首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We recently demonstrated that heme oxygenase (HO)-1 is constitutively expressed in human CD4+CD25+ regulatory T cells and induced by anti-CD28 or anti-CD28/anti-CD3 stimulation, even in CD4+CD25- responder T cells. To study the effects of HO-1 expression on lymphocyte survival, we transfected the HO-1 gene or induced the gene to express HO-1 protein with cobalt protoporphyrin (CoPP) in Jurkat T cells. Consistently, anti-Fas antibody triggered apoptotic cell death in wild-type Jurkat T cells. Surprisingly, however, HO-1-overexpressing Jurkat T cells showed strong resistance to Fas-mediated apoptosis. In contrast, abrogation of HO-1 expression by antisense oligomer against HO-1 gene from CoPP-treated cells or depletion of iron by desferrioxamine from HO-1-transfected cells abolished the resistance. In addition, exogenously added iron rendered wild-type Jurkat T cells resistant. The resistance involved IkappaB kinase (IKK) activation via iron-induced reactive oxygen species formation, NF-kappaB activation by activated IKK, and c-FLIP expression by activated NF-kappaB. Primary CD4+ T cells induced by CoPP to express HO-1 also showed more resistance to Fas-mediated apoptosis than untreated cells. Our findings suggest that HO-1 plays a critical and nonredundant role in Fas-mediated activation-induced cell death of T lymphocytes.  相似文献   

3.
Selective pivaloylation of 2-acetamido-2-deoxy-D-glucose, its methyl alpha- and beta-glycosides, and the methyl alpha-glycoside of N-acetyl-D-muramic acid under various conditions has been studied. The structures of the products were established by 1H-n.m.r. spectroscopy and acetylation. The orders of acylation, HO-6 greater than HO-3 greater than HO-1 greater than HO-4 for 2-acetamido-2-deoxy-D-glucose and HO-6 greater than HO-3 greater than HO-4 for its methyl glycosides, were established. Methyl 2-acetamido-2-deoxy-3,6-di-O-pivaloyl-alpha- and -beta-D-glucopyranosides and 2-acetamido-2-deoxy-1,3,4,6-tetra-O-pivaloyl-D-glucopyranose were hydrolysed by rabbit serum esterases.  相似文献   

4.
5.

Objective

To investigate whether lipoxin A4 (LXA4) increases expression of heme oxygenase-1(HO-1) in cardiomyocytes, whether LXA4-induced HO-1 protects cardiomyocytes against hypoxia/reoxygenation (H/R) injury, and what are the mechanisms involved in the LXA4-induced HO-1 induction.

Methods

Rat cardiomyocytes were exposed to H/R injury with or without preincubation with LXA4 or HO-1 inhibitor ZnPP-IX or various signal molecule inhibitors. Expressions of HO-1 protein and mRNA were analyzed by using Western blot and RT-PCR respectively. Activity of nuclear factor E2-related factor 2 (Nrf2) binding to the HO-1 E1 enhancer was assessed by chromatin immunoprecipitation. Nrf2 binding to the HO-1 antioxidant responsive element (ARE) were measured by using electrophoretic mobility shift assay.

Results

Pretreatment of the cells undergoing H/R lesion with LXA4 significantly reduced the lactate dehydrogenase and creatine kinase productions, increased the cell viability, and increased the expressions of HO-1 protein and mRNA and HO-1 promoter activity. HO-1 inhibition abolished the protective role of LXA4 on the cells undergoing H/R lesion. LXA4 increased p38 mitogen-activated protein kinase (p38 MAPK) activation, nuclear translocation of Nrf2, Nrf2 binding to the HO-1 ARE and E1 enhancer in cardiomyocytes with or without H/R exposure.

