共查询到20条相似文献,搜索用时 15 毫秒
1.
Cui-Li Zhang Fei Song Q.H. Song 《Biochemical and biophysical research communications》2010,394(4):976-2974
Angiogenesis and apoptosis are reciprocal processes in endothelial cells. Bcl-2, an anti-apoptotic protein, has been found to have angiogenic activities. The purpose of this study was to determine the role of Bcl-2 in hypoxia-induced angiogenesis in endothelial cells and to investigate the underlying mechanisms. Human aortic endothelial cells (HAECs) were exposed to hypoxia followed by reoxygenation. Myocardial ischemia and reperfusion mouse model was used and Bcl-2 expression was assessed. Bcl-2 expression increased in a time-dependent manner in response to hypoxia from 2 to 72 h. Peak expression occurred at 12 h (3- to 4-fold, p < 0.05). p38 inhibitor (SB203580) blocked hypoxia-induced Bcl-2 expression, whereas PKC, ERK1/2 and PI3K inhibitors did not. Knockdown of Bcl-2 resulted in decreased HAECs’ proliferation and migration. Over-expression of Bcl-2 increased HAECs’ tubule formation, whereas knockdown of Bcl-2 inhibited this process. In this model of myocardial ischemia and reperfusion, Bcl-2 expression was increased and was associated with increased p38 MAPK activation.Our results showed that hypoxia induces Bcl-2 expression in HAECs via p38 MAPK pathway. 相似文献
2.
Wang CC Lin WN Lee CW Lin CC Luo SF Wang JS Yang CM 《American journal of physiology. Lung cellular and molecular physiology》2005,288(2):L227-L237
Interleukin-1beta (IL-1beta) has been shown to induce the expression of adhesion molecules on airway epithelial and smooth cells and contributes to inflammatory responses. Here, the roles of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-kappaB) pathways for IL-1beta-induced vascular cell adhesion molecule (VCAM)-1 expression were investigated in human tracheal smooth muscle cells (HTSMC). IL-1beta induced expression of VCAM-1 protein and mRNA in a time-dependent manner, which was significantly inhibited by inhibitors of MEK1/2 (U0126 and PD-98059), p38 (SB-202190), and c-Jun NH(2)-terminal kinase (JNK; SP-600125). Consistently, IL-1beta-stimulated phosphorylation of p42/p44 MAPK, p38, and JNK was attenuated by pretreatment with U0126, SB-202190, or SP-600125, respectively. IL-1beta-induced VCAM-1 expression was significantly blocked by the specific NF-kappaB inhibitors helenalin and pyrrolidine dithiocarbamate. As expected, IL-1beta-stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha were blocked by helenalin but not by U0126, SB-202190, or SP-600125. Moreover, the resultant enhancement of VCAM-1 expression increased the adhesion of polymorphonuclear cells to a monolayer of HTSMC, which was blocked by pretreatment with helenalin, U0126, SB-202190, or SP-600125 before IL-1beta exposure or by anti-VCAM-1 antibody. Together, these results suggest that in HTSMC, activation of p42/p44 MAPK, p38, JNK, and NF-kappaB pathways is essential for IL-1beta-induced VCAM-1 gene expression. These results provide new insight into the mechanisms of IL-1beta action that cytokines may promote inflammatory responses in airway disease. 相似文献
3.
4.
Su X Ao L Zou N Song Y Yang X Cai GY Fullerton DA Meng X 《Biochimica et biophysica acta》2008,1783(9):1623-1631
5.
6.
The aim of the present study was to investigate the effect of glucagon-like peptide-1 (GLP-1) on palmitate-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and the underlying mechanism. HUVECs were cultured in vitro, and then treated by palmitate to induce apoptosis. Meanwhile, GLP-1 was added to explore its effect. After 24 h of the treatments, Caspase-3 activity and DNA fragmentation were measured using ELISA kits. Phospho-p38 mitogen-activated protein kinase (p-p38 MAPK) expression was detected by Western blot. The results showed that incubating HUVECs with 0.125 mmol/L GLP-1 increased Caspase-3 activity and DNA fragmentation. GLP-1 significantly inhibited palmitate-induced increases of Caspase-3 activity and DNA fragmentation in a concentration-dependent manner. Moreover, GLP-1 inhibited the up-regulation of p-p38 MAPK expression induced by palmitate in HUVECs. These results suggest GLP-1 protects HUVECs against lipo-apoptosis, and this effect may be mediated through inhibiting p38 MAPK pathway. 相似文献
7.
