首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Shi FM  Li YZ 《BMB reports》2008,41(1):79-85
The source of nitric oxide (NO) in plants is unclear and it has been reported NO can be produced by nitric oxide synthase (NOS) like enzymes and by nitrate reductase (NR). Here we used wild-type, Atnos1 mutant and nia1, nia2 NR-deficient mutant plants of Arabidopsis thaliana to investigate the potential source of NO production in response to Verticillium dahliae toxins (VD-toxins). The results revealed that NO production is much higher in wild-type and Atnos1 mutant than in nia1, nia2 NR-deficient mutants. The NR inhibitor had a significant effect on VD-toxins-induced NO production; whereas NOS inhibitor had a slight effect. NR activity was significantly implicated in NO production. The results indicated that as NO was induced in response to VD-toxins in Arabidopsis, the major source was the NR pathway. The production of NOS-system appeared to be secondary.  相似文献   

3.
Brassinosteroids (BRs) are growth‐promoting plant hormones that play a crucial role in biotic stress responses. Here, we found that BR treatment increased nitric oxide (NO) accumulation, and a significant reduction of virus accumulation in Arabidopsis thaliana. However, the plants pre‐treated with NO scavenger [2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐1‐oxyl‐3‐oxide (PTIO)] or nitrate reductase (NR) inhibitor (tungstate) hardly had any NO generation and appeared to have the highest viral replication and suffer more damages. Furthermore, the antioxidant system and photosystem parameters were up‐regulated in brassinolide (BL)‐treated plants but down regulated in PTIO‐ or tungstate‐treated plants, suggesting NO may be involved in BRs‐induced virus resistance in Arabidopsis. Further evidence showed that NIA1 pathway was responsible for BR‐induced NO accumulation in Arabidopsis. These results indicated that NO participated in the BRs‐induced systemic resistance in Arabidopsis. As BL treatment could not increase NO levels in nia1 plants in comparison to nia2 plants. And nia1 mutant exhibited decreased virus resistance relative to Col‐0 or nia2 plants after BL treatment. Taken together, our study addressed that NIA1‐mediated NO biosynthesis is involved in BRs‐mediated virus resistance in A. thaliana.  相似文献   

4.
Phytohormone salicylic acid (SA) plays important roles in plant responses to environmental stress. However, knowledge about the molecular mechanisms for SA affecting the stomatal movements is limited. In this paper, we demonstrated that exogenous SA significantly induced stomatal closure and nitric oxide (NO) generation in Arabidopsis guard cells based on genetic and physiological data. These effects were significantly inhibited by the NO scavenger c-PTIO, NO synthase (NOS) inhibitor L-NAME or nitrate reductase suppressor tungstate respectively, implying that NOS and nitrate reductase (NR) participate in SA-evoked stomatal closing. Furthermore, the effects of SA promotion of stomatal closure and NO synthesis are significantly suppressed in NR single mutants of nia1, nia2 or double mutant nia1/nia2, compared with the wild type plants. This suggests that both Nia1 and Nia2 are involved in SA-stimulated stomatal closure. In addition, pharmacological experiments showed that protein kinases, cGMP and cADPR are involved in SA-mediated NO accumulation and stomatal closure induced by SA in Arabidopsis.  相似文献   

5.
6.
The behaviour of cell nuclei and organelle nucleoids (organellenuclei) was studied in the root apical meristem of 3-d-old seedlingsof Arabidopsis thaliana (Col.). Samples were embedded in Technovit7100 resin, cut into thin sections and stained with 4'-6-diamidino-2-phenylindole(DAPI) for observation of DNA. DNA synthesis in cell nucleiand organelle nucleoids was investigated using the incorporationof [3H] thymidine or 5-bromo-2'-deoxyuridine (BrdU). Incorporated[3H] thymidine and BrdU were detected by microautoradiographyor immunofiuorescence microscopy, respectively. Central cellsand cells just above the central cells of the quiescent centre(QC) showed an extremely low activity of DNA synthesis. However,DNA synthesis occurred in at least one organelle nucleoid ofall cells in the QC within 24 h. This suggests the cells inthe QC are quiescent with regard to nuclear DNA synthesis, butnot with regard to the organelle nucleoids. Key words: Arabidopsis thaliana, quiescent centre, root apical meristem, mitochondrial nucleoid (nuclei), plastid nucleoid (nuclei)  相似文献   

