首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu W  Coss D  Lorenson MY  Kuo CB  Xu X  Walker AM 《Biochemistry》2003,42(24):7561-7570
Previous work has shown that naturally phosphorylated prolactin antagonizes the growth-promoting activities of unmodified prolactin (U-PRL) and that this effect is duplicated by a molecular mimic, S179D PRL. At the same time, the S179D PRL is a superagonist with regard to expression of some PRL-regulated genes. We have asked whether the different activities of U-PRL and S179D PRL are the result of differential signaling. HC11 cells (a normal mouse mammary cell line) were grown to confluence, primed with hydrocortisone, and then exposed to the PRLs. A 15 min incubation of PRL-naive cells led to substantial tyrosine phosphorylation of Jak 2 and Stat 5a by U-PRL and an essentially equivalent Jak 2 activation by S179D PRL. The latter, however, was accompanied by reduced tyrosine phosphorylation of Stat 5a. EMSA analysis using a Stat 5 binding site showed both PRLs to cause equivalent binding of nuclear proteins and that most of what bound was complexed through Stat 5a. Phosphoamino acid analysis of Stat 5 showed S179D PRL to double the amount of serine phosphorylation versus that seen with U-PRL. Analysis of the MAP kinase pathway showed U-PRL capable of activation of ERKs 1 and 2 but that signaling via ERKs 1 and 2 was greater with S179D PRL. A 7-day incubation in either PRL increased beta-casein mRNA levels, but S179D PRL caused a 2-fold increase over that seen with U-PRL. The increase, over that seen with U-PRL, was blocked by the MAP kinase inhibitor, PD98059. After 7 days of treatment with S179D PRL, expression of the short PRL receptor was doubled, and signaling showed a greater dependence on the MAP kinase pathway (2.9-fold increase in ERK 1 and 2 activation). We conclude that although both PRLs use both pathways to some extent, U-PRL signals primarily through Jak 2-Stat 5 whereas S179D PRL signals primarily through the MAP kinase pathway especially after prolonged exposure. This is the first demonstration of differential involvement of signaling pathways by different forms of PRL.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Prolactin (PRL) is the primary hormone that, in conjunction with local factors, leads to lobuloalveolar development during pregnancy. Recently, receptor activator of NF-kappaB ligand (RANKL) has been identified as one of the effector molecules essential for lobuloalveolar development. The molecular mechanisms by which PRL may induce RANKL expression have not been carefully examined. Here we report that RANKL expression in the mammary gland is developmentally regulated and dependent on PRL and progesterone, whereas its receptor RANK (receptor activator of NF-kappaB) and decoy receptor osteoprotegerin (OPG) are constitutively expressed at all stages in both normal (PRL+/-) and prolactin knockout (PRL-/-) mice. In vitro, PRL markedly increased RANKL expression in primary mammary epithelial cells and RANKL-luciferase reporter activity in CHOD6 cells, which constitutively express the PRL receptor. We identified a gamma-interferon activation sequence (GAS) in the region between residues -965 to -725 of the RANKL promoter, which conferred a PRL response. Using dominant negative mutants of recombinant Jak2 and Stat5 in CHOD6 cells, and by reconstituting the Jak2/Stat5 pathway in COS7 cells, we determined that Jak2 and Stat5a are essential for the PRL-induced RANKL expression in mammary gland.  相似文献   

10.
11.
Prolactin (PRL) stimulates breast cancer cell proliferation; however, the involvement of PRL-activated signaling molecules in cell proliferation is not fully established. Here we studied the role of c-Src on PRL-stimulated proliferation of T47D and MCF7 breast cancer cells. We initially observed that PRL-dependent activation of focal adhesion kinase (Fak), Erk1/2, and cell proliferation was mediated by c-Src in T47D cells, because expression of a dominant-negative form of c-Src (SrcDM, K295A/Y527F) blocked the PRL-dependent effects. The Src inhibitor PP1 abrogated PRL-dependent in vivo activation of Fak, Erk1/2, p70S6K, and Akt and the proliferation of T47D and MCF7 cells; Janus kinase 2 (Jak2) activation was not affected. However, in vitro, Fak and Jak2 kinases were not directly inhibited by PP1, demonstrating the effect of PP1 on c-Src kinase as an upstream activator of Fak. Expression of Fak mutant Y397F abrogated PRL-dependent activation of Fak, Erk1/2, and thymidine incorporation, but had no effect on p70S6K and Akt kinases. MAPK kinase 1/2 (Mek1/2) inhibitor PD184352 blocked PRL-induced stimulation of Erk1/2 and cell proliferation; however, p70S6K and Akt activation were unaffected. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 abolished cell proliferation and activation of p70S6K and Akt; however, PRL-dependent activation of Erk1/2 was not modified. Moreover, we show that both c-Src/PI3K and c-Src/Fak/Erk1/2 pathways are involved in the up-regulation of c-myc and cyclin d1 expression mediated by PRL. The previous findings suggest the existence of two PRL-dependent signaling cascades, initiated by the c-Src-mediated activation of Fak/Erk1/2 and PI3K pathways that, subsequently, control the expression of c-Myc and cyclin D1 and the proliferation of T47D and MCF7 breast cancer cells.  相似文献   

12.
13.
14.
15.
We have identified human ArhGAP9 as a novel MAP kinase docking protein that interacts with Erk2 and p38α through complementarily charged residues in the WW domain of ArhGAP9 and the CD domains of Erk2 and p38α. This interaction sequesters the MAP kinases in their inactive states through displacement of MAP kinase kinases targeting the same sites. While over-expression of wild type ArhGAP9 caused MAP kinase activation by the epidermal growth factor receptor (EGFR) to be suppressed and preserved the actin stress fibres in quiescent Swiss 3T3 fibroblasts, over-expression of an ArhGAP9 mutant defective in MAP kinase binding restored EGFR-induced MAP kinase activation and resulted in significant disruption of the stress fibres, consistent with the role of Erk activation in disassembly of actin stress fibres. The interaction between ArhGAP9 and the MAP kinases represents a novel mechanism of cross-talk between Rho GTPase and MAP kinase signaling.  相似文献   

16.
17.
18.

Background  

Elevations of serum prolactin (PRL) are associated with an increased risk for breast cancer. PRL signaling through its prolactin receptor (PRLr) involves the Jak2/Stat5 pathway. Luciferase-based reporter assays have been widely used to evaluate the activity of this pathway. However, the existing reporters are often not sensitive enough to monitor the effect of PRL in this pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号