Involvement of p42/p44 MAPK, JNK, and NF-kappaB in IL-1beta-induced ICAM-1 expression in human pulmonary epithelial cells 总被引:2,自引:0,他引:2
Interleukin-1beta (IL-1beta) has been shown to induce the expression of intercellular adhesion molecule-1 (ICAM-1) on airway epithelial cells and contributes to inflammatory responses. However, the mechanisms regulating ICAM-1 expression by IL-1beta in human A549 cells was not completely understood. Here, the roles of mitogen-activated protein kinases (MAPKs) and NF-kappaB pathways for IL-1beta-induced ICAM-1 expression were investigated in A549 cells. IL-1beta induced expression of ICAM-1 protein and mRNA in a time- and concentration-dependent manner. The IL-1beta induction of ICAM-1 mRNA and protein were partially inhibited by U0126 and PD98059 (specific inhibitors of MEK1/2) and SP600125 [a specific inhibitor of c-Jun-N-terminal kinase (JNK)]. U0126 was more potent than other inhibitors to attenuate IL-1beta-induced ICAM-1 expression. Consistently, IL-1beta stimulated phosphorylation of p42/p44 MAPK and JNK which was attenuated by pretreatment with U0126 or SP600125, respectively. Moreover, transfection with dominant negative mutants of MEK1/2 (MEK K97R) or ERK2 (ERK2 K52R) also attenuated IL-1beta-induced ICAM-1 expression. The combination of PD98059 and SP600125 displayed an additive effect on IL-1beta-induced ICAM-1 gene expression. IL-1beta-induced ICAM-1 expression was almost completely blocked by a specific NF-kappaB inhibitor helenalin. Consistently, IL-1beta stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha which was blocked by helenalin, U0126, or SP600125. Taken together, these results suggest that activation of p42/p44 MAPK and JNK cascades, at least in part, mediated through NF-kappaB pathway is essential for IL-1beta-induced ICAM-1 gene expression in A549 cells. These results provide new insight into the mechanisms of IL-1beta action that cytokines may promote inflammatory responses in the airway disease. 相似文献
8.
Recently, several flavonoids have been shown to have cardioprotective, cancer preventive, or anti-inflammatory properties. However, the specific mechanisms underlying their protective effects remain unclear. We aimed to investigate the different effects of three representative flavonoids—hesperidin, naringin, and resveratrol—on intracellular adhesion molecule-1 (ICAM-1) induction in human umbilical vein endothelial cells (HUVECs) by using high-glucose (HG) concentrations and the possible underlying molecular mechanisms. In HG-induced HUVEC cultures, the effects of three different flavonoids on ICAM-1 production and p38 phosphorylation were examined in the presence or absence of inhibitors targeting the mitogen-activated protein kinase (MAPK) signal transduction pathway. HG stimulation of HUVECs increased the levels of the adhesion molecules ICAM-1 and endothelial selectin (E-selectin). Pretreatment with all the three flavonoids drastically inhibited ICAM-1 expression in a time-dependent manner, but did not alter VCAM-1 and E-selectin expressions. Moreover, we investigated the effects of flavonoids on the MAPK signal transduction pathway, because MAPK families are associated with vascular inflammation under stress. These flavonoids did not block HG-induced phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), but completely inhibited the HG-induced phosphorylation of p38 MAPK. SB202190, an inhibitor of p38 MAPK, also inhibited the HG-induced enrichment of ICAM-1. This study demonstrated that hesperidin, naringin, and resveratrol reduced the HG-induced ICAM-1 expression via the p38 MAPK signaling pathway, contributing to the inhibition of monocyte adhesion to endothelial cells. 相似文献
9.
10.
Proteinuria is a well-established exacerbating factor in chronic kidney disease. Although the mechanisms of albumin-induced
tubulointerstitial damage have been extensively studied, the influence of mycophenolic acid (MPA) on tubular epithelial cells
has not been sufficiently elucidated. MPA, the active metabolite of mycophenolate mofetil, is a potent, non-competitive, and
reversible inhibitor of inosine-5′-monophosphate dehydrogenase, the rate-limiting enzyme for de novo purine synthesis. Monocyte
chemoattractant protein 1 (MCP-1) is a 76-amino-acid chemokine thought to be the major chemotactic factor for monocytes. MCP-1
is found in macrophage-rich areas of atherosclerotic lesions. However, the mechanisms regulating MCP-1 expression by MPA in
renal tubular epithelial cells were still unclear. In this study, the inhibitory effect of MPA on MCP-1 expression by albumin-induced
renal tubular epithelial cells was investigated, and the roles of p38 mitogen-activated protein kinase (p38 MAPK) pathway
were explored. MPA attenuated albumin-induced expression of MCP-1 mRNA and protein. The experiment suggested that MPA actively
inhibited protein of MCP-1. The inhibitory effect of MPA on MCP-1 expression was mediated by the sequential attenuation of
p38 MAPK expression. These inhibitory effects were partially inhibited by SB203580, a specific inhibitor of p38 MAPK. Taken
together, these results suggest that the negative modulation of MCP-1 by MPA is partly dependent on p38 MAPK pathway. 相似文献
11.
