首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 949 毫秒
1.
False codling moth, Cryptophlebia leucotreta (Meyrick), male and female mature pupae and newly emerged adults were treated with increasing doses of gamma radiation and either inbred or out-crossed with fertile counterparts. For newly emerged adults, there was no significant relationship between dose of radiation and insect fecundity when untreated females were mated to treated males (N female by T male). However, fecundity of treated females mated to either untreated (T female by N male) or treated males (T female by T male) declined as the dose of radiation increased. A similar trend was observed when mature pupae were treated. The dose at which 100% sterility was achieved in treated females mated to untreated males (T female by N male) for both adults and pupae was 200 Gy. In contrast, newly emerged adult males treated with 350 Gy still had a residual fertility of 5.2% when mated to untreated females, and newly emerged adult males that were treated as pupae had a residual fertility of 3.3%. Inherited effects resulting from irradiation of parental (P1) males with selected doses of radiation were recorded for the F1 generation. Decreased F1 fecundity and fertility, increased F1 mortality during development, and a significant shift in the F1 sex ratio in favor of males was observed when increasing doses of radiation were applied to the P1 males.  相似文献   

2.
Adult Epiphyas postvittana Walker were irradiated using a Cobalt 60 source to determine the dose needed to achieve complete egg sterility of mated female moths, and egg sterility of female moths mated to F1 generation males. Adult male and female E. postvittana were irradiated at 100, 200, 250, and 300 Gy and their fertility (when crossed with normal moths) was compared with nonirradiated moths. Viable progeny (determined by egg hatch) were found at doses of 100 and 200 Gy, but very little at 250 and 300 Gy. In particular, there was no survival of female progeny into the F1 generation. Males irradiated at 250 and 300 Gy had very low egg eclosion rates (2.25 and 1.86% at 250 and 300 Gy, respectively) when mated with normal females. The F2 generation from those male progeny had a mean percent hatched of < 1.02%. Based on our results, a dose of 250-300 Gy is recommended for irradiation of E. postvittana adults used for sterile insect technique (SIT) if sterility of parental moths is the desired outcome. Our data also suggests that inclusion of F1 hybrid sterility rather than parental generation sterility into programs using the SIT may allow for doses lower than what we have reported, especially during initial phases of an eradication program where increase fitness of moths might be desirable. Further research is needed to verify the use of F1 hybrid sterility in light brown apple moth SIT programs.  相似文献   

3.
The effects of irradiation on egg, larval, and pupal development, and adult reproduction in Mexican leafroller, Amorbia emigratella Busck (Lepidoptera: Tortricidae), were examined. Eggs, neonates, early instars, late instars, early pupae, and late pupae were irradiated at target doses of 60, 90, 120, or 150 Gy, or they were left untreated as controls in replicated factorial experiments. Survival to the adult stage was recorded. Tolerance to radiation increased with increasing age and developmental stage. A radiation dose of 90 Gy applied to neonates and early instars prevented adult emergence. A dose of 150 Gy was not sufficient to prevent adult emergence in late instars or pupae. The effect of irradiation on sterility was examined in late pupae and adult moths. For progeny produced by insects treated as late pupae, a total of three out of 3,130 eggs hatched at 90 Gy, 0 out of 2,900 eggs hatched at 120 Gy, and 0 out of 1,700 eggs hatched at 150 Gy. From regression analysis, the dose predicted to prevent egg hatch from the progeny of irradiated late pupae was 120 Gy, with a 95% confidence interval of 101-149 Gy. The late pupa is the most radiotolerant stage likely to occur with exported commodities; therefore, a minimum absorbed radiation dose of 149 Gy (nominally 150 Gy) has potential as a quarantine treatment. Reciprocal crosses between irradiated and unirradiated moths demonstrated that males were more radiotolerant than females. Irradiation of female moths at a target dose of 90 Gy before pairing and mating with irradiated or unirradiated males resulted in no viable eggs, whereas irradiated males paired with unirradiated females produced viable eggs at 90 and 150 Gy.  相似文献   

4.
All stages of the life cycle of Helicoverpa assulta were irradiated with X‐rays to determine the inhibitory dose for development and reproduction to serve as a quarantine treatment. The 100‐Gy dose was effective for irradiation of eggs and larvae, and the 200‐Gy dose was effective for pupae and mixed‐sex adults. When either adult males or females were irradiated, however, 500 Gy was required to prevent the F1 eggs from hatching, and thus single‐sex adults required much higher doses of X‐ray irradiation. To gather confirmatory data applicable to phytosanitary quarantine regulations, pupae—the immature stage most resistant to X‐ray irradiation—were placed inside paprika in boxes for exportation and were irradiated with 300 Gy as a small‐scale confirmatory test. The dose given to 1,007 individual pupae resulted in 12.62 % survival, and 1.79 % of pupae emerged as normal adults; however, these adults produced only a few eggs that did not hatch, suggesting that a minimum dose of 300 Gy of X‐ray irradiation will provide quarantine security for immature H. assulta in paprika exports.  相似文献   