7.
The root epidermis is composed of two cell types: trichoblasts (or hair cells) and atrichoblasts (or non-hair cells). In lettuce (Lactuca sativa cv. Grand Rapids var. Rapidmor oscura) plants grown hydroponically in water, the root epidermis did not form root hairs. The addition of 10 µM sodium nitroprusside (SNP), a nitric oxide (NO) donor, resulted in almost all rhizodermal cells differentiated into root hairs. Treatment with the synthetic auxin 1-naphthyl acetic acid (NAA) displayed a significant increase of root hair formation (RHF) that was prevented by the specific NO scavenger carboxy-PTIO (cPTIO). In Arabidopsis, two mutants have been shown to be defective in NO production and to display altered phenotypes in which NO is implicated. Arabidopsis nos1 has a mutation in an NO synthase structural gene (NOS1), and the nia1 nia2 double mutant is null for nitrate reductase (NR) activity. We observed that both mutants were affected in their capacity of developing root hairs. Root hair elongation was significantly reduced in nos1 and nia1 nia2 mutants as well as in cPTIO-treated wild type plants. A correlation was found between endogenous NO level in roots detected by the fluorescent probe DAF-FM DA and RHF. In Arabidopsis, as well as in lettuce, cPTIO blocked the NAA-induced root hair elongation. Taken together, these results indicate that: (1) NO is a critical molecule in the process leading to RHF and (2) NO is involved in the auxin-signaling cascade leading to RHF.Key Words: auxin, nitric oxide, root hair, lettuce, arabidopsis, nos1 mutant, nia1, nia2 mutant  相似文献   

8.
We developed a polyethylene glycol (PEG)-mediated direct DNAtransfer method from intact Saccharomyces cerevisiae spheroplastsinto Arabidopsis thaliana protoplasts. To monitor the DNA transferfrom yeast to plant cells, ß-glucuronidase (GUS) reportergene in which a plant intron was inserted was used as a reporter.This intron-GUS reporter gene on a 2µm-based plasmid vectorwas not expressed in yeast transformants, while it expressedGUS activity when the plasmid DNA was introduced into plantcells. When a mixture of 1 x 108 of S. cerevisiae spheroplastsharboring the plasmid and 2 x 106 of A. thaliana protoplastswas treated with PEG and high pH-high Ca2+ solution (0.4 M mannitol,50 mM CaCl2, 50 mM glycine-NaOH pH 10.5), GUS activity was detectedin the extract of the plant cells after a three-day culture.The GUS activity was higher than that of a reconstitution experimentin which the mixture of 1 x 108 of S. cerevisiae spheroplastswhich did not carry the reporter gene, 2 x 106 of A. thalianaprotoplasts and the same amount of the reporter plasmid DNAas that contained in 1 x 108 of S. cerevisiae spheroplasts,was treated with PEG and high pH-high Ca2+ solution. Moreover,the GUS gene expression was resistant to micrococcal nucleasetreatment before and during PEG treatment. From these results,we concluded that plasmid DNA can be directly transferred fromintact yeast spheroplasts to plant protoplasts by a nuclease-resistantprocess, possibly by the cell fusion. 2Deceased on September 15, 1992.  相似文献   