Temporin K Tanaka H Kuroda Y Okada K Yachi K Moritomo H Murase T Yoshikawa H 《Biochemical and biophysical research communications》2008,365(2):375-380
Expression of the pro-inflammatory cytokine interleukin-1 beta (IL-1β) is increased following the nervous system injury. Generally IL-1β induces inflammation, leading to neural degeneration, while several neuropoietic effects have also been reported. Although neurite outgrowth is an important step in nerve regeneration, whether IL-1β takes advantages on it is unclear. Now we examine how it affects neurite outgrowth. Following sciatic nerve injury, expression of IL-1β is increased in Schwann cells around the site of injury, peaking 1 day after injury. In dorsal root ganglion (DRG) neurons and cerebellar granule neurons (CGNs), neurite outgrowth is inhibited by the addition of myelin-associated glycoprotein (MAG), activating RhoA. IL-1β overcomes MAG-induced neurite outgrowth inhibition, by deactivating RhoA. Intracellular signaling experiments reveal that p38 MAPK, and not nuclear factor-kappa B (NF-κB), mediated this effect. These findings suggest that IL-1β may contribute to nerve regeneration by promoting neurite outgrowth following nerve injury. 相似文献
12.
Ravichandran K Tyagi A Deep G Agarwal C Agarwal R 《Indian journal of experimental biology》2011,49(11):840-847
For understanding of signaling molecules important in lung cancer growth and progression, IL-1beta effect was analyzed on iNOS expression and key signaling molecules in human lung carcinoma A549 cells and established the role of specific signaling molecules by using specific chemical inhibitors. IL-1beta exposure (10 ng/ml) induced strong iNOS expression in serum starved A549 cells. Detailed molecular analyses showed that IL-1beta increased expression of phosphorylated STAT1 (Tyr701 and Ser727) and STAT3 (Tyr705 and Ser727) both in total cell lysates and nuclear lysates. Further, IL-1beta exposure strongly activated MAPKs (ERK1/2, JNK1/2 and p38) and Akt as well as increased nuclear levels of NF-kappaB and HIF-1alpha in A549 cells. Use of specific chemical inhibitors for JAK1 kinase (piceatannol), JAK2 kinase (AG-490), MEK1/2 (PD98059) and JNK1/2 (SP600125) revealed that IL-1beta-induced iNOS expression involved signaling pathways in addition to JAK-STAT and ERK1/2-JNK1/2 activation. Overall, these results suggested that instead of specific pharmacological inhibitors, use of chemopreventive agents with broad spectrum efficacy to inhibit IL-1beta-induced signaling cascades and iNOS expression would be a better strategy towards lung cancer prevention and/or treatment. 相似文献
13.
Yu TK Caudell EG Smid C Grimm EA 《Journal of immunology (Baltimore, Md. : 1950)》2000,164(12):6244-6251
IL-2 stimulates extracellular signal-regulated protein kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) in various immune cell populations. The functional roles that these kinases play are still unclear. In this study, we examined whether MAPK kinase (MKK)/ERK and p38 MAPK pathways are necessary for IL-2 to activate NK cells. Using freshly isolated human NK cells, we established that an intact MKK/ERK pathway is necessary for IL-2 to activate NK cells to express at least four known biological responses: LAK generation, IFN-gamma secretion, and CD25 and CD69 expression. IL-2 induced ERK activation within 5 min. Treatment of NK cells with a specific inhibitor of MKK1/2, PD98059, during the IL-2 stimulation blocked in a dose-dependent manner each of four sequelae, with inhibition of lymphokine-activated killing induction being least sensitive to MKK/ERK pathway blockade. Activation of p38 MAPK by IL-2 was not detected in NK cells. In contrast to what was observed by others in T lymphocytes, SB203850, a specific inhibitor of p38 MAPK, did not inhibit IL-2-activated NK functions. This data indicate that p38 MAPK activation was not required for IL-2 to activate NK cells for the four functions examined. These results reveal selective signaling differences between NK cells and T lymphocytes; in NK cells, the MKK/ERK pathway and not p38 MAPK plays a critical positive regulatory role during activation by IL-2. 相似文献
14.