5.
Abstract: Effects of gamma radiation on the fifth instar codling moth, Cydia pomonella (L.), larvae were examined. Mature larvae were exposed to a series of gamma radiation doses ranging from 50 to 250 Gy and survival to pupae and adults was examined. The results showed that pupation and adult emergence decreased with increasing radiation dose. The results also showed that diapausing larvae were more sensitive to irradiation treatment than non-diapausing larvae, and females were more sensitive than males. A dose of 150 Gy reduced adult emergence to less than 2% in non-diapausing larvae, while a dose of 200 Gy completely prevented it. Furthermore, none of the emerging moths exposed to a dose of 150 Gy were females; at 100 Gy dose, the percentage of females was less than 14%. Irradiating larvae in apple fruit in a small-scale laboratory experiment produced similar results. Tests in which >100 000 larvae (in the fifth instar) were irradiated in an artificial rearing medium with a dose of 200 Gy resulted in no adult emergence. Similar results were also obtained when >32 000 larvae in the same stage were exposed in apple fruit to the same dose. The results indicate that the use of ionizing radiation as a quarantine treatment for codling moth infested fruits is feasible and requires a relatively low dose.  相似文献   

6.
Studies were undertaken to determine whether irradiation treatment at 250 Gy, an accepted treatment for disinfestation of fruit flies in spindaceous fruits from Hawaii, would also disinfest fruit of two species of Cryptophlebia. Cryptophlebia illepida (Butler) was determined to be more tolerant of irradiation than Cryptophlebia ombrodelta (Lower); therefore, C. illepida was the focus for detailed tests. Using the criterion of success in developing to the adult stage, the pattern of tolerance to irradiation in C. illepida was generally eggs < early instars < late instars < pupae. The most tolerant stage potentially occurring in harvested fruits was late (fourth and fifth) instars. Development to adult was reduced slightly in late instars receiving an irradiation dose of 62.5 Gy, whereas development to adult was dramatically reduced in late instars receiving irradiation doses > or = 125 Gy. No C. illepida larvae receiving an irradiation dose > or = 125 Gy emerged as adults and produced viable eggs, indicating sterility can be achieved at doses well below 250 Gy. In large scale tests, when 11,256 late instars were irradiated with a target dose of 250 Gy, 951 pupated (8.4%) and none eclosed as adults. Within the pupal stage, tolerance increased with age; 7- to 8-d-old pupae (the oldest pupae tested) treated with an irradiation dose of 125 Gy produced viable offspring, whereas those treated with a dose of 250 Gy produced no viable offspring. Irradiation of adults with a target dose of 250 Gy before pairing and mating resulted in no viable eggs. Irradiation of actively ovipositing adult females resulted in no subsequent viable eggs. Therefore, the irradiation quarantine treatment of a minimum absorbed dose of 250 Gy approved for Hawaii's fruits will effectively disinfest fruits of any Cryptophlebia in addition to fruit flies.  相似文献   

7.
Ionizing radiation is increasingly used as an alternative to post‐harvest crop fumigation by methyl bromide. We studied the effects of gamma irradiation on Helicoverpa assulta (Lepidoptera: Noctuidae) at different stages of development to determine the minimal dose for the prevention of normal emergence of adults. We selected five doses of gamma rays (100, 200, 300, 400 and 500 Gy) based on preliminary experiments and irradiated eggs, larvae, pupae and adults. A dose of 100 Gy to eggs allowed 21.83% of larvae to pupate, but these all died during the pupal stage. A dose of 100 Gy to last‐instar larvae caused larval or pupal death, or the emergence of abnormal adults; no normal adults developed. Irradiation of pupae with doses of 300 Gy and above resulted either in their death or emergence of abnormal adults; however, after 100 or 200 Gy, normal adults emerged and F1 eggs were produced, but no eggs hatched. Following irradiation of adults, eggs were produced at all doses, although the numbers were significantly decreased compared to untreated controls (P < 0.05; 69.45–125.50 vs. 475.05 eggs per female); however, none of the eggs hatched. As prevention of normal emergence is a key outcome for measuring the effectiveness of radiation, then the 100 Gy dose was effective for irradiation of eggs and larvae, and 300 Gy for pupae.  相似文献   