Conclusion

The protection role of LXA4 against H/R injury of cardiomyocytes is related to upregulation of HO-1, via activation of p38 MAPK pathway and nuclear translocation of Nrf2 and Nrf2 binding to the HO-1 ARE and E1 enhancer, but not via activation of phosphatidyinositol-3-kinase or extracellular signal-regulated kinase pathway.  相似文献   

6.
Clear cell renal cell carcinomas (ccRCC) reprogram carbon metabolism responses to hypoxia, thereby promoting utilization of glutamine. Recently, sirtuin 4 (SIRT4), a novel molecular has turned out to be related to alternating glutamine metabolism and modulating the tumor microenvironment. However, the role of SIRT4 in ccRCC remains poorly understood. Here, we illustrated that the expression of SIRT4 is markedly reduced in cancerous tissues, and closely associated with malignancy stage, grade, and prognosis. In ccRCC cells, SIRT4 exerted its proapoptotic activity through enhancing intracellular reactive oxygen species (ROS). Heme oxygenase-1 (HO-1) is part of an endogenous defense system against oxidative stress. Nevertheless, overexpression of SIRT4 hindered the upregulation of HO-1 in von Hippel–Lindau (VHL)-proficient cells and repressed its expression in VHL-deficient cells. This discrepancy indicated that competent VHL withstands the inhibitory role of SIRT4 on HIF-1α/HO-1. Functionally, overexpression of HO-1 counteracted the promotional effects of SIRT4 on ROS accumulation and apoptosis. Mechanistically, SIRT4 modulates ROS and HO-1 expression via accommodating p38-MAPK phosphorylation. By contrast, downregulation of p38-MAPK by SB203580 decreased intracellular ROS level and enhanced the expression of HO-1. Collectively, this work revealed a potential role for SIRT4 in the stimulation of ROS and the modulation of apoptosis. SIRT4/HO-1 may act as a potential therapeutic target, especially in VHL-deficient ccRCCs.Subject terms: Tumour-suppressor proteins, Renal cell carcinoma  相似文献   

7.
8.
The 3'-, 4'-, and 6'-deoxy analogs of UDP-GlcpNAc have been synthesized chemically and found to act as donor-substrates for N-acetylglucosaminyltransferase-I (GnT-I) from human milk. Incubation of UDP-GlcpNAc and these deoxy analogs with GnT-I in the presence of alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Manp -O(CH2)8COOMe gave beta-D-GlcpNAc-(1----2)-alpha-D-Manp-(1----3)-[alpha-D-Manp- (1----6)]- beta-D-Manp-O(CH2)8COOMe (6), and the deoxy analogs 12-14 where HO-3, HO-4, and HO-6, respectively, of the beta-D-GlcNAc residue were replaced by hydrogen. The tetrasaccharide glycosides 6 and 12-14 were characterized by 1H-n.m.r. spectroscopy and evaluated as acceptors for GnT-II, the next enzyme in the pathway of biosynthesis of Asn-linked oligosaccharides. Deoxygenation of the 3-position of the beta-D-GlcNAc residue of 6 completely abolished its acceptor activity, whereas removal of HO-4 or HO-6 caused only modest decreases in activity.  相似文献   

9.
Studies have shown that lipoxin A4 (LXA4) and activation of LXA4 receptor provided protection against myocardial ischemia/reperfusion injury in animal models. However, the mechanisms by which LXA4 induced protective role on myocardial ischemia/reperfusion injury remains unclear. In the present studies, we investigated the protective effects of LXA4 on H9c2 cardiomyocytes exposed to hypoxia/reoxygenation (H/R) injury and involvement of heme oxygenase-1 (HO-1)- and K+ channel-dependant pathways in the LXA4 action. H9c2 cardiomyocytes were pretreated with or without LXA4 or HO-1 specific interfering RNA (siRNA) or various blockers and openers of K+ channels before exposing to H/R injury. The levels of lactate dehydrogenase (LDH) and creatine kinase (CK) in cellular supernatants and necrosis factor-α (TNF-α) in cellular lysates were measured by using ELISA. Expressions of HO-1 mRNA and protein were analyzed by using RT-PCR and Western blot respectively. Pretreatment of the cells undergoing H/R injury with LXA4 significantly reduced the LDH and CK levels induced by H/R injury, and increased the expressions and activity of HO-1. However, the protective effects of LXA4 were completely blocked by transfection of the cells with HO-1 siRNA, and were partially but significantly blocked by pretreatment of the cells with various blockers of K+ channels. The LXA4-induced expressions of HO-1 in the cells were also inhibited by HO-1 siRNA and various blockers of K+ channels. The inhibitory effects of LXA4 on enhanced TNF-α levels induced by H/R injury were abolished by transfection of the cells with HO-1 siRNA. In conclusion, the protective role of LXA4 on cardiomyocytes against H/R injury is related to upregulation of HO-1 via reduced production of TNF-α and activation of ATP-sensitive K+ channels and calcium-sensitive K+ channel.  相似文献   

