首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulfoglucuronyl carbohydrate linked to neolactotetraose reacts with HNK-1 antibody. The HNK-1 carbohydrate epitope is found in two major glycolipids, several glycoproteins and in some proteoglycans of the nervous system. Most of the HNK-1 reactive glycoproteins so far identified are neural cell adhesion molecules and/or are involved in cell-cell interactions. HNK-1 carbohydrate is highly immunogenic. Several HNK-1-like antibodies, including IgM of some patients with plasma cell abnormalities and having peripheral neuropathy, have been described. This article summarizes published work mainly on sulfoglucuronyl glycolipids, SGGLs and covers: structural requirements of the carbohydrate epitope for binding to HNK-1 and human antibodies, expression of the lipids in various neural areas, stage and region specific developmental expression in CNS and PNS, immunocytochemical localization, loss of expression in Purkinje cell abnormality murine mutations, biosynthetic regulation of expression by a single enzyme N-acetylglucosaminyl transferase, identification of receptor-like carbohydrate binding neural proteins (lectins), and perceived role of the carbohydrate in physiological functions. The latter includes role in: pathogenesis of certain peripheral neuropathies, in migration of neural crest cells, as a ligand in cell-cell adhesion/interaction and as a promoter of neurite outgrowth for motor neurons. Multiple expression of HNK-1 carbohydrate in several molecules and in various neural cell types at specific stages of nervous system development has puzzled investigators as to its specific biological function, but this may also suggest its importance in multiple systems during cell differentiation and migration processes.Special issue dedicated to Dr. Marjorie B. Lees.  相似文献   

2.
Abstract: In PNS, the specific activity of 2′,3′-cyclic nucleotide 3′-phospho–diesterase (CNP) in myelin was not enriched over the starting homogenate. Nevertheless, most of the total activity was recovered in myelin. In myelin-deficient mutants, low CNP activities were measured in sciatic nerves. CNP specific activities were similar in myelinated and non-myelinated nerves but in non-nervous tissues, they were significantly lower than in nervous tissue. There was no indication for the presence of an isoenzyme of CNP in peripheral nerves. These results indicate that CNP is present in PNS myelin and preferentially localized in Schwann cell plasma membranes.  相似文献   

3.
HNK-1 antibody reactive carbohydrate epitope carried by glycolipids and glycoproteins has been shown to be involved in cell to cell interactions. It has been proposed that the HNK-1 reactive 3-sulfoglucuronyl carbohydrate epitope in glycolipids may interact with a cell surface receptor to promote the biological response in the developing nervous system. The possible occurrence of such a receptor was examined in rat nervous system. A specific binding of sulfoglycolipids to a 30 kD protein from adult rat cerebellum is described. Little binding was found with neutral glycolipids and gangliosides. The 30 kD protein from cerebellum was partially purified on a sulfatide-octyl-Sepharose affinity column. Binding of sulfoglucuronyl glycolipids to a similar 30 kD protein from forebrain previously identified as amphoterin is also shown. Amphoterin is developmentally regulated and is involved in neural cell adhesion and neurite extension.  相似文献   

4.
The expression and accumulation of the myelin-associated glycoprotein (MAG) and other glycoconjugates have been studied during myelination in the developing cat peripheral nervous system. The glycoconjugates studied have in common a similar carbohydrate determinant which is bound by many antibodies, including the mouse monoclonal antibody HNK-1, and human IgM paraproteins from patients with neuropathy. In addition to MAG, the reactive glycoconjugates include a 60-kilodalton (kD) glycoprotein and a group of 20-26 kD glycoproteins, as well as a group of recently identified acidic glycolipids, the major one of which is sulfate-3-glucuronyl paragloboside (SGPG). The accumulation of these glycoproteins and glycolipids is compared with the established myelin proteins P0, P1, and P2 and with morphometric indices of myelin volume and axonal perimeter. The study demonstrates that MAG appears and accumulates very early during myelination, being present at 15% of the maximum level prior to the appearance of P0, and at 80% of the maximum level when P0 is at 30% of its maximum level. In the adult, the level of MAG falls to 60% maximum. The 60 kD and 20-26 kD glycoproteins accumulate at the same time as or later than P0, suggesting that they are either compact myelin proteins or in membranes closely associated with compact myelin. SGPG accumulates with P0 early in myelination, but falls to 60% of maximum in the adult. By comparing biochemical and morphometric data, we demonstrate that P0 and other compact myelin proteins accumulate synchronously with the increase in myelin area. MAG accumulation, however, is closely related to changes in axonal perimeter, consistent with a predominant localization of MAG to the periaxonal membranes in the peripheral nervous system.  相似文献   

