首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The concept of biological safety foresees prevention of potential and real biological hazard at different biorisk levels. In consideration are approaches for creation of a global monitoring, control and prognosis system of socially significant and dangerous infectious diseases with help of informative passported blood sera collection. The basic criteria of effective functioning of serum bank and computer base of the epidemiological data are the subject of discussion in a scope of update WHO requirements. Also new analytical systems for blood sera testing on the basis of protein microchip technology are discussed.  相似文献   

2.
The cyclic nature of the epidemic process in Bulgaria was studied by various methods (spectral analysis, etc.), forming a system. The morbidity dynamics in 10 infectious diseases (scarlet fever, rubella, measles, epidemic parotitis, whooping cough, diphtheria, typhoid fever, enterocolitis, bacterial dysentery, viral hepatitis) over the years of 1909-1983 were studied and cycles covering the periods of 3-4, 5-6, 10-11 and over 16 years were established. The data on the relative part of cyclic processes in the registered morbidity of infectious diseases, as well as information on the prognostication of the spread of infections in the absence of vaccinal prophylaxis, are presented.  相似文献   

3.
In the veterinary epidemiology, the advantage of mapping the locations of farms and other facilities with animals is obvious. In an outbreak of a disease it could make the management of the situation easier, and it could also provide a tool to evaluate different strategies to prevent the spread of infectious diseases. This paper aims to describe and give an overview of the possibilities and potential uses of a Geographical Information System (GIS) in the field of surveillance and monitoring of animal diseases. The following areas in which GIS and special GIS-functions could be incorporated are presented: recording and reporting information, epidemic emergency, cluster analysis, modelling disease spread, and planning control strategies. Different sources of data; geographical data, farm locations and disease information, used in the development of the GIS at the National Veterinary Institute in Norway are thoroughly described in the paper. Further, it presents a few examples where the GIS has been applied to studies of epidemiology and surveillance of animal diseases in Norway, which shows the significant value of GIS in these areas. At the same time, the incorporation of GIS in this field shows the scarcity of the data available, which should encourage improvement in the data recording and the quality of the registries.  相似文献   

4.
Many infection control measures have been implemented to prevent the spread of SARS-CoV-2 during COVID-19 pandemic. We aimed to investigate the impact of COVID-19 epidemic on the other notifiable infectious diseases in China, including respiratory infectious diseases, diseases transmitted through the digestive tract and animal-borne diseases. Compared with 2019, the overall decline rate of respiratory infectious diseases in 2020 is the highest (60–90%), and the diseases transmitted by the digestive tract and animal-borne diseases are similar at 20–30%. Both hepatitis and sexually transmitted diseases decreased significantly in February, and there were basically no significant changes in other months compared with previous years. The series of measures taken by China government to prevent the spread of SARS-CoV-2 are also very effective in preventing the spread of respiratory infectious diseases. But they also have a certain degree of prevention against notifiable infectious diseases spread by other routes.  相似文献   

5.

Background

Water plays an important role in the transmission of many infectious diseases, which pose a great burden on global public health. However, the global distribution of these water-associated infectious diseases and underlying factors remain largely unexplored.

Methods and Findings

Based on the Global Infectious Disease and Epidemiology Network (GIDEON), a global database including water-associated pathogens and diseases was developed. In this study, reported outbreak events associated with corresponding water-associated infectious diseases from 1991 to 2008 were extracted from the database. The location of each reported outbreak event was identified and geocoded into a GIS database. Also collected in the GIS database included geo-referenced socio-environmental information including population density (2000), annual accumulated temperature, surface water area, and average annual precipitation. Poisson models with Bayesian inference were developed to explore the association between these socio-environmental factors and distribution of the reported outbreak events. Based on model predictions a global relative risk map was generated. A total of 1,428 reported outbreak events were retrieved from the database. The analysis suggested that outbreaks of water-associated diseases are significantly correlated with socio-environmental factors. Population density is a significant risk factor for all categories of reported outbreaks of water-associated diseases; water-related diseases (e.g., vector-borne diseases) are associated with accumulated temperature; water-washed diseases (e.g., conjunctivitis) are inversely related to surface water area; both water-borne and water-related diseases are inversely related to average annual rainfall. Based on the model predictions, “hotspots” of risks for all categories of water-associated diseases were explored.