9.
Nitric oxide (NO) functions in various physiological and developmental processes in plants. However, the source of this signaling molecule in the diversity of plant responses is not well understood. It is known that NO mediates auxin-induced adventitious and lateral root (LR) formation. In this paper, we provide genetic and pharmacological evidence that the production of NO is associated with the nitrate reductase (NR) enzyme during indole-3-butyric acid (IBA)-induced lateral root development in Arabidopsis thaliana L. NO production was detected using 4,5-diaminofluorescein diacetate (DAF-2DA) in the NR-deficient nia1, nia2 and Atnoa1 (former Atnos1) mutants of A. thaliana. An inhibitor for nitric oxide synthase (NOS) N(G)-monomethyl-l-arginine (l-NMMA) was applied. Our data clearly show that IBA increased LR frequency in the wild-type plant and the LR initials emitted intensive NO-dependent fluorescence of the triazol product of NO and DAF-2DA. Increased levels of NO were restricted only to the LR initials in contrast to primary root (PR) sections, where NO remained at the control level. The mutants had different NO levels in their control state (i.e. without IBA treatment): nia1, nia2 showed lower NO fluorescence than Atnoa1 or the wild-type plant. The role of NR in IBA-induced NO formation in the wild type was shown by the zero effects of the NOS inhibitors l-NMMA. Finally, it was clearly demonstrated that IBA was able to induce NO generation in both the wild-type and Atnoa1 plants, but failed to induce NO in the NR-deficient mutant. It is concluded that the IBA-induced NO production is nitrate reductase-associated during lateral root development in A. thaliana.  相似文献   

10.
It is commonly believed thatthe activity of NO synthase (NOS) solely controls NO production fromits substrates, L-Arg and O2. The Michaelis-Menten constant(Km) of NOS forL-Arg is in the micromolarrange; cellular levels of L-Argare much higher. However, evidence strongly suggests that cellularsupply of L-Arg may becomelimiting and lead to reduced NO and increased superoxide anion(O2·) formation, promotingcardiovascular dysfunction. Uptake ofL-Arg into cells occursprimarily (~85%) through the actions of aNa+-independent, carrier-mediatedtransporter (system y+). We haveexamined the effects of NOS agonists (substance P, bradykinin, and ACh)and NO donors(S-nitroso-N-acetyl-penicillamine and dipropylenetriamine NONOate) on transport ofL-Arg into bovine aorticendothelial cells (BAEC). Our results demonstrate that NOS agonistsincrease y+ transporter activity.A rapidly acting NO donor initially increases L-Arg uptake; however, afterlonger exposure, L-Arg uptake is suppressed. Exposure of BAEC withoutL-Arg to substance P and aCa2+ ionophore (A-23187) increasedO2· formation, which was blockedwith concurrent presence ofL-Arg or the NOS antagonistN-nitro-L-arginine methyl ester.We conclude that factors including NO itself controly+ transport function and theproduction of NO and O2·.

  相似文献   

11.
Two genomic DNA clones encoding cyclophilin (CyP) from Arabidopsisthaliana were isolated. The deduced protein products of thesegenes appeared to be cytosol-localized isoforms given the absenceof a specific presequence for targeting to cellular compartments.Thus, multiple CyPs may exist and function in the cytosol ofArabidopsis thaliana. 4Present address: Division 1 of Gene Expression and Regulation,National Institute for Basic Biology, Okazaki, 444 Japan  相似文献   

12.
Carbon (C) and nitrogen (N) metabolism are integrated processes that modulate many aspects of plant growth, development, and defense. Although plants with deficient N metabolism have been largely used for the elucidation of the complex network that coordinates the C and N status in leaves, studies at the whole-plant level are still lacking. Here, the content of amino acids, organic acids, total soluble sugars, starch, and phenylpropanoids in the leaves, roots, and floral buds of a nitrate reductase (NR) double-deficient mutant of Arabidopsis thaliana (nia1 nia2) were compared to those of wild-type plants. Foliar C and N primary metabolism was affected by NR deficiency, as evidenced by decreased levels of most amino acids and organic acids and total soluble sugars and starch in the nia1 nia2 leaves. However, no difference was detected in the content of the analyzed metabolites in the nia1 nia2 roots and floral buds in comparison to wild type. Similarly, phenylpropanoid metabolism was affected in the nia1 nia2 leaves; however, the high content of flavonol glycosides in the floral buds was not altered in the NR-deficient plants. Altogether, these results suggest that, even under conditions of deficient nitrate assimilation, A. thaliana plants are capable of remobilizing their metabolites from source leaves and maintaining the C–N status in roots and developing flowers.  相似文献   