5.
A sulfated 100K-dalton glycoprotein has been shown to be released into the culture medium of melanoma cells. Monoclonal antibodies 10C5 and 11B5, which were raised to human melanoma cells, as well as HNK-1 bind to this glycoprotein. It is shown here that mouse anti-myelin-associated glycoprotein (MAG) carbohydrate antibodies raised to human MAG and a human IgM paraprotein associated with neuropathy also bind to the same 100K molecule. However, anti-MAG antibodies recognizing peptide epitopes do not appear to react with this glycoprotein of melanoma cells, a result suggesting that its similarity to MAG is restricted to shared carbohydrate moieties. The anti-melanoma antibodies (10C5 and 11B5) resemble HNK-1 in binding to MAG and to some 19-28K-dalton glycoproteins and sulfated, glucuronic acid-containing sphingoglycolipids of the peripheral nervous system (PNS). In addition, the anti-melanoma antibodies cross-react with neural cell adhesion molecule (N-CAM), an observation emphasizing the shared antigenicity between MAG and other adhesion molecules. The results demonstrate that the anti-melanoma antibodies fall into a class of monoclonal antibodies (including HNK-1, human IgM paraproteins associated with neuropathy, anti-human MAG antibodies, and L2 antibodies) that are characterized by reactivity against related carbohydrate determinants shared by human MAG, N-CAM, and several protein and lipid glycoconjugates of the PNS.  相似文献   

6.
Gangliosides are characteristic glycolipid components of plasma cell membranes, especially enriched in the CNS and PNS. In some diseases involving the PNS, in particular motor neuropathies associated with conduction block, IgM autoantibodies against ganglioside GM1 have been implicated as a pathogenic factor. In order to study the GM1 distribution in peripheral nerves we have investigated its in situ localization using a new anti-GM1 monoclonal antibody, GM1:1. Immunization and production of the monoclonal antibody was made by common protocols and binding specificity was investigated by using structurally related glycolipids and modified GM1-molecules. The result showed that an α2–3 bound sialic acid together with a terminal galactose moiety were essential for GM1:1 binding. In situ localization of GM1 in rat dorsal and ventral spinal roots was investigated by conventional immunomicroscopy. GM1 immunoreactivity was the same in both roots and appeared like a finely granular, in places confluent, material confined to Schmidt-Lanterman’s incisures, to myelin sheath paranodal end segments and to some extent to the abaxonal Schwann cell cytoplasm; all of these structures are likely to be the target for GM1 antibodies in peripheral neuropathies. Nodal gaps and fibre contours showed a weak non-specific fluorescence. The localization of GM1 to the incisures of Schmidt-Lanterman and the paranodal end segments of the myelin sheaths might indicate a role of gangliosides as adhesion molecules.  相似文献   

