss of NR activityunder noninducing conditions. These results suggest that invivo changes in NR content in leaves of Hordeum distichum arethe result of proteolysis by an endogenous thiol proteinase. (Received May 16, 1985; Accepted July 22, 1985)  相似文献   

7.
Nitrate reductase (NR, EC 1.6.6.1) is sensitive to O2 concentration, and therefore it was of interest to study the action of H2O2, a normal substance in plant metabolism, on NR activity in segments of 7-, 14- and 17-day-old leaves of oat (Avena sativa L. ev. Suregrain). After 4 h of treatment in the dark, H2O2 decreased NR activity as measured with the in vivo assay. The effect was stronger in 14- and 17- than in 7-day-old leaves. Vacuum infiltration of cysteine did not prevent this decrease. When NR was determined with the in vitro assay, H2O2 did not seem to affect the activity after the 4 h treatment. but NR decreased when crude extracts prepared from untreated 14-day-old leaves were incubated directly with H2O2. This effect was prevented by addition of cysteine, ascorbate or reduced glutathione to the extracts. In order to study the possibility that low activity of the system for defense against oxidations could account for the age-dependent response of NR to H2O2 in the in vivo test, activities of catalase, ascorbate peroxidase and glutathione reductase were measured during leaf development and after a 4-h treatment with H2O2 in the dark. No clear correlation was found between the activities of those enzymes and changes in in vivo NR activity caused by H2O2. The results suggest that H2O2 might affect NR both directly by oxidizing SH-groups and indirectly by decreasing reductant availability as a result of NADH oxidation. The age-dependent response of NR to H2O2 treatment could also be explained in terms of decreased NADH availability in the tissues due to decreased NADH synthesis and/or increased degradation.  相似文献   

8.
9.
Rapid modulation of nitrate reductase in pea roots   总被引:10,自引:0,他引:10  
The regulatory properties of nitrate reductase (NR; EC 1.6.6.1) in root extracts from hydroponically grown pea (Pisum sativum L. cv. Kleine Rheinländerin) plants were examined and compared with known properties of NR from spinach and pea leaves. Nitrate-reductase activity (NRA) extracted from pea roots decreased slowly when plants were kept in the dark, or when illuminated plants were detopped, with a half-time of about 4 h (= slow modulation in vivo). In contrast, the half-time for the dark-inactivation of NR from pea leaves was only 10 min. However, when root tip segments were transferred from aerobic to anaerobic conditions or vice versa, changes in NRA were as rapid as in leaves (= rapid modulation in vivo). Nitrate-reductase activity was low when extracted from roots kept in solutions flushed with air or pure oxygen, and high in nitrogen. Okadaic acid, a specific inhibitor of type-1 and type-2A protein phosphatases, totally prevented the in vivo activation by anaerobiosis of NR, indicating that rapid activation of root NR involved protein dephosphorylation. Under aerobic conditions, the low NRA in roots was also rapidly increased by incubating the roots with either uncouplers or mannose. Under these conditions, and also under anaerobiosis, ATP levels in roots were much lower than in aerated control roots. Thus, whenever ATP levels in roots were artificially decreased, NRA increased rapidly. The highly active NR extracted from anaerobic roots could be partially inactivated in vitro by preincubation of desalted root extracts with MgATP (2 mM), with a half-time of about 20 min. It was reactivated by subsequently incubating the extracts with excess AMP (2 mM). Thus, pea root NR shares many of the previously described properties of NR from spinach leaves, suggesting that the root enzyme, like the leaf enzyme, can be rapidly modulated, probably by reversible protein phosphorylation/ dephosphorylation.  相似文献   