13.
It has been demonstrated, in both herbaceous and woody species,that tissue hydration resulting from exposure to drought isless pronounced if plants are concurrently exposed to ultraviolet-Bradiation (UV-B). An explanation for the mechanisms underlyingthis phenomenon has been elusive. Arabidopsis thaliana(L.) Heynh.genotypes, defective in specific defences against UV-B exposure,may permit more insightful study of drought-UV-B interactionsthan is possible with genetically uniform plants. Arabidopsishas a rosette stature and has predominantly abaxial stomata.Thus, it is difficult to investigate its stomatal behaviourand gas exchange using conventional techniques and instrumentation.In this study, the relative abundance of13C and12C in leaf tissue(13C) was used as a means of determining water use efficiency(WUE) and the relative balance, at the site of carbon fixation,between CO2supply and demand. UV-B insensitive (L er) and sensitive(fah1)Arabidopsis genotypes were raised in a growth chamberand exposed to 6 kJ m-2 d-1UV-B irradiation and subjected todrought. In both genotypes, leaf desiccation was less pronouncedthan that of control plants that were subjected to drought butnot exposed to UV-B. The relatively low (more negative) leaf13C values (indicating low WUE), but high dry matter productionof the UV-B exposed plants suggest that their higher leaf watercontent was not primarily due to stomatal closure. We proposethat the mechanisms underlying the maintenance of higher leafwater content involved UV-B and water stress induced biosynthesisof stress proteins and compatible osmolytes. Copyright 2000Annals of Botany Company Arabidopsis thaliana, ultraviolet-B, water deficit, stable carbon isotopes, 13C, stomatal opening, tissue dehydration, dehydrin  相似文献   

14.
Although nitric oxide (NO) is a known modulator of cell respiration in vascular endothelium, the presence of a mitochondria-specific nitric oxide synthase (mtNOS) in these cells is still a controversial issue. We have used laser scanning confocal microscopy in combination with the NO-sensitive fluorescent dye DAF-2 to monitor changes in NO production by mitochondria of calf vascular endothelial (CPAE) cells. Cells were loaded with the membrane-permeant NO-sensitive dye 4,5-diaminofluorescein (DAF-2) diacetate and subsequently permeabilized with digitonin to remove cytosolic DAF-2 to allow measurements of NO production in mitochondria ([NO]mt). Stimulation of mitochondrial Ca2+ uptake by exposure to different cytoplasmic Ca2+ concentrations (1, 2, and 5 µM) resulted in a dose-dependent increase of NO production by mitochondria. This increase of [NO]mt was sensitive to the NOS antagonist L-N5-(1-iminoethyl)ornithine and the calmodulin antagonist calmidazolium (R-24571), demonstrating the endogenous origin of NO synthesis and its calmodulin dependence. Collapsing the mitochondrial membrane potential with the protonophore FCCP or blocking the mitochondrial Ca2+ uniporter with ruthenium red, as well as blocking the respiratory chain with antimycin A in combination with oligomycin, inhibited mitochondrial NO production. Addition of the NO donor spermine NONOate caused a profound increase in DAF-2 fluorescence that was not affected by either of these treatments. The mitochondrial origin of the DAF-2 signals was confirmed by colocalization with the mitochondrial marker MitoTracker Red and by the observation that disruption of caveolae (where cytoplasmic NOS is localized) formation with methyl--cyclodextrin did not prevent the increase of DAF-2 fluorescence. The activation of mitochondrial calcium uptake stimulates mtNOS phosphorylation (at Ser-1177) which was prevented by FCCP. The data demonstrate that stimulation of mitochondrial Ca2+ uptake activates NO production in mitochondria of CPAE cells. This indicates the presence of a mitochondria-specific NOS that can provide a fast local modulatory effect of NO on cell respiration, membrane potential, and apoptosis. nitric oxide; nitric oxide synthase; calcium; endothelium; mitochondria  相似文献   

