首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multiple sequence alignment algorithm is described that uses a dynamic programming-based pattern construction method to align a set of homologous sequences based on their common pattern of conserved sequence elements. This pattern-induced multi-sequence alignment (PIMA) algorithm can employ secondary-structure dependent gap penalties for use in comparative modelling of new sequences when the three-dimensional structure of one or more members of the same family is known. We show that the use of secondary structure information can significantly improve the accuracy of aligning structure boundaries in a set of homologous sequences even when the structure of only one member of the family is known.  相似文献   

2.
The concept of a flexible protein sequence pattern is defined. In contrast to conventional pattern matching, template or sequence alignment methods, flexible patterns allow residue patterns typical of a complete protein fold to be developed in terms of residue positions (elements), separated by gaps of defined range. An efficient dynamic programming algorithm is presented to enable the best alignment(s) of a pattern with a sequence to be identified. The flexible pattern method is evaluated in detail by reference to the globin protein family, and by comparison to alignment techniques that exploit single sequence, multiple sequence and secondary structural information. A flexible pattern derived from seven globins aligned on structural criteria successfully discriminates all 345 globins from non-globins in the Protein Identification Resource database. Furthermore, a pattern that uses helical regions from just human alpha-haemoglobin identified 337 globins compared to 318 for the best non-pattern global alignment method. Patterns derived from successively fewer, yet more highly conserved positions in a structural alignment of seven globins show that as few as 38 residue positions (25 buried hydrophobic, 4 exposed and 9 others) may be used to uniquely identify the globin fold. The study suggests that flexible patterns gain discriminating power both by discarding regions known to vary within the protein family, and by defining gaps within specific ranges. Flexible patterns therefore provide a convenient and powerful bridge between regular expression pattern matching techniques and more conventional local and global sequence comparison algorithms.  相似文献   

3.
A program for template matching of protein sequences   总被引:1,自引:0,他引:1  
The matching of a template to a protein sequence is simplifiedby treating it as a special case of sequence alignment. Restrictionof the distances between motifs in the template controls againstspurious matches within very long sequences. The program usingthis algorithm is fast enough to be used in scanning large databasesfor sequences matching a complex template. Received on August 17, 1987; accepted on January 11, 1988  相似文献   

4.
We investigate the performance of phylogenetic mixture models in reducing a well-known and pervasive artifact of phylogenetic inference known as the node-density effect, comparing them to partitioned analyses of the same data. The node-density effect refers to the tendency for the amount of evolutionary change in longer branches of phylogenies to be underestimated compared to that in regions of the tree where there are more nodes and thus branches are typically shorter. Mixture models allow more than one model of sequence evolution to describe the sites in an alignment without prior knowledge of the evolutionary processes that characterize the data or how they correspond to different sites. If multiple evolutionary patterns are common in sequence evolution, mixture models may be capable of reducing node-density effects by characterizing the evolutionary processes more accurately. In gene-sequence alignments simulated to have heterogeneous patterns of evolution, we find that mixture models can reduce node-density effects to negligible levels or remove them altogether, performing as well as partitioned analyses based on the known simulated patterns. The mixture models achieve this without knowledge of the patterns that generated the data and even in some cases without specifying the full or true model of sequence evolution known to underlie the data. The latter result is especially important in real applications, as the true model of evolution is seldom known. We find the same patterns of results for two real data sets with evidence of complex patterns of sequence evolution: mixture models substantially reduced node-density effects and returned better likelihoods compared to partitioning models specifically fitted to these data. We suggest that the presence of more than one pattern of evolution in the data is a common source of error in phylogenetic inference and that mixture models can often detect these patterns even without prior knowledge of their presence in the data. Routine use of mixture models alongside other approaches to phylogenetic inference may often reveal hidden or unexpected patterns of sequence evolution and can improve phylogenetic inference.  相似文献   