Zhi-feng Liu Dong Zheng Guo-chang Fan Tianqing Peng Lei Su 《Apoptosis : an international journal on programmed cell death》2016,21(8):896-904
Pulmonary microvascular endothelial cells (PMECs) injury including apoptosis plays an important role in the pathogenesis of acute lung injury during sepsis. Our recent study has demonstrated that calpain activation contributes to apoptosis in PMECs under septic conditions. This study investigated how calpain activation mediated apoptosis and whether heat stress regulated calpain activation in lipopolysaccharides (LPS)-stimulated PMECs. In cultured mouse primary PMECs, incubation with LPS (1 μg/ml, 24 h) increased active caspase-3 fragments and DNA fragmentation, indicative of apoptosis. These effects of LPS were abrogated by pre-treatment with heat stress (43 °C for 2 h). LPS also induced calpain activation and increased phosphorylation of p38 MAPK. Inhibition of calpain and p38 MAPK prevented apoptosis induced by LPS. Furthermore, inhibition of calpain blocked p38 MAPK phosphorylation in LPS-stimulated PMECs. Notably, heat stress decreased the protein levels of calpain-1/2 and calpain activities, and blocked p38 MAPK phosphorylation in response to LPS. Additionally, forced up-regulation of calpain-1 or calpain-2 sufficiently induced p38 MAPK phosphorylation and apoptosis in PMECs, both of which were inhibited by heat stress. In conclusion, heat stress prevents LPS-induced apoptosis in PMECs. This effect of heat stress is associated with down-regulation of calpain expression and activation, and subsequent blockage of p38 MAPK activation in response to LPS. Thus, blocking calpain/p38 MAPK pathway may be a novel mechanism underlying heat stress-mediated inhibition of apoptosis in LPS-stimulated endothelial cells. 相似文献
15.
Tumor conditioned medium (CM) has been widely used to stimulate endothelial cells to form capillary-like structures in in vitro angiogenesis models. We report herein the effect of HT1080 and A549 CM after they were mixed with microvascular endothelial cells medium-2 (EGM-2) on angiogenesis in human umbilical vein endothelial cells (HUVECs). Both HT1080 and A549 CM decreased HUVEC proliferation, to different extents. While A549 CM significantly increased capillary-like structure formation in a co-culture system, no effect of HT1080 was apparent. Inhibition of p38 mitogen-activated protein kinase (MAPK) blocked both basal and A549 CM induced capillary-like structure formation, but inhibition of extracellular signal-regulated kinases (ERK) and that of c-Jun N-terminal protein kinases (JNK) MAPK had no such effect. Activation of ERK MAPK was inhibited by both CMs, whereas p38 MAPK was inactivated by HT1080 and activated by A549 CM and a control. Neither CM had an effect on JNK MAPK. The results suggest that p38 MAPK played a critical role in capillary-like structure formation in the co-culture, partly via promotion of apoptosis in HUVECs. 相似文献
16.
Yang YH Toh ML Clyne CD Leech M Aeberli D Xue J Dacumos A Sharma L Morand EF 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(11):8148-8153
Annexin 1 (Anx-1) is a mediator of the anti-inflammatory actions of glucocorticoids, but the mechanism of its anti-inflammatory effects is not known. We investigated the role of Anx-1 in the regulation of the proinflammatory cytokine, IL-6. Lung fibroblast cell lines derived from Anx-1(-/-) and wild-type (WT) mice were treated with dexamethasone and/or IL-1. IL-6 mRNA and protein were measured using real-time PCR and ELISA, and MAPK pathway activation was studied. Compared with WT cells, unstimulated Anx-1(-/-) cells exhibited dramatically increased basal IL-6 mRNA and protein expression. In concert with this result, Anx-1 deficiency was associated with increased basal phosphorylated p38, JNK, and ERK1/2 MAPKs. IL-1-inducible phosphorylated p38 was also increased in Anx-1(-/-) cells. The increase in IL-6 release in Anx-1(-/-) cells was inhibited by inhibition of p38 MAPK. Anx-1(-/-) cells were less sensitive to dexamethasone inhibition of IL-6 mRNA expression than WT cells, although inhibition by dexamethasone of IL-6 protein was similar. MAPK phosphatase-1 (MKP-1), a glucocorticoid-induced negative regulator of MAPK activation, was up-regulated by dexamethasone in WT cells, but this effect of dexamethasone was significantly impaired in Anx-1(-/-) cells. Treatment of Anx-1(-/-) cells with Anx-1 N-terminal peptide restored MKP-1 expression and inhibited p38 MAPK activity. These data demonstrate that Anx-1 is an endogenous inhibitory regulator of MAPK activation and IL-6 expression, and that Anx-1 is required for glucocorticoid up-regulation of MKP-1. Therapeutic manipulation of Anx-1 could provide glucocorticoid-mimicking effects in inflammatory disease. 相似文献
17.