8.
The effects of irradiation doses increasing from 0 to 100 Gy (1 Gy is energy absorbed in J kg(-1) of irradiated material) on fertility, flight ability, survival, and sterile male mating performance were evaluated for mass-reared Anastrepha obliqua (Macquart). High sterility values (> 98.2%) for irradiated males were obtained for doses as low as 25 Gy. Egg hatch was inhibited for irradiated males crossed with irradiated females at a low dose of 20 Gy. However, we estimated that to achieve 99.9% sterility (standard goal of many sterile insect technique programs), irradiation doses had to be increased to a dose between 50 and 75 Gy. At doses of 25 Gy and greater, we observed a decreasing trend in adult flight ability and an increasing trend in adult mortality. Such differences were greater for pupae irradiated at a young age compared those irradiated 24 h before emergence. Our single most relevant finding was that sterility induction (i.e., oviposition of nonfertilized eggs) was two times greater for males irradiated at low doses (40 Gy) than for males irradiated at high doses (80 Gy) when used at a 3:1:1 sterilized male to fertile male to fertile female ratio. Males irradiated at high doses may have been outcompeted by unirradiated males when courting unirradiated females. Implications of our findings for sterile insect technique programs are discussed.  相似文献   

9.
The effects of substerilizing doses of gamma radiation on the longevity and level of inherited sterility in the Australian moth Teia anartoides Walker were determined. Six day-old male pupae were treated with 0, 100, and 160 Gy of gamma radiation by using a 1.25 MeV Cobalt60 irradiation source. Laboratory studies of male longevity showed that radiation had little impact in adult moths of the P1, F1, and F2 generations. Inherited deleterious effects resulting from irradiation were observed in the progeny of F1 and F2 generations. Outcrosses between substerile parental males or their highly sterile male progeny to wild-type females did not affect female fecundity. However, adverse effects were observed for these crosses in the rates of successful egg hatch and postembryonic development. Fertility was always greater in out-crosses involving a P1 male than in any of the F1 out-crosses. F1 males were always more sterile than F1 females, and the level of sterility for the F1 and F2 generations was higher than that of the controls. The incidence of larval and pupal mortality was higher in the F2 than the F1 generation. A dose of 100 Gy had the highest success in inducing deleterious effects that were inherited through to the F2 generation. Our results indicated that the use of partially sterilizing doses of radiation has good potential as a selective strategy for management or eradication of T. anartoides.  相似文献   

10.
Encarsia tricolor is a facultative autoparasitoid of the glasshouse whitefly, Trialeurodes vaporariorum, with a potential in biological control. The rate of development, number of mature oocytes at emergence, number of ovarioles and size of the emerged adults were studied. Five nymphal instars (N1, N2, N3, N4, and pharate adult) of T. vaporariorum were used as hosts for the females. Female larvae and pupae of E. tricolor and Encarsia formosa were used as hosts for the males. Females developed faster when the egg was laid on N3 (18.0 days from egg to adult) and slower on N1 (22.3 days). Females were bigger when developing from N1 and N3 than from N4 and pharate adult. On emergence the mean number of mature oocytes was always small (0.8–2.6). Males developed faster and were smaller than females, and developed faster and were larger on larvae of E. formosa.  相似文献   

11.
Storage proteins have been found to play a major role in insect metamorphosis and egg production and are accumulated during the actively feeding larval stage. Yet few studies have focused on how nutrition affects storage protein levels. Three storage proteins were identified in male and female Heliothis virescens pupae, one arylphorin and two putative high-methionine hexamers. Storage proteins were quantified in early pupae and in pharate adults. Storage protein levels peaked in 48-h pupae and were more abundant in females across all stages. Both male and female pharate adults retained a portion of total storage protein levels and females retained greater levels overall. In females, post-eclosion protein reserves will likely be used toward egg manufacturing, while the role of protein reserves in males remains speculative. In our previous study of H. virescens larvae, we found that protein-derived growth in females progressively increased as dietary protein levels increased. Our present data show that levels of storage protein also increased progressively along with dietary protein levels. This suggests that females allocated protein, in excess of adult tissue formation needs, toward storage protein. Our study is the first to demonstrate how responsive storage protein levels can be in face of varying levels of dietary protein.  相似文献   