5.
MOTIVATION: Although pairwise sequence alignment is essential in comparative genomic sequence analysis, it has proven difficult to precisely determine the gap penalties for a given pair of sequences. A common practice is to employ default penalty values. However, there are a number of problems associated with using gap penalties. First, alignment results can vary depending on the gap penalties, making it difficult to explore appropriate parameters. Second, the statistical significance of an alignment score is typically based on a theoretical model of non-gapped alignments, which may be misleading. Finally, there is no way to control the number of gaps for a given pair of sequences, even if the number of gaps is known in advance. RESULTS: In this paper, we develop and evaluate the performance of an alignment technique that allows the researcher to assign a priori set of the number of allowable gaps, rather than using gap penalties. We compare this approach with the Smith-Waterman and Needleman-Wunsch techniques on a set of structurally aligned protein sequences. We demonstrate that this approach outperforms the other techniques, especially for short sequences (56-133 residues) with low similarity (<25%). Further, by employing a statistical measure, we show that it can be used to assess the quality of the alignment in relation to the true alignment with the associated optimal number of gaps. AVAILABILITY: The implementation of the described methods SANK_AL is available at http://cbbc.murdoch.edu.au/ CONTACT: matthew@cbbc.murdoch.edu.au.  相似文献   

6.
A flexible method to align large numbers of biological sequences   总被引:5,自引:0,他引:5  
Summary A method for the alignment of two or more biological sequences is described. The method is a direct extension of the method of Taylor (1987) incorporating a consensus sequence approach and allows considerable freedom in the control of the clustering of the sequences. At one extreme this is equivalent to the earlier method (Taylor 1987), whereas at the other, the clustering approaches the binary method of Feng and Doolittle (1987). Such freedom allows the program to be adapted to particular problems, which has the important advantage of resulting in considerable savings in computer time, allowing very large problems to be tackled. Besides a detailed analysis of the alignment of the cytochrome c superfamily, the clustering and alignment of the PIR sequence data bank (3500 sequences approx.) is described.  相似文献   

7.
Recently published alignments of available 5 S rRNA sequences have shown that a rigid base pairing pattern, pointing to the existence of a universal five-helix secondary structure for all 5 S RNAs, can be superimposed on such alignments. For a few species, the alignment and the base pairing pattern show distortions with respect to the large majority of sequences. Their 5 S RNAs may form exceptional secondary structures, or there may just be errors in the published sequences. We have examined such a case, Pseudomonas fluorescens, and found the sequence to be in error. The corrected sequence, as well as those of the related species Azotobacter vinelandii and Pseudomonas aeruginosa, fit perfectly in the 5 S RNA sequence alignment and in the five-helix secondary structure model. There exists comparative evidence for the frequent presence of non-standard base pairs at several points of the 5 S RNA secondary structure.  相似文献   

8.
Choulier L  Lafont V  Hugo N  Altschuh D 《Proteins》2000,41(4):475-484
A nonrestrictive method for identifying covariance in protein families is described and applied to human and mouse germline Vkappa and VH sequence alignments. Amino acids that occur at each position in a sequence alignment are divided into two sets, called a word, by generating all possible combinations of alternative amino acids. Each word is associated with a pattern of changes. Words with identical patterns identify covariant positions. In antibody variable domains, the number of words generated ranged between 1103 and 2195 depending on the alignment, of which 4 to 12 % occurred in covariant pairs. Despite the nonrestrictive character of pattern generation, covariant residues did not reflect a random selection with respect to the nature of amino acid changes and/or their spatial proximity in a reference crystallographic structure. This approach allowed the identification of a covariance signal for positions with high variability, mostly located in the outer part of the common structural framework of antibody variable domains. Covariance in these regions may reflect the existence of alternative and mutually exclusive atomic arrangements that are compatible with antibody function. The method may be of general applicability to rationalize residue variability in protein families.  相似文献   

9.