7.
The myelin-associated glycoprotein (MAG) is an integral membrane protein (congruent to 100,000 mol wt) which is a minor component of purified peripheral nervus system (PNS) myelin. In the present study, MAG was localized immunocytochemically in 1-micrometer thick Epon sections of 7-d and adult rat peripheral nerves, and its localization was compared to that of the major structural protein (Po) of PNS myelin. To determine more precisely the localization of MAG, immunostained areas in 1 micrometer sections were traced on electron micrographs of identical areas from adjacently cut thin sections.l MAG was localized in periaxonal membranes. Schmidt-Lantermann incisures, paranodal membranes, and the outer mesaxon of PNS myelin sheaths. Compact regions of PNS myelin did not react with MAG antiserum. The results demonstrate MAG's presence in "'semi-compact" Schwann cell or myelin membranes that have a gap of 12-14 nm between extracellular leaflets and a spacing of 5 nm or more between cytoplasmic leaflets. In compact regions of the myelin sheath which do not contain MAG, the cytoplasmic leaflets are "fused" and form the major dense line, whereas the extracellular leaflets are separated by a 2.0 nm gap appearing as paired minor dense lines. Thus, it is proposed that MAG plays a role in maintaining the periaxonal space, Schmidt-Lantermann incisures, paranodal myelin loops, and outer mesaxon by preventing "complete" compaction of Schwann cell and myelin membranes. The presence of MAG in these locations also suggests that MAG may serve a function in regulating myelination in the PNS.  相似文献   

8.
Immunocytochemical localization studies of myelin basic protein   总被引:3,自引:3,他引:0       下载免费PDF全文
The location of myelin encephalitogenic or basic protein (BP) in peripheral nervous system (PNS) and central nervous system (CNS) was investigated by immunofluorescence and horseradish peroxidase (HRP) immunocytochemistry. BP or cross-reacting material could be clearly localized to myelin by immunofluorescence and light microscope HRP immunocytochemistry. Fine structural studies proved to be much more difficult, especially in the CNS, due to problems in tissue fixation and penetration of reagents. Sequential fixation in aldehyde followed by ethanol or methanol provided the best conditions for ultrastructural indirect immunocytochemical studies. In PNS tissue, anti-BP was localized exclusively to the intraperiod line of myelin. Because of limitations in technique, the localization of BP in CNS myelin could not be unequivocally determined. In both PNS and CNS tissue, no anti-BP binding to nonmyelin cellular or membranous elements was detected.  相似文献   

9.
The myelin-associated glycoprotein (MAG) is a heavily glycosylated integral membrane glycoprotein which is a minor component of isolated rat peripheral nervous system (PNS) myelin. Immunocytochemically MAG has been localized in the periaxonal region of PNS myelin sheaths. The periaxonal localization and biochemical features of MAG are consistent with the hypothesis that MAG plays a role in maintaining the periaxonal space of myelinated fibers. To test this hypothesis, MAG was localized immunocytochemically in 1-micron sections of the L5 ventral root from rats exposed to B,B'-iminodipropionitrile. In chronic states of B,B'-iminodipropionitrile intoxication, Schwann cell periaxonal membranes and the axolemma invaginate into giant axonal swellings and separate a central zone of normally oriented axoplasm from an outer zone of maloriented neurofilaments. Ultrastructurally, the width of the periaxonal space (12-14 nm) in the ingrowths is identical to that found in normally myelinated fibers. These Schwann cell ingrowths which are separated from compact myelin by several micra are stained intensely by MAG antiserum. Antiserum directed against Po protein, the major structural protein of compact PNS myelin, does not stain the ingrowths unless compact myelin is present. These results demonstrate the periaxonal localization of MAG and support a functional role for MAG in maintaining the periaxonal space of PNS myelinated fibers.  相似文献   