Martin DS Lonergan PE Boland B Fogarty MP Brady M Horrobin DF Campbell VA Lynch MA 《The Journal of biological chemistry》2002,277(37):34239-34246
Among the several changes that occur in the aged brain is an increase in the concentration of the proinflammatory cytokine interleukin-1beta that is coupled with a deterioration in cell function. This study investigated the possibility that treatment with the polyunsaturated fatty acid eicosapentaenoic acid might prevent interleukin-1beta-induced deterioration in neuronal function. Assessment of four markers of apoptotic cell death, cytochrome c translocation, caspase-3 activation, poly(ADP-ribose) polymerase cleavage, and terminal dUTP nick-end staining, revealed an age-related increase in each of these measures, and the evidence presented indicates that treatment of aged rats with eicosapentaenoate reversed these changes as well as the accompanying increases in interleukin-1beta concentration and p38 activation. The data are consistent with the idea that activation of p38 plays a significant role in inducing the changes described since interleukin-1beta-induced activation of cytochrome c translocation and caspase-3 activation in cortical tissue in vitro were reversed by the p38 inhibitor SB203580. The age-related increases in interleukin-1beta concentration and p38 activation in cortex were mirrored by similar changes in hippocampus. These changes were coupled with an age-related deficit in long term potentiation in perforant path-granule cell synapses, while eicosapentaenoate treatment was associated with reversal of age-related changes in interleukin-1beta and p38 and with restoration of long term potentiation. 相似文献
18.
Gee K Angel JB Mishra S Blahoianu MA Kumar A 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(2):798-807
19.
Microbial penetration of the blood-brain barrier (BBB) into the central nervous system is essential for the development of meningitis. Considerable progress has been achieved in understanding the pathophysiology of meningitis, however, relatively little is known about the early inflammatory events occurring at the time of bacterial crossing of the BBB. We investigated, using real-time quantitative PCR, the expression of the neutrophil chemoattractants alpha-chemokines CXCL1 (Groalpha) and CXCL8 (IL-8), and of the monocyte chemoattractant beta-chemokine CCL2 (MCP-1) by human brain microvascular endothelial cells (HBMEC) in response to the meningitis-causing E. coli K1 strain RS218 or its isogenic mutants lacking the ability to bind to and invade HBMEC. A nonpathogenic, laboratory E. coli strain HB101 was used as a negative control. CXCL8 was shown to be significantly expressed in HBMEC 4 hours after infection with E. coli K1, while no significant alterations were noted for CXCL1 and CCL2 expression. This upregulation of CXCL8 was induced by E. coli K1 strain RS218 and its derivatives lacking the ability to bind and invade HBMEC, but was not induced by the laboratory strain HB101. In contrast, no upregulation of CXCL8 was observed in human umbilical vein endothelial cells (HUVEC) after stimulation with E. coli RS218. These findings indicate that the CXCL8 expression is the result of the specific response of HBMEC to meningitis-causing E. coli K1. 相似文献
20.
Syndecan-1 and syndecan-4 are members of the syndecan family of transmembrane heparan sulfate proteoglycans. Vascular endothelial cells synthesize both species of proteoglycans and use them to regulate the blood coagulation-fibrinolytic system and their proliferation via their heparin-like activity and FGF-2 binding activity, respectively. However, little is known about the crosstalk between the expressions of the proteoglycan species. Previously, we reported that biglycan, a small leucine-rich dermatan sulfate proteoglycan, intensifies ALK5–Smad2/3 signaling by TGF-β1 and downregulates syndecan-4 expression in vascular endothelial cells. In the present study, we investigated the crosstalk between the expressions of syndecan-1 and other proteoglycan species (syndecan-4, perlecan, glypican-1, and biglycan) in bovine aortic endothelial cells in a culture system. These data suggested that syndecan-1 downregulated syndecan-4 expression by suppressing the endogenous FGF-2-dependent ERK1/2 pathway and FGF-2-independent p38 MAPK pathway in the cells. Moreover, this crosstalk was a one-way communication from syndecan-1 to syndecan-4, suggesting that syndecan-4 compensated for the reduced activity in the regulation of vascular endothelial cell functions caused by the decreased expression of syndecan-1 under certain conditions. 相似文献