Background  

A large number of PROSITE patterns select false positives and/or miss known true positives. It is possible that – at least in some cases – the weak specificity and/or sensitivity of a pattern is due to the fact that one, or maybe more, functional and/or structural key residues are not represented in the pattern. Multiple sequence alignments are commonly used to build functional sequence patterns. If residues structurally conserved in proteins sharing a function cannot be aligned in a multiple sequence alignment, they are likely to be missed in a standard pattern construction procedure.  相似文献   

10.
The significance of protein sequence similarities   总被引:14,自引:0,他引:14  
A general method of assessing the significance of scored bestlocal alignments, particularly suited to protein sequence comparisons,is described. The method establishes the parameters describingthe distribution of the best results from any search program,provided that the set is sufficiently large and the majorityof the alignments arise from unrelated sequences. The expectedfrequency of occurrence of any score can then be calculated,together with the number of standard deviations above expectation.These provide sensible measures of significance without additionalsearch operations. However the biological significance of anyalignment or set of alignments does not solely depend on theimprobability of the alignment, but on all relevant factorsknown to the biologist. Received on August 9, 1987; accepted on November 17, 1987  相似文献   

11.
The information required to generate a protein structure is contained in its amino acid sequence, but how three-dimensional information is mapped onto a linear sequence is still incompletely understood. Multiple structure alignments of similar protein structures have been used to investigate conserved sequence features but contradictory results have been obtained, due, in large part, to the absence of subjective criteria to be used in the construction of sequence profiles and in the quantitative comparison of alignment results. Here, we report a new procedure for multiple structure alignment and use it to construct structure-based sequence profiles for similar proteins. The definition of "similar" is based on the structural alignment procedure and on the protein structural distance (PSD) described in paper I of this series, which offers an objective measure for protein structure relationships. Our approach is tested in two well-studied groups of proteins; serine proteases and Ig-like proteins. It is demonstrated that the quality of a sequence profile generated by a multiple structure alignment is quite sensitive to the PSD used as a threshold for the inclusion of proteins in the alignment. Specifically, if the proteins included in the aligned set are too distant in structure from one another, there will be a dilution of information and patterns that are relevant to a subset of the proteins are likely to be lost.In order to understand better how the same three-dimensional information can be encoded in seemingly unrelated sequences, structure-based sequence profiles are constructed for subsets of proteins belonging to nine superfolds. We identify patterns of relatively conserved residues in each subset of proteins. It is demonstrated that the most conserved residues are generally located in the regions where tertiary interactions occur and that are relatively conserved in structure. Nevertheless, the conservation patterns are relatively weak in all cases studied, indicating that structure-determining factors that do not require a particular sequential arrangement of amino acids, such as secondary structure propensities and hydrophobic interactions, are important in encoding protein fold information. In general, we find that similar structures can fold without having a set of highly conserved residue clusters or a well-conserved sequence profile; indeed, in some cases there is no apparent conservation pattern common to structures with the same fold. Thus, when a group of proteins exhibits a common and well-defined sequence pattern, it is more likely that these sequences have a close evolutionary relationship rather than the similarities having arisen from the structural requirements of a given fold.  相似文献   

12.
A workbench for multiple alignment construction and analysis   总被引:126,自引:0,他引:126  
Multiple sequence alignment can be a useful technique for studying molecular evolution, as well as for analyzing relationships between structure or function and primary sequence. We have developed for this purpose an interactive program, MACAW (Multiple Alignment Construction and Analysis Workbench), that allows the user to construct multiple alignments by locating, analyzing, editing, and combining "blocks" of aligned sequence segments. MACAW incorporates several novel features. (1) Regions of local similarity are located by a new search algorithm that avoids many of the limitations of previous techniques. (2) The statistical significance of blocks of similarity is evaluated using a recently developed mathematical theory. (3) Candidate blocks may be evaluated for potential inclusion in a multiple alignment using a variety of visualization tools. (4) A user interface permits each block to be edited by moving its boundaries or by eliminating particular segments, and blocks may be linked to form a composite multiple alignment. No completely automatic program is likely to deal effectively with all the complexities of the multiple alignment problem; by combining a powerful similarity search algorithm with flexible editing, analysis and display tools, MACAW allows the alignment strategy to be tailored to the problem at hand.  相似文献   