10.
Activation of nitrate reductase by extracts from corn scutella   总被引:1,自引:0,他引:1       下载免费PDF全文
Yamaya T  Oaks A 《Plant physiology》1980,66(2):212-214
NADH-nitrate reductase (NR) from the primary leaves and root tips of corn seedlings (var. W64A × W182E) were activated by extracts from corn scutella. The activator extracted in potassium phosphate buffer (pH 7.5) or 80% (v/v) ethanol and fractionated by Dowex 1 (acetate) and Dowex 50 (H+) resins was recovered in the cationic fraction. The activator was not detected in extracts from shoots, roots, or endosperm of the seedlings. It activated the nitrate-induced cytochrome c reductase of NR complex but had slight inhibitory effects on the activities of FMNH2-NR and reduced methylviologen-NR. In addition the activator inhibited the activities of purified NR-inactivating proteins from corn roots (var. Wf9 × 38-11) and rice cell cultures.  相似文献   

11.
Observed circadian rhythms of nitrate reductase (NR) (EC 1.6.6.1) activity in leaves of barley ( Hordeum vulgare L. cv. Herta) under continuous light conditions are described by a simple kinetic model. The oscillatory mechanism has been decomposed into the negative and positive feedback loops which are necessary according to present theories of chemical oscillating systems. Our results indicate that the decrease of NR activity in darkness can be considered as a reversible unimolecular conversion of the active form of NR into an inactive form, forming a negative stabilizing feedback loop. The light-induced increase of NR activity is related to a positive destabilizing feedback loop. In our treatment this process is represented as an autocatalytical reaction.  相似文献   

12.
Nitrate reductase activity and NR protein levels in various leaf tissues were drastically decreased (<3.5% of normal activity) either by keeping detached leaves in continuous darkness for up to 6 d (spinach), or by growing plants (pea, squash) hydroponically on ammonium as the sole N-source, or by germinating and growing etiolated seedlings in complete darkness (squash). The presence of nitrate reductase protein kinase (NRPK), nitrate reductase protein phosphatase (NRPP) and inhibitor protein (IP) was examined by measuring the ability of NR-free desalted extracts to inactivate (ATP-dependent) and reactivate (5-AMP/EDTA-dependent) added purified spinach NR in vitro. Extracts from low-NR plants (ammonium-grown pea and squash) were also prepared from leaves harvested at the end of a normal light or dark phase, or after treating leaves with anaerobiosis, uncouplers or mannose, conditions which usually activate NR in nitrategrown normal plants. Without exception, extracts from NR-deficient plant tissues were able to inactivate and reactivate purified spinach NR with normal velocity, irrespective of pretreatment or time of harvest. Considerable NRPK, NRPP and IP activities were also found in extracts from almost NR-free ripe fruits (cucumber and tomato). Activities were totally absent, however, in extracts from isolated spinach chloroplasts. The NRPK and IP fractions were partially purified with normal yields from NR-deficient squash or spinach leaves, following the purification protocol worked out for nitrate-grown spinach. The Ca2+/Mg2+-dependent kinase fraction from NR-deficient squash or spinach phosphorylated added purified spinach NR with -[32P]ATP and inactivated the enzyme after addition of IP. It is suggested (i) that the auxiliary proteins (NRPK, IP, NRPP) which modulate NR are rather species- or organ-unspecific, (ii) that they do not turn over as rapidly as does NR, (iii) that they are probably expressed independently of NR, and (iiii) that they are not covalently modulated, but under control of metabolic and/or physical signals which are removed by desalting.Abbreviations IP inhibitor protein - NR NADH-nitrate reductase - NRA nitrate reductase activity - NRPK nitrate reductase protein kinase - NRPP nitrate reductase protein phosphatase - PK protein kinase This work was supported by the Deutsche Forschungsgemeinschaft (SFB 251).  相似文献   