15.
Nitric oxide (NO) has emerged as a central signaling molecule in plants and animals. However, the long search for a plant NO synthase (NOS) enzyme has only encountered false leads. The first works describing a pathogen-induced NOS-like plant protein were soon retracted. New hope came from the identification of NOS1, an Arabidopsis thaliana protein with an atypical NOS activity that was found to be targeted to mitochondria in roots. Although concerns about the NO-producing activity of this protein were raised (causing the renaming of the protein to NO-associated 1), compelling data on its biological role were missing until recently. Strong evidence is now available that this protein functions as a GTPase that is actually targeted to plastids, where it might be required for ribosome function. These and other results support the argument that the defective NO production in loss-of-function mutants is an indirect effect of interfering with normal plastid functions and that plastids play an important role in regulating NO levels in plant cells.A major revolution in biology took place by the early 1990s after the discovery that nitric oxide (NO), a free radical, was not a toxic by-product of oxidative metabolism but had a fundamental role as a signaling molecule regulating normal physiological processes in animal cells (Culotta and Koshland, 1992). A role of this volatile molecule in plant defense responses was subsequently reported, and it is now well established that NO is also a key player in the regulation of different plant developmental processes, including germination, root growth, vascular differentiation, stomatal closure, and flowering (Lamattina et al., 2003; Wendehenne et al., 2004; Crawford and Guo, 2005). Animal cells synthesize NO primarily by the activity of NO synthase (NOS) enzymes. There are several NOS isoforms, but all of them catalyze the same basic reaction: a NADPH-dependent oxidation of l-Arg to NO and l-citrulline. By contrast, the synthesis of NO in plant cells remains a matter of debate. The first reported mechanism to make NO in plants was the reduction of nitrite to NO catalyzed (with low efficiency) by nitrate reductase (NR), a cytosolic enzyme that normally reduces nitrate to nitrite (Yamasaki et al., 1999). But the contribution of NR to NO synthesis is still controversial.The analysis of the Arabidopsis thaliana nia1 nia2 double mutant, which shows substantially reduced NR activity levels, has shown that such activity is required for NO synthesis during flowering (Seligman et al., 2008), auxin-induced lateral root development (Kolbert et al., 2008), and abscisic acid (ABA)-induced stomatal closure (Desikan et al., 2002; Bright et al., 2006) but not during infection (Zhang et al., 2003), salicylic acid treatment (Zottini et al., 2007), or mechanical stress (Garces et al., 2001). Furthermore, foliar extracts of the mutant show the same capacity to produce NO as wild-type plants when nitrite is exogenously supplied (Modolo et al., 2005). These results indicate that additional mechanisms to reduce nitrite into NO exist in plant cells and that the decreased capability for NO synthesis of mutant plants with defective NR activity might result from their reduced nitrite levels (Modolo et al., 2005). Other enzymatic sources for nitrite-dependent NO synthesis exist in the plasma membrane (Stohr et al., 2001) and mitochondria (Planchet et al., 2005), whereas nonenzymatic production of NO from nitrite has been shown to occur in acidic and reducing environments, such as the apoplasm (Bethke et al., 2004) and plastids (Cooney et al., 1994). The highly reduced levels of l-Arg in the nia1 nia2 mutant (Modolo et al., 2006) might also compromise its ability to produce NO. This amino acid is a substrate for the production of polyamines, compounds that have been proposed to participate in NO synthesis (Tun et al., 2006). Additionally, plants have been found to synthesize NO by an Arg-dependent NOS activity similar to that present in animal cells, as detailed in the next section.  相似文献   

16.
Transgenic Arabidopsis plants overexpressing the wheat vacuolarNa+/H+ antiporter TNHX1 and H+-PPase TVP1 are much more resistantto high concentrations of NaCl and to water deprivation thanthe wild-type strains. These transgenic plants grow well inthe presence of 200 mM NaCl and also under a water-deprivationregime, while wild-type plants exhibit chlorosis and growthinhibition. Leaf area decreased much more in wild-type thanin transgenic plants subjected to salt or drought stress. Theleaf water potential was less negative for wild-type than fortransgenic plants. This could be due to an enhanced osmoticadjustment in the transgenic plants. Moreover, these transgenicplants accumulate more Na+ and K+ in their leaf tissue thanthe wild-type plants. The toxic effect of Na+ accumulation inthe cytosol is reduced by its sequestration into the vacuole.The rate of water loss under drought or salt stress was higherin wild-type than transgenic plants. Increased vacuolar soluteaccumulation and water retention could confer the phenotypeof salt and drought tolerance of the transgenic plants. Overexpressionof the isolated genes from wheat in Arabidopsis thaliana plantsis worthwhile to elucidate the contribution of these proteinsto the tolerance mechanism to salt and drought. Adopting a similarstrategy could be one way of developing transgenic staple cropswith improved tolerance to these important abiotic stresses. Key words: H+-pyrophosphatase, Na+/H+ antiporter, salt and drought tolerance, sodium sequestration, transgenic Arabidopsis plants  相似文献   