10.
The carbohydrate structures present on the glycoproteins in the central and peripheral nerve systems are essential in many cell adhesion processes. The P0 glycoprotein, expressed by myelinating Schwann cells, plays an important role during the formation and maintenance of myelin, and it is the most abundant constituent of myelin. Using monoclonal antibodies, the homophilic binding of the P0 glycoprotein was shown to be mediated via the human natural keller cell (HNK)-1 epitope (3-O-SO(3)H-GlcUA(beta1-3)Gal(beta1-4)GlcNAc) present on the N-glycans. We recently described the structure of the N-glycan carrying the HNK-1 epitope, present on bovine peripheral myelin P0 (Voshol, H., van Zuylen, C. W. E. M., Orberger, G., Vliegenthart, J. F. G., and Schachner, M. (1996) J. Biol. Chem. 271, 22957-22960). In this study, we report on the structural characterization of the detectable glycoforms, present on the single N-glycosylation site, using state-of-the-art NMR and mass spectrometry techniques. Even though all structures belong to the hybrid- or biantennary complex-type structures, the variety of epitopes is remarkable. In addition to the 3-O-sulfate present on the HNK-1-carrying structures, most of the glycans contain a 6-O-sulfated N-acetylglucosamine residue. This indicates the activity of a 6-O-sulfo-GlcNAc-transferase, which has not been described before in peripheral nervous tissue. The presence of the disialo-, galactosyl-, and 6-O-sulfosialyl-Lewis X epitopes provides evidence for glycosyltransferase activities not detected until now. The finding of such an epitope diversity triggers questions related to their function and whether events, previously attributed merely to the HNK-1 epitope, could be mediated by the structures described here.  相似文献   

11.
Wrapping it up: the cell biology of myelination   总被引:5,自引:0,他引:5  
During nervous system development, oligodendroglia in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS) synthesise large amounts of specific proteins and lipids to generate myelin, a specialised membrane that spirally ensheathes axons and facilitates fast conduction of the action potential. Myelination is initiated after glial processes have attached to the axon and polarisation of the plasma membrane has been triggered. Myelin assembly is a multi-step process that occurs in spatially distinct regions of the cell. We propose that assembly of myelin proteins and lipids starts during their transport through the biosynthetic pathway and continues at the plasma membrane aided by myelin-basic protein (MBP). These sequential processes create the special lipid and protein composition necessary for myelin to perform its insulating function during nerve conduction.  相似文献   

12.
13.
Recent immunocytochemical studies indicated that the myelin-associated glycoprotein (MAG) is localized in the periaxonal region of central nervous system (CNS) and peripheral nervous system (PNS) myelin sheaths but previous biochemical studies had not demonstrated the presence of MAG in peripheral nerve. The glycoproteins in rat sciatic nerves were heavily labeled by injection of [3H]fucose in order to re-examine whether MAG could be detected chemically in peripheral nerve. Myelin and a myelin-related fraction, W1, were isolated from the nerves. Labeled glycoproteins in the PNS fractions were extracted by the lithium diiodosalicylate (LIS)-phenol procedure, and the extracts were treated with antiserum prepared to CNS MAG in a double antibody precipitation. This resulted in the immune precipitation of a single [3H]fucose-labeled glycoprotein with electrophoretic mobility very similar to that of [14C]fucose-labeled MAG from rat brain. A sensitive peptide mapping procedure involving iodination with Bolton-Hunter reagent and autoradiography was used to compare the peptide maps generated by limited proteolysis from this PNS component and CNS MAG. The peptide maps produced by three distinct proteases were virtually identical for the two glycoproteins, showing that the PNS glycoprotein is MAG. The MAG in the PNS myelin and W1 fractions was also demonstrated by Coomassie blue and periodic acid-Schiff staining of gels on which the whole LIS-phenol extracts were electrophoresed, and densitometric scanning of the gels indicated that both fractions contained substantially less MAG than purified rat brain myelin. The presence of MAG in the periaxonal region of both peripheral and central myelin sheaths is consistent with a similar involvement of this glycoprotein in axon-sheath cell interactions in the PNS and CNS.  相似文献   

14.
Abstract: On gel electrophoresis in dodecyl sulphate solutions shark CNS myelin showed four bands close in mobility to the proteolipid protein of bovine CNS myelin. They had apparent molecular weights of 21,000, 26,000, 27,000, and 31,500. Unlike bovine proteolipid protein, all of these shark proteins were shown to be glycosylated by staining gels with the periodate-Schiff reagent. Amino acid analyses of the polypeptides eluted from polyacrylamide gels indicated a high content of apolar amino acids and a composition approximating that of the Po protein of bovine peripheral nervous system (PNS) myelin, rather than that of the CNS proteolipid protein. The shark poly-peptide of apparent molecular weight 31,500 was obtained by elution from dodecyl sulphate gels and antibodies raised against it in rabbits. By probing of electroblots with this antiserum the four shark CNS bands were shown to share common determinants with each other, with a major shark PNS protein and with sheep and chicken major PNS glycoproteins (Po). The binding of antibody was unaffected by deglycosylation of the shark CNS polypeptides with anhydrous hydrogen fluoride. Together, these results appeared to establish that shark CNS myelin contains four proteins that are closely related to a major shark PNS protein and to the Po protein of higher species.  相似文献   