13.
A general protein sequence alignment methodology for detecting a priori unknown common structural and functional regions is described. The method proposed in this paper is based on two basic requirements for a meaningful alignment. First, each sequence or segment of a sequence is characterized by a multivariate physicochemical profile. Second, the alignment is performed by considering all the sequences simultaneously, and the algorithm detects those regions that form a set of similar profiles. In order to test the structural meaning of the alignment obtained from the sequences, quantitative comparisons are performed with structurally conserved regions (SCR) determined from the X-ray structures of three serine proteases. Results suggest that the limits of the SCR may be predicted from the similarities between the physicochemical profiles of the sequences. The procedures are not completely automated. The final step requires a visual screening of alternative pathways in order to determine an optimal alignment.  相似文献   

14.
A method for multiple sequence alignment with gaps   总被引:13,自引:0,他引:13  
A method that performs multiple sequence alignment by cyclical use of the standard pairwise Needleman-Wunsch algorithm is presented. The required central processor unit time is of the same order of magnitude as the standard Needleman-Wunsch pairwise implementation. Comparison with the one known case where the optimal multiple sequence alignment has been rigorously determined shows that in practice the proposed method finds the mathematically optimal solution. The more interesting question of the biological usefulness of such multiple sequence alignment over pairwise approaches is assessed using protein families whose X-ray structures are known. The two such cases studied, the subdomains of the ricin B-chain and the S-domains of virus coat proteins, have low pairwise similarity and thus fail to align correctly under standard pairwise sequence comparison. In both cases the multiple sequence alignment produced by the proposed technique, apart from minor deviations at loop regions, correctly predicts the true structural alignment. Thus, given many sequences of low pairwise similarity, the proposed multiple sequence method, can extract any familial similarity and so produce a sequence alignment consistent with the underlying structural homology.  相似文献   

15.
Sequence alignment is a common method for finding protein structurally conserved/similar regions. However, sequence alignment is often not accurate if sequence identities between to-be-aligned sequences are less than 30%. This is because that for these sequences, different residues may play similar structural roles and they are incorrectly aligned during the sequence alignment using substitution matrix consisting of 20 types of residues. Based on the similarity of physicochemical features, residues can be clustered into a few groups. Using such simplified alphabets, the complexity of protein sequences is reduced and at the same time the key information encoded in the sequences remains. As a result, the accuracy of sequence alignment might be improved if the residues are properly clustered. Here, by using a database of aligned protein structures (DAPS), a new clustering method based on the substitution scores is proposed for the grouping of residues, and substitution matrices of residues at different levels of simplification are constructed. The validity of the reduced alphabets is confirmed by relative entropy analysis. The reduced alphabets are applied to recognition of protein structurally conserved/similar regions by sequence alignment. The results indicate that the accuracy or efficiency of sequence alignment can be improved with the optimal reduced alphabet with N around 9.  相似文献   