17.
It is well known for a long time, that nitric oxide (NO) functions in variable physiological and developmental processes in plants, however the source of this signaling molecule in the diverse plant responses is very obscure.1 Although existance of nitric oxide sythase (NOS) in plants is still questionable, LNMMA (NG-monomethyl-L-arginine)-sensitive NO generation was observed in different plant species.2,3 In addition, nitrate reductase (NR) is confirmed to have a major role as source of NO.4,5 This multifaced molecule acts also in auxin-induced lateral root (LR) formation, since exogenous auxin enhanced NO levels in regions of Arabidopsis LR initiatives. Our results pointed out the involvement of nitrate reductase enzyme in auxin-induced NO formation. In this addendum, we speculate on auxin-induced NO production in lateral root primordial formation.Key words: atnoa1, indole-3-butyric acid, nia1, nia2 double mutant, nitric oxideLateral roots are formed from root pericycle cells postembryonically which process is promoted by indole-acetic acid (IAA). It was recognized that IAA share common steps with NO in the signal transduction cascade towards the auxin induced adventitious and lateral root formation.68 Previously it was suggested that besides IAA, indol-3-butyric (IBA) is a true endogenous auxin in Arabidopsis, which acts in adventious and lateral root development.9,10 Our results showed that IBA induced LR initials emitted intensive NO fluorescence in Arabidopsis. This increased level of NO was present only in the LR initials in contrast to primary root (PR) sections where it remained at the control level.In plants NO can be produced by a number of enzyme systems and non-enzymatic ways. In roots, the most likely candidates of NO synthesis are NR enzymes (cytoplasmic and plasma membrane-bounded isoenzymes, cNR and PM-NR). Recently a new type of enzyme, the PM-bounded nitrite:NO reductase (Ni:NOR) was identified as a possible source of NO in roots.11 Because of the several formation potentials of NO, the identification of its source in plant tissues under different conditions is complicated. Using diverse mutants proved to be a good opportunity to investigate the possible sources of NO. In our experiments wild-type (Col-1), Atnoa1 (nitric oxide synthase associated 1 deficient) and nia1, nia2 (NR deficient) seedlings were applied in order to determine the enzymatic source of NO induced by auxin. In roots of these plants, different NO levels were measured in their control state (i.e., without IBA treatment). The NO content in Atnoa1 roots was similar to that of wild-type, while nia1, nia2 showed lower NO fluorescence than the other groups of plants. This result suggests that NR activity is needed to NO synthesis in roots. Further on, it was demonstrated that IBA induced NO generation in both the wild type and Atnoa1 root primordia, but this induction failed in the NR-deficient mutant. This reveals that the NO accumulation in root primordia induced by auxin requires NR activity. These observations were evidenced also by biochemical manner. On the one part, we applied L-NMMA, which is a specific inhibitor of mammalian NOS, on the other part, the inhibitor of NR enzyme tungstate was used and we monitored NO fluorescence in wild-type roots. The NOS inhibitor displayed no effect on NO levels neither at control state nor during auxin treatment, while tungstate inhibited NO synthesis in lateral roots and primary roots of control plants. The effect of tungstate was similar in auxin-treated roots, since application of this NR enzyme inhibitor decreased NO levels in PRs and LRs (Fig. 1).Open in a separate windowFigure 1NO fluorescence in lateral roots (white columns) and primary roots (grey columns) of control, control + 1 mM tungstate, IBA and IBA + 1 mM tungstate-treated wild-type Arabidopsis thaliana. Vertical bars are standard errors.Some speculations can be made on these results. Although more efforts are needed to make the scene clear, now we can predict that auxin somehow may induce NR isoenzymes, which produce nitrite in root cells. From this point, two further scenarios are possible: as the result of accumulated nitrite, either the NO-producing activity of NR or Ni:NOR activity are promoted, hereby NO is generated from nitrite reduction. NO formed in these two possible ways modulates the expression of certain cell cycle regulatory genes contributing to division of pericycle cells in LR primordia, as was published in tomato.12Nowadays research in the “NO-world” of plants is running very actively. Nevertheless, lot of more work is needed to reveal all the unknown faces of this novel multipurpose signaling molecule.  相似文献   