15.
A recently described 170,000-Mr glycoprotein, specific to peripheral nervous system (PNS) myelin, was purified from rat PNS myelin by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and used to immunize guinea pigs and rabbits. The resultant antisera proved specific for 170,000-Mr glycoprotein by enzyme-linked immunosorbent assay, by immunoprecipitation of the appropriate peptide from solubilized PNS myelin, and by immunoblot analysis of rat PNS myelin. The anti-rat 170,000-Mr glycoprotein antisera cross-reacted with proteins of similar molecular weight in human and bovine PNS myelin, but such proteins were not detected in human or rat CNS myelin or other rat tissues. The 170,000-Mr glycoprotein was also detected by this immunoblot procedure in recently isolated rat Schwann cells but not in those kept in culture for greater than or equal to 3 days. By indirect immunofluorescent microscopy, anti-rat 170,000-Mr glycoprotein antibody bound to rat PNS myelin sheaths but not to other rat tissues. Together, these studies indicate the 170,000-Mr glycoprotein is specific to PNS myelin of several species and that a neuronal influence may be required for its expression by Schwann cells.  相似文献   

16.
The major 24- and 28-kDa glycoproteins in shark PNS and CNS myelin express high levels of the adhesion-associated HNK-1/L2 carbohydrate epitope. The 28-kDa protein, but not the 24-kDa protein, cross-reacts strongly with one of two anti-bovine P0 antisera not previously tested against fish myelin proteins. Shark PNS and CNS myelin also contains smaller amounts of high-molecular-weight HNK-1-positive proteins, including a prominent broad band in the 65-85-kDa range. Although myelin-associated glycoprotein (MAG) is well known to react with HNK-1 in some mammals, monoclonal and polyclonal anti-MAG antibodies did not react with the high-molecular-weight HNK-1-positive material in shark myelin, a result suggesting that it is not a MAG-like protein. The high expression of the HNK-1/L2 epitope in glycoproteins of shark myelin, including the major P0-related ones, suggests that this adhesion-related carbohydrate structure may have had an important role in the molecular evolution of the myelinating process.  相似文献   

17.
Abstract: Recent immunocytochemical studies indicated that the myelin-associated glycoprotein (MAG) is localized in the periaxonal region of central nervous system (CNS) and peripheral nervous system (PNS) myelin sheaths but previous biochemical studies had not demonstrated the presence of MAG in peripheral nerve. The glycoproteins in rat sciatic nerves were heavily labeled by injection of [3H]fucose in order to re-examine whether MAG could be detected chemically in peripheral nerve. Myelin and a myelin-related fraction, WI, were isolated from the nerves. Labeled glycoproteins in the PNS fractions were extracted by the lithium diiodosalicylate (LIS)-phenol procedure, and the extracts were treated with antiserum prepared to CNS MAG in a double antibody precipitation. This resulted in the immune precipitation of a single [3H]fucose-labeled glycoprotein with electrophoretic mobility very similar to that of [14C]fucose-labeled MAG from rat brain. A sensitive peptide mapping procedure involving iodination with Bolton-Hunter reagent and autoradiography was used to compare the peptide maps generated by limited proteolysis from this PNS component and CNS MAG. The peptide maps produced by three distinct proteases were virtually identical for the two glycoproteins, showing that the PNS glycoprotein is MAG. The MAG in the PNS myelin and Wl fractions was also demonstrated by Coomassie blue and periodic acid-Schiff staining of gels on which the whole US-phenol extracts were electrophoresed, and densitometric scanning of the gels indicated that both fractions contained substantially less MAG than purified rat brain myelin. The presence of MAG in the periaxonal region of both peripheral and central myelin sheaths is consistent with a similar involvement of this glycoprotein in axon-sheath cell interactions in the PNS and CNS.  相似文献   