10.
11.
12.
Heme oxygenase-1 (HO-1), a rate-limiting enzyme in heme catabolism, exhibits potent antioxidant and anti-inflammatory properties. We developed HO-1 transgenic (Tg) mice using a rat HO-1 genomic transgene under the control of the endogenous promoter. Transgene expression was demonstrated by RT-PCR in all studied tissues, and a modest HO-1 overexpression was documented by Western, ELISA, and enzyme activity assays. To assess the effect of local vs systemic HO-1 in the acute rejection response, we used Tg mice as organ donors or recipients of MHC-incompatible heart grafts. In the local HO-1 overexpression model, Tg allografts survived 10.5 +/- 0.7 days (n = 10), compared with 6.5 +/- 0.4 days (n = 6) for wild-type donor controls (p = 0.0001). In the systemic HO-1 overexpression model, Tg recipients maintained allografts for 26.8 +/- 3.4 days (n = 10), compared with 6.3 +/- 0.1 days (n = 12) in wild-type controls (p = 0.00009). Inhibition of HO activity by treatment with tin protoporphyrin blunted survival advantage in Tg mice and resulted in acute graft rejection (n = 3). Increased carboxyhemoglobin levels were consistently noted in Tg mice. Comparisons of grafts at day 4 indicated that HO-1 overexpression was inversely associated with vasculitis/inflammatory cell infiltrate in both models. Hearts transplanted into Tg recipients showed decreased CD4(+) lymphocyte infiltration and diminished immune activation, as judged by CD25 expression. Thus, although local and systemic HO-1 overexpression improved allograft outcomes, systemic HO-1 led to a more robust protection and resulted in a significant blunting of host immune activation. This Tg mouse provides a valuable tool to study mechanisms by which HO-1 exerts beneficial effects in organ transplantation.  相似文献   

13.

Background

Diallyl disulfide (DADS) is a garlic-derived organosulfur compound. The current study is designed to evaluate the protective effects of DADS against ethanol-induced oxidative stress, and to explore the underlying mechanisms by examining the HO-1/Nrf-2 pathway.

Methods

We investigated whether or not DADS could activate the HO-1 in normal human liver cell LO2, and then evaluated the protective effects of DADS against ethanol-induced damage in LO2 cells and in acute ethanol-intoxicated mice. The biochemical parameters were measured using commercial kits. HO-1 mRNA level was determined by RT-PCR. Histopathology and immunofluorescence assay were performed with routine methods. Protein levels were measured by western blot.

Results

DADS significantly increased the mRNA and protein levels of HO-1, stimulated the nuclear translocation of Nrf-2 and increased the phosphorylation of MAPK in LO2 cells. The nuclear translocation of Nrf-2 was abrogated by MAPK inhibitors. DADS significantly suppressed ethanol-induced elevation of lactate dehydrogenase (LDH) and aspartate transaminase (AST) activities, decrease of glutathione (GSH) level, increase of malondialdehyde (MDA) levels, and apoptosis of LO2 cells, which were all blocked by ZnPPIX. In mice, DADS effectively suppressed acute ethanol-induced elevation of aminotransferase activities, and improved liver histopathological changes, which might be associated with HO-1 activation.

Conclusion

These results demonstrate that DADS could induce the activation of HO-1/Nrf-2 pathway, which may contribute to the protective effects of DADS against ethanol-induced liver injury.