16.
Sequence alignment programs such as BLAST and PSI-BLAST are used routinely in pairwise, profile-based, or intermediate-sequence-search (ISS) methods to detect remote homologies for the purposes of fold assignment and comparative modeling. Yet, the sequence alignment quality of these methods at low sequence identity is not known. We have used the CE structure alignment program (Shindyalov and Bourne, Prot Eng 1998;11:739) to derive sequence alignments for all superfamily and family-level related proteins in the SCOP domain database. CE aligns structures and their sequences based on distances within each protein, rather than on interprotein distances. We compared BLAST, PSI-BLAST, CLUSTALW, and ISS alignments with the CE structural alignments. We found that global alignments with CLUSTALW were very poor at low sequence identity (<25%), as judged by the CE alignments. We used PSI-BLAST to search the nonredundant sequence database (nr) with every sequence in SCOP using up to four iterations. The resulting matrix was used to search a database of SCOP sequences. PSI-BLAST is only slightly better than BLAST in alignment accuracy on a per-residue basis, but PSI-BLAST matrix alignments are much longer than BLAST's, and so align correctly a larger fraction of the total number of aligned residues in the structure alignments. Any two SCOP sequences in the same superfamily that shared a hit or hits in the nr PSI-BLAST searches were identified as linked by the shared intermediate sequence. We examined the quality of the longest SCOP-query/ SCOP-hit alignment via an intermediate sequence, and found that ISS produced longer alignments than PSI-BLAST searches alone, of nearly comparable per-residue quality. At 10-15% sequence identity, BLAST correctly aligns 28%, PSI-BLAST 40%, and ISS 46% of residues according to the structure alignments. We also compared CE structure alignments with FSSP structure alignments generated by the DALI program. In contrast to the sequence methods, CE and structure alignments from the FSSP database identically align 75% of residue pairs at the 10-15% level of sequence identity, indicating that there is substantial room for improvement in these sequence alignment methods. BLAST produced alignments for 8% of the 10,665 nonimmunoglobulin SCOP superfamily sequence pairs (nearly all <25% sequence identity), PSI-BLAST matched 17% and the double-PSI-BLAST ISS method aligned 38% with E-values <10.0. The results indicate that intermediate sequences may be useful not only in fold assignment but also in achieving more complete sequence alignments for comparative modeling.  相似文献   

17.
Studying the distribution of a motif along sequences may help in the understanding of its biological function, or to detect regions of interest. A statistical model is needed to assess the significance of the observed distribution. We propose a heterogenous compound Poisson process to model the possibility of overlap between occurrences and some heterogeneity of the sequence known a priori. The estimation procedure of the parameters is described and tests of homogenous sub-models are proposed. We also consider the detection of rich regions using either cumulated distances or moving intervals, via a homogenization technique. Illustrations of the method are given with applications to bacterial genomes.  相似文献   

18.
19.
A method for simultaneous alignment of multiple protein structures   总被引:1,自引:0,他引:1  
Shatsky M  Nussinov R  Wolfson HJ 《Proteins》2004,56(1):143-156
Here, we present MultiProt, a fully automated highly efficient technique to detect multiple structural alignments of protein structures. MultiProt finds the common geometrical cores between input molecules. To date, most methods for multiple alignment start from the pairwise alignment solutions. This may lead to a small overall alignment. In contrast, our method derives multiple alignments from simultaneous superpositions of input molecules. Further, our method does not require that all input molecules participate in the alignment. Actually, it efficiently detects high scoring partial multiple alignments for all possible number of molecules in the input. To demonstrate the power of MultiProt, we provide a number of case studies. First, we demonstrate known multiple alignments of protein structures to illustrate the performance of MultiProt. Next, we present various biological applications. These include: (1) a partial alignment of hinge-bent domains; (2) identification of functional groups of G-proteins; (3) analysis of binding sites; and (4) protein-protein interface alignment. Some applications preserve the sequence order of the residues in the alignment, whereas others are order-independent. It is their residue sequence order-independence that allows application of MultiProt to derive multiple alignments of binding sites and of protein-protein interfaces, making MultiProt an extremely useful structural tool.  相似文献   

20.
Multiple sequence alignment by a pairwise algorithm   总被引:1,自引:0,他引:1  
An algorithm is described that processes the results of a conventionalpairwise sequence alignment program to automatically producean unambiguous multiple alignment of many sequences. Unlikeother, more complex, multiple alignment programs, the methoddescribed here is fast enough to be used on almost any multiplesequence alignment problem. Received on September 25, 1986; accepted on January 29, 1987  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号