13.
B. A. Notton  R. J. Fido  G. Galfre 《Planta》1985,165(1):114-119
A set of monoclonal antibodies has been raised against NADH-nitrate reductase (NR; EC 1.6.6.1) from spinach (Spinacea oleracea L.) leaves. Antibodies were screened by enzyme-linked immunosorbent assay and by their ability to inhibit various activities of the enzyme. The six monoclonals selected (AFRC MAC 74 to 79) are all gamma globulins; four (MAC 74 to 77) inhibit all terminal donating activities (NADH-NR; flavin mononucleotide, reduced form (FMNH2)-NR; and methyl viologen, reduced form (MV)-NR) and two (MAC 78 and 79) inhibit the acceptor activities (NADH-NR, and NADH-cytochrome c reductase). MAC 74 to 77 inhibit the NADH-NR activity of crude extracts of a variety of species (mono- and dicotyledoneae) while MAC 78 and 79 are effective against spinach and marrow, but not oil-seed rape, cucumber, oats, wheat and barley.Abbreviations Cyt c Rase cytochrome c reductase - ELISA enzyme-linked immunosorbent assay - FAD(H2) flavin adenine dinucleotide (reduced form) - FMN(H2) flavin mononucleotide (reduced form) - McAb monoclonal antibody - MV methyl viologen reduced form - NR nitrate reductase  相似文献   

14.
Anin situ method, derived from anin vivo method, was used to determine nitrate reductase activity (NRA) in:i) excised barley and corn shoots and excised soybean leaves during a N-depletion experiment and; ii) roots and shoots of N-depleted barley and corn seedlings during induction of nitrate, reductase (NR). Nitrate reduction, calculated from thesein situ RNA measurements, was compared with estimates of each organ's nitrate reduction in light aerobic conditions from NO 3 consumption and a15N model (Gojonet al., 1986b). Thein situ RNA of roots strongly underestimated their15NO 3 reduction. In contrast, in barley and corn shoots and in the first trifoliolate leaves from 26-day-old, soybean, thein situ NRA assay gave a fair approximation of the true NO 3 reduction rate (relative differences ranging from −14 to +32%). In young soybean leaves (from 20-day-old plants), however, thein situ NRA strongly underestimated the actual NO 3 reduction. The physiological significance of thein situ NRA assay in shoots and roots, and its value for field studies are discussed from these results.  相似文献   

15.
Use of protein in extraction and stabilization of nitrate reductase   总被引:23,自引:19,他引:4       下载免费PDF全文
The in vitro instability of nitrate reductase (EC 1.6.6.1) activity from leaves of several species of higher plants was investigated. Decay of activity was exponential with time, suggesting that an enzyme-catalyzed reaction was involved. The rate of decay of nitrate reductase activity increased as leaf age increased in all species studied. Activity was relatively stable in certain genotypes of Zea mays L., but extremely unstable in others. In all genotypes of Avena sativa L. and Nicotiana tabacum L. studied, nitrate reductase was unstable. Addition of 3% (w/v) bovine serum albumin or casein to extraction media prevented or retarded the decay of nitrate reductase activity for several hours. In addition, the presence of bovine serum albumin or casein in the enzyme homogenate markedly increased nitrate reductase activity (up to 15-fold), especially in older leaf tissue.  相似文献   

16.
Nitrate reductase (NR) from the leaves of Hordeum distichumwas very susceptible to inactivation by barley leaf thiol proteinase,trypsin, and papain. A cytochrome c reductase species with amolecular weight of about 40,000 was derived from the NR complexby the proteolytic actions. The barley proteinase seemed toattack the Mo+-containing component of NR, just like trypsinand papain. It showed a preference for the alanine and tryptophanesters among the carbobenzoxyamino acid-nitrophenylesters tested. In vivo NR activity in the presence of leupeptin was fairlyhigher than that in its absence. Leupeptin also protected NRfrom its cleavage to small cytochrome c reductase species, suggestingthat the barley proteinase may play a role in the in vivo changein NR activity. (Received May 21, 1984; Accepted September 10, 1984)  相似文献   