18.
Some developmental responses of wild-type and mutant strainsof Arabidopsis thaliana to ethylene have been investigated (shootand root elongation, isodiametric cell expansion, plumular hookangle, ethylene biosynthesis, peroxidase activity). One suchmutant (eti 5) shows little or no response to ethylene at concentrationsup to 10000 µl 1–1 in any test; the other mutantsshow reduced responses. The ability of germinated seedlingsto emerge through sand is directly proportional to their sensitivityto ethylene. It is suggested that this finding supports thehypothesis that increased ethylene production in response tomechanical impedance is involved, via its effects on stem thickeningand hook closure, in the emergence process. Arabidopsis thaliana (L.) Heynh., ethylene insensitive mutants, seedling emergence  相似文献   

19.
Leaves and callus of Kalancho? daigremontiana and Taxus brevifolia were used to investigate nitric oxide-induced apoptosis in plant cells. The effect of nitric oxide (NO) was studied by using a NO donor, sodium nitroprusside (SNP), a nitric oxide-synthase (NOS) inhibitor, N:(G)-monomethyl-L-arginine (NMMA), and centrifugation (an apoptosis-inducing treatment in these species). NO production was visualized in cells and tissues with a specific probe, diaminofluorescein diacetate (DAF-2 DA). DNA fragmentation was detected in situ by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) method. In both species, NO was detected diffused in the cytosol of epidermal cells and in chloroplasts of guard cells and leaf parenchyma cells. Centrifugation increased NO production, DNA fragmentation and subsequent cell death by apoptosis. SNP mimicked centrifugation results. NMMA significantly decreased NO production and apoptosis in both species. The inhibitory effect of NMMA on NO production suggests that a putative NOS is present in Kalancho? and Taxus cells. The present results demonstrated the involvement of NO on DNA damage leading to cell death, and point to a potential role of NO as a signal molecule in these plants.  相似文献   

20.
Nitric oxide (NO) and related molecules such as peroxynitrite, S-nitrosoglutathione (GSNO), and nitrotyrosine, among others, are involved in physiological processes as well in the mechanisms of response to stress conditions. In sunflower seedlings exposed to five different adverse environmental conditions (low temperature, mechanical wounding, high light intensity, continuous light, and continuous darkness), key components of the metabolism of reactive nitrogen species (RNS) and reactive oxygen species (ROS), including the enzyme activities L-arginine-dependent nitric oxide synthase (NOS), S-nitrosogluthathione reductase (GSNOR), nitrate reductase (NR), catalase, and superoxide dismutase, the content of lipid hydroperoxide, hydrogen peroxide, S-nitrosothiols (SNOs), the cellular level of NO, GSNO, and GSNOR, and protein tyrosine nitration [nitrotyrosine (NO(2)-Tyr)] were analysed. Among the stress conditions studied, mechanical wounding was the only one that caused a down-regulation of NOS and GSNOR activities, which in turn provoked an accumulation of SNOs. The analyses of the cellular content of NO, GSNO, GSNOR, and NO(2)-Tyr by confocal laser scanning microscopy confirmed these biochemical data. Therefore, it is proposed that mechanical wounding triggers the accumulation of SNOs, specifically GSNO, due to a down-regulation of GSNOR activity, while NO(2)-Tyr increases. Consequently a process of nitrosative stress is induced in sunflower seedlings and SNOs constitute a new wound signal in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号