General significance

DADS may be beneficial for the prevention and treatment of ALD due to significant activation of HO-1/Nrf-2 pathway.  相似文献   

14.
15.
The heme oxygenase (HO) enzymes catalyze the rate-limiting step of heme breakdown. Prior studies have demonstrated that the vulnerability of neurons and astrocytes to hemoglobin is modified in cells lacking HO-2, the constitutive isoform. The present study assessed the effect of the inducible isoform, HO-1. Wild-type astrocytes treated for 3-5 days with 3-30 microM hemoglobin sustained no loss of viability, as quantified by LDH and MTT assays. The same treatment resulted in death of 25-50% of HO-1 knockout astrocytes, and a 4-fold increase in protein oxidation. Cell injury was attenuated by transfer of the HO-1 gene, but not by bilirubin, the antioxidant heme breakdown product. Conversely, neuronal protein oxidation and cell death after hemoglobin exposure were similar in wild-type and HO-1 knockout cultures. These results suggest that HO-1 induction protects astrocytes from the oxidative toxicity of Hb, but has no effect on neuronal injury.  相似文献   

16.
The Nrf2/anti-oxidant response element (ARE) pathway plays an important role in regulating cellular anti-oxidants, including haem oxygenase-1 (HO-1). Various kinases have been implicated in the pathways leading to Nrf2 activation. Here, we investigated the effect of epigallocatechin (EGC) on ARE-mediated gene expression in human monocytic cells. EGC time and dose dependently increased HO-1 mRNA and protein expression but had minimal effect on expression of other ARE-regulated genes, including NAD(P)H:quinone oxidoreductase 1, glutathione cysteine ligase and ferritin. siRNA knock down of Nrf2 significantly inhibited EGC-induced HO-1 expression. Furthermore, inhibition of PKC by Ro-31-8220 dose dependently decreased EGC-induced HO-1 mRNA expression, whereas MAP kinase and phosphatidylinositol-3-kinase pathway inhibitors had no significant effect. EGC stimulated phosphorylation of PKCαβ and δ in THP-1 cells. PKCδ inhibition significantly decreased EGC-induced HO-1 mRNA expression, whereas PKCα- and β-specific inhibitors had no significant effect. These results demonstrate for the first time that EGC-induced HO-1 expression occurs via PKCδ and Nrf2.  相似文献   

17.
18.
Unstimulated RAW 264.7 macrophages express negligible heme oxygenase-1 (HO-1) protein but incubation with the nitric oxide (NO) donor spermine nonoate (SPNO) induced HO-1 and weakly cyclo-oxygenase-2 (COX-2) protein. This effect was potentiated by coincubation with the COX-2 selective inhibitor, SC58125. Cells incubated with SPNO showed a strong increase in HO-1 mRNA levels after 4 h with a significant potentiation in the presence of SC58125, which did not modify HO-1 mRNA stability. The induction of HO-1 by NO and its potentiation by anti-inflammatory agents may play a role in inflammatory and immune responses.  相似文献   

19.
20.
Heme oxygenase-1 (HO-1) catabolizes heme into CO, biliverdin, and free iron and serves as a protective enzyme by virtue of its anti-inflammatory, antiapoptotic, and antiproliferative actions. Previously, we have demonstrated that human CD4(+) T cells express HO-1 and that HO-1-overexpressing Jurkat T cells tend to display lower proliferative response. The aim of this study is to elucidate the mechanism(s) by which HO-1 can mediate its antiproliferative effect on CD4(+) T cells. Among the three HO-1 byproducts, only CO showed suppressive effect on T cell proliferation in response to anti-CD3 plus anti-CD28 Abs, mimicking the antiproliferative action of HO-1. CO blocked the cell cycle entry of T cells, which was independent of the guanylate cyclase/cGMP pathway. CO also suppressed the secretion of IL-2, and this suppressive effect of CO on IL-2 secretion mediated the antiproliferative action of CO. CO selectively inhibited the extracellular signal-regulated kinase pathway, which could explain the suppressive effects of CO on T cell proliferation and IL-2 secretion. Based on these findings, we suggest that HO-1/CO suppresses T cell proliferation and IL-2 secretion, possibly via its inhibition of extracellular signal-regulated kinase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号