18.
Several of the proteins used to form and maintain myelin sheaths in the central nervous system (CNS) and the peripheral nervous system (PNS) are shared among different vertebrate classes. These proteins include one-to-several alternatively spliced myelin basic protein (MBP) isoforms in all sheaths, proteolipid protein (PLP) and DM20 (except in amphibians) in tetrapod CNS sheaths, and one or two protein zero (P0) isoforms in fish CNS and in all vertebrate PNS sheaths. Several other proteins, including 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP), myelin and lymphocyte protein (MAL), plasmolipin, and peripheral myelin protein 22 (PMP22; prominent in PNS myelin), are localized to myelin and myelin-associated membranes, though class distributions are less well studied. Databases with known and identified sequences of these proteins from cartilaginous and teleost fishes, amphibians, reptiles, birds, and mammals were prepared and used to search for potential homologs in the basal vertebrate, Ciona intestinalis. Homologs of lipophilin proteins, MAL/plasmolipin, and PMP22 were identified in the Ciona genome. In contrast, no MBP, P0, or CNP homologs were found. These studies provide a framework for understanding how myelin proteins were recruited during evolution and how structural adaptations enabled them to play key roles in myelination.  相似文献   

19.
Paralytic tremor (Plp-pt) is a missense mutation of the myelin proteolipid gene (Plp) in rabbits. The myelin yield in the Plp-pt brain is reduced and the protein and lipid composition of central nervous system (CNS) myelin is abnormal. We studied the intracellular transport of the normal and Plp-pt mutant PLP and DM-20 in transiently transfected Cos-7 cells. While the mutant PLP accumulates in the rough endoplasmic reticulum and does not reach the plasma membrane, the spliced isoform of PLP, mutant DM-20, is normally transported to the cell surface and integrated into the membrane. Analysis of rabbit sciatic nerves revealed that concentration of peripheral nervous system (PNS) myelin proteins is normal in Plp-pt myelin. In the PNS like in the CNS, the level of Plp gene products is subnormal. But this does not affect myelination, in the PNS where PLP, present in low concentration, is not a structural component of compact myelin. The normal level of Plp gene expression in Schwann cells is low and these results suggest that, in the Plp-pt PNS, Schwann cell function is not affected by the deficiency in PLP and/or the impairment of intracellular PLP transport. Special issue dedicated to Dr Marion E. Smith.  相似文献   

20.
Lecticans, a family of chondroitin sulfate proteoglycans, represent the largest group of proteoglycans expressed in the nervous system. We previously showed that the C-type lectin domains of lecticans bind two classes of sulfated cell surface glycolipids, sulfatides and HNK-1-reactive sulfoglucuronylglycolipids (SGGLs). In this paper, we demonstrate that the interaction between the lectin domain of brevican, a nervous system-specific lectican, and cell surface SGGLs acts as a novel cell recognition system that promotes neuronal adhesion and neurite outgrowth. The Ig chimera of the brevican lectin domain bind to the surface of SGGL-expressing rat hippocampal neurons. The substrate of the brevican chimera promotes adhesion and neurite outgrowth of hippocampal neurons. The authentic, full-length brevican also promotes neuronal cell adhesion and neurite outgrowth. These activities of brevican substrates are neutralized by preincubation of cells with HNK-1 monoclonal antibodies and by pretreatment of the brevican substrates with purified SGGLs. Brevican and HNK-1 carbohydrates are coexpressed in specific layers of the developing hippocampus where axons from entorhinal neurons elongate. Our observations suggest that cell surface SGGLs and extracellular lecticans comprise a novel cell-substrate recognition system operating in the developing nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号