17.
Pyridine nucleotide specificity of barley nitrate reductase   总被引:6,自引:4,他引:2       下载免费PDF全文
Dailey FA  Kuo T  Warner RL 《Plant physiology》1982,69(5):1196-1199
NADPH nitrate reductase activity in higher plants has been attributed to the presence of NAD(P)H bispecific nitrate reductases and to the presence of phosphatases capable of hydrolyzing NADPH to NADH. To determine which of these conditions exist in barley (Hordeum vulgare L. cv. Steptoe), we characterized the NADH and NADPH nitrate reductase activities in crude and affinity-chromatography-purified enzyme preparations. The pH optima were 7.5 for NADH and 6 to 6.5 for the NADPH nitrate reductase activities. The ratio of NADPH to NADH nitrate reductase activities was much greater in crude extracts than it was in a purified enzyme preparation. However, this difference was eliminated when the NADPH assays were conducted in the presence of lactate dehydrogenase and pyruvate to eliminate NADH competitively. The addition of lactate dehydrogenase and pyruvate to NADPH nitrate reductase assay media eliminated 80 to 95% of the NADPH nitrate reductase activity in crude extracts. These results suggest that a substantial portion of the NADPH nitrate reductase activity in barley crude extracts results from enzyme(s) capable of converting NADPH to NADH. This conversion may be due to a phosphatase, since phosphate and fluoride inhibited NADPH nitrate reductase activity to a greater extent than the NADH activity. The NADPH activity of the purified nitrate reductase appears to be an inherent property of the barley enzyme, because it was not affected by lactate dehydrogenase and pyruvate. Furthermore, inorganic phosphate did not accumulate in the assay media, indicating that NADPH was not converted to NADH. The wild type barley nitrate reductase is a NADH-specific enzyme with a slight capacity to use NADPH.  相似文献   

18.
Nitrate reductase activity (NRA; NADH-nitrate reductase, E. C. 1.6.6.1) has been measured in extracts from leaves of spinach ( Spinacia oleracea L.) in response to rapid changes in illumination, or supply of CO2 or oxygen. Measured in buffers containing magnesium, NRA from leaves decreased in the dark and increased again upon illumination. It decreased also, when CO2 was removed in continuous light, and was reactivated when CO2 was added. Nitrate reductase (NR) from roots of pea ( Pisum sativum L.) was also rapidly modulated in vivo. It increased under anaerobiosis and decreased in air or pure oxygen. The half time for inactivation or reactivation in roots and leaves was 5 to 30 min.
When spinach leaves were harvested during a normal day/night cycle, extractable NRA was low during the night, and high during daytime. However, at any point of the diurnal cycle, NR could be brought to a similar maximum activity by preincubation of the desalted leaf extract with AMP and/or EDTA. Thus, the observed diurnal changes appeared to be mainly a consequence of enzyme modulation, not of protein turnover. In vivo, the reactivation of the inactivated enzyme from both leaves and roots was prevented by okadaic acid, and inhibitor of certain protein phosphatases. Artificial lowering of the ATP-levels in leaf or root tissues by anaerobiosis (dark), mannose or the uncoupler carbonyl cyanide m -chlorophenyl hydrazon (CCCP), always brought about full activation of NR.
By preincubating crude leaf or root extracts with MgATP, NR was inactivated in vitro. Partial purification from spinach leaves of two enzymes with molecular masses in the 67 kD and 100 kD range, respectively, is reported. Both participate in the ATP-dependent inactivation of NR.
Alltogether these data indicate that NR can be rapidly modulated by reversible protein phosphorylation/dephosphorylation, both in shoots and in roots.  相似文献   

19.
20.
A circadian rhythm in the activity of nitrate reductase (NR; EC 1.6.6.1) isolated from the marine dinoflagellate Gonyaulax polyedra is shown to be attributable to the daily synthesis and destruction of the protein. The enzyme was purified in three steps: gel filtration on S-300 Sephacryl, an Affigel-Blue column, and a diethylaminoethyl ion-exchange column. Undenatured protein shows a molecular mass of about 310 kD; based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the enzyme appears to be composed of six possibly identical subunits. The amino acid composition of the G. polyedra NR is very similar to that reported for the NR of barley leaves, Chlorella vulgaris, and Ankistrodesmus braunii. The experiments reported indicate that the cellular expression of NR is under circadian control. In extracts of cells grown under either constant dim light or a light-dark cycle, the activity of NR exhibits a daily rhythm, peaking at midday phase, as does photosynthesis. Staining with affinity-purified polyclonal antibodies, raised in rabbits against purified NR, shows that the amount of protein changes by a factor of about 10, with the maximum occurring in midday phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号