12.
The effect of electron beam irradiation on each developmental stage of diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), was examined. Eggs, larvae, pupae, and adults were irradiated at target doses of 30, 50, or 100 Gy or they were left untreated as controls in replicated experiments. When eggs and pupae were irradiated with 100 Gy, emergence rates greatly decreased and, although some adults laid eggs, they did not hatch. Egg hatching of irradiated larvae and adult decreased with increasing irradiation doses. However, electron beam irradiation did not kill P. xylostella directly. Adult longevity was not affected. Reciprocal crosses between irradiated and unirradiated moths demonstrated that females were more radiosensitive than males in hatchability; however, the difference was not significant. In addition, electron beam-irradiated larvae showed typical DNA fragmentation in a dose-dependent manner compared with cells from unirradiated larvae. Our findings suggest that electron beam irradiation induces abnormal development and reproduction of P. xylostella; therefore, it may contribute to effective disinfestation and quarantine treatments of P. xylostella.  相似文献   

13.
Electron beam irradiation has been evaluated for the survival and reproduction of Liposcelis paeta Pearman (Psocoptera: Liposcelididae). All effects increased with increasing doses from 50 to 1000 Gy when the electron energy was 2 MeV. Eggs were unable to develop into adults following a dose of 100 Gy. Complete (100%) mortality was achieved about 5 weeks after adult emergence from nymphs irradiated at 300 Gy, whereas 100% mortality of adults was achieved 9 weeks after irradiation at 300 Gy. The fecundity was greatly reduced to 1.82% of that of control when L. paeta adults were irradiated at 250 Gy. A dose of 300 Gy caused complete reproductive sterility in adults. These results suggest that the most susceptible stage was the egg stage, then nymph and adult stages. A dose of 300 Gy is suggested for quarantine treatment of commodities infested by L. paeta.  相似文献   

14.
The effect of gamma-radiation (3Gy) on slowly proliferating liver tissue of male rats and their progeny was investigated with respect to induction and duration of latent damage. The irradiation caused latent cytogenetic damage in the liver in irradiated males of the F(0) generation, which manifested itself in different ways during proliferation of hepatocytes induced by partial hepatectomy: a reduced proliferating activity, a higher frequency of chromosomal aberrations and a higher proportion of cells with apoptotic DNA fragments were observed, compared with non-irradiated rats. In the progeny of irradiated males (F(1) and F(2) generation), the latent genome damage manifested itself during regeneration of the liver after partial hepatectomy by similar, but less pronounced changes compared with those seen in irradiated males of the parental generation. This finding gave evidence of the transfer of part of the radiation-induced genome damage from parents to their offspring. Irradiation of F(1) and F(2) progeny of irradiated males (their total radiation load being 3 + 3 and 3 + 0 + 3 Gy, respectively) caused less change as irradiation of progeny of non-irradiated control males (their total radiation load being 0 + 3 and 0 + 0 + 3 Gy, respectively).  相似文献   

15.
Although the immediate effects of temperature stress are well documented, the longer‐term effects of such stresses are more poorly known. In these experiments, we investigate the effects of suboptimal and supraoptimal temperatures during pharate adult development on fecundity in the flesh fly, Sarcophaga crassipalpis Macquart. A 1 h cold shock at ?10°C during the red‐eye pharate adult stage decreases the fecundity of both sexes. Induction of rapid cold hardening by pre‐treatment at 0°C for 2 h partially prevents reproductive impairment. Heat shock of pharate adults for 1 h at 45°C also reduces fecundity in both sexes, but inducing thermotolerance by pre‐treatment at 40°C for 2 h affords protection only to females. Males heat shocked at 45°C or first pre‐treated at 40°C consistently fail to transfer sperm to the females. The injury inflicted on males by heat shock is most pronounced when the stress is administered to pharate adults or adults; wandering larvae and true pupae are unaffected. The implications of these data for naturally occurring populations are discussed.  相似文献   

16.
The citrus leafminer (CLM), Phyllocnistis citrella Stainton, is one of the most serious pests of Iran's citrus nursery stocks. In this study, the effects of gamma radiation at doses of 100–450?Gy on the biological and reproductive parameters of P. citrella were determined. The results showed that the mean percentage of pupal mortality increases with a rise in the dose. Also, the mean values of this parameter were higher for irradiated females, indicating higher sensitivity. The mean fertility of the irradiated females mated with normal males was affected drastically and reached zero at 300?Gy. The hatchability of the eggs laid by normal females mated with irradiated males dropped to 2% at the highest irradiation dose of 450?Gy. The results of this test showed that females have a higher radio-sensitivity than males. The competitiveness values fluctuated from 0.2 to 0.6 at doses higher than 200?Gy. The results showed that the male CLMs irradiated with sterilizing doses could compete suitably with the untreated males in laboratory conditions.  相似文献   

17.
The present study involves red palm weevil adults Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae) irradiated with 5, 10 or 15 Gy of gamma radiation. The biological effects of gamma irradiation on the F1 adult females, descendant of irradiated parental male pupae, were studied. The percentage egg hatch decreased significantly, as the dose increased, compared with the untreated control.The effect of gamma irradiation on the morphology of the ovaries showed a remarkable effect on size, shape and measurement of the paired ovaries.Additionally, histological studies showed some damages by irradiation of the oocytes maturation, which increased with increasing dose. These symptoms were elongation of the terminal filament, rupture, separation, or shrinkage of external sheath and follicular epithelium, degenerated or absent of nurse cells, and ruptured oocytes at 15 Gy.Vacuolation appeared in different degrees inside the oocytes and the nurse cells were absent in some areas. The damage in the oocytes was more severe as the dose was increased. The follicular epithelium was thin, oocytes clumped together throughout the ovariole causing some oocytes become abnormal or rectangular in shape.  相似文献   

18.
Pupae of the Queensland fruit fly or Q‐fly Bactrocera tryoni (Froggatt) are irradiated routinely to induce reproductive sterility in adults for use in sterile insect technique programmes. Previous studies suggest that adult sexual performance and survival under nutritional and crowding stress are compromised by the current target dose of radiation for sterilization (70–75 Gy), and that improved mating propensity and survival under stress by irradiated males may be achieved by reducing the target sterilization dose without reducing the level of induced sterility. This raises the question of the amount by which the irradiation dose can be reduced before residual fertility becomes unacceptable. The present study measures the levels of residual fertility in male and female irradiated Q‐flies at different irradiation doses (20, 30, 40, 50, 60 and 70 Gy), and investigates the possibility that fecundity and fertility increase between 10–15 and 30–35 days post emergence. Male flies require a higher dose than females to induce sterility, with no residual fertility found in females irradiated at doses of 50 Gy or above, and no residual fertility found in males irradiated at doses of 60 Gy or above. Irradiated females are more fecund at 30–35 days post emergence than at 10–15 days. However, fertility does not increase between 10 and 15 days post emergence and 30–35 days, even at doses below 50 Gy. The present study shows that there is scope to reduce the target sterilization dose for Q‐flies below that of the current dose range (70–75 Gy) at the same time as retaining an adequate safety margin above radiation doses at which residual fertility can be expected.  相似文献   

19.
Studies on the effect of a juvenoid, DPE-28 (2,4-dinitrophenyl-2',6'-di-tertiarybutyl phenyl ether) on biology and behaviour of Cx. quinquefasciatus showed that the developmental duration, sex ratio, mating success and blood feeding were considerably affected by the exposure of larvae and pupae to the compound. Exposure of fourth instar larvae to 0.007 (EI90) and 0.0019 (EI50) ppm of DPE-28 prolonged the duration of pupation by 58.6 and 52.4 hr and delayed the adult emergence by 35.4 and 17.7 hr in males and 36.8 and 21.1 hr in females respectively. Exposure of freshly ecdysed pupae to 10 and 5 ppm delayed the adult emergence with respect to the control by 54.3 and 32.4 hr in males and 55.2 and 33.2 hr in females respectively. The sex ratio of the adults emerged from treated larvae and pupae was also affected. The female mosquitoes that survived from the exposed fourth instar larvae and pupae exhibited a low blood engorgement ratio. This depression in blood feeding was more pronounced in adults emerged from treated pupae than that of treated fourth instar larvae. A significant proportion of adults emerged from treated larvae and pupae were able to feed only partially. Mating success of the treated populations declined considerably when crosses were made between the males and females emerged from treated fourth instar larvae and pupae. The adults emerged from treated larvae and pupae showed a significant reduction in the oviposition.  相似文献   

20.
The long-term genetic effects of maternal irradiation remain poorly understood. To establish the effects of radiation exposure on mutation induction in the germline of directly exposed females and the possibility of transgenerational effects in their non-exposed offspring, adult female BALB/c and CBA/Ca mice were given 1Gy of acute X-rays and mated with control males. The frequency of mutation at expanded simple tandem repeat (ESTR) loci in the germline of directly exposed females did not differ from that of controls. Using a single-molecule PCR approach, ESTR mutation frequency was also established for both germline and somatic tissues in the first-generation offspring of irradiated parents. While the frequency of ESTR mutation in the offspring of irradiated males was significantly elevated, maternal irradiation did not affect stability in their F(1) offspring. Considering these data and the results of our previous study, we propose that, in sharp contrast to paternal exposure to ionising radiation, the transgenerational effects of maternal high-dose acute irradiation are likely to be negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号