Conclusions

At the global scale, water-associated infectious diseases are significantly correlated with socio-environmental factors, impacting all regions which are affected disproportionately by different categories of water-associated infectious diseases.  相似文献   

6.
Polymenidou M  Cleveland DW 《Cell》2011,147(3):498-508
Misfolded proteins accumulating in several neurodegenerative diseases (including Alzheimer, Parkinson, and Huntington diseases) can cause aggregation of their native counterparts through a mechanism similar to the infectious prion protein's induction of a pathogenic conformation onto its cellular isoform. Evidence for such a prion-like mechanism has now spread to the main misfolded proteins, SOD1 and TDP-43, implicated in amyotrophic lateral sclerosis (ALS). The major neurodegenerative diseases may therefore have mechanistic parallels for non-cell-autonomous spread of disease within the nervous system.  相似文献   

7.

Background

Emerging information technologies present new opportunities to reduce the burden of malaria, dengue and other infectious diseases. For example, use of a data management system software package can help disease control programs to better manage and analyze their data, and thus enhances their ability to carry out continuous surveillance, monitor interventions and evaluate control program performance.

Methods and Findings

We describe a novel multi-disease data management system platform (hereinafter referred to as the system) with current capacity for dengue and malaria that supports data entry, storage and query. It also allows for production of maps and both standardized and customized reports. The system is comprised exclusively of software components that can be distributed without the user incurring licensing costs. It was designed to maximize the ability of the user to adapt the system to local conditions without involvement of software developers. Key points of system adaptability include 1) customizable functionality content by disease, 2) configurable roles and permissions, 3) customizable user interfaces and display labels and 4) configurable information trees including a geographical entity tree and a term tree. The system includes significant portions of functionality that is entirely or in large part re-used across diseases, which provides an economy of scope as new diseases downstream are added to the system at decreased cost.

Conclusions

We have developed a system with great potential for aiding disease control programs in their task to reduce the burden of dengue and malaria, including the implementation of integrated vector management programs. Next steps include evaluations of operational implementations of the current system with capacity for dengue and malaria, and the inclusion in the system platform of other important vector-borne diseases.  相似文献   

8.

Background

For years, emerging infectious diseases have appeared worldwide and threatened the health of people. The emergence and spread of an infectious-disease outbreak are usually unforeseen, and have the features of suddenness and uncertainty. Timely understanding of basic information in the field, and the collection and analysis of epidemiological information, is helpful in making rapid decisions and responding to an infectious-disease emergency. Therefore, it is necessary to have an unobstructed channel and convenient tool for the collection and analysis of epidemiologic information in the field.

Methodology/Principal Findings

Baseline information for each county in mainland China was collected and a database was established by geo-coding information on a digital map of county boundaries throughout the country. Google Maps was used to display geographic information and to conduct calculations related to maps, and the 3G wireless network was used to transmit information collected in the field to the server. This study established a decision support system for the response to infectious-disease emergencies based on WebGIS and mobile services (DSSRIDE). The DSSRIDE provides functions including data collection, communication and analyses in real time, epidemiological detection, the provision of customized epidemiological questionnaires and guides for handling infectious disease emergencies, and the querying of professional knowledge in the field. These functions of the DSSRIDE could be helpful for epidemiological investigations in the field and the handling of infectious-disease emergencies.

Conclusions/Significance

The DSSRIDE provides a geographic information platform based on the Google Maps application programming interface to display information of infectious disease emergencies, and transfers information between workers in the field and decision makers through wireless transmission based on personal computers, mobile phones and personal digital assistants. After a 2-year practice and application in infectious disease emergencies, the DSSRIDE is becoming a useful platform and is a useful tool for investigations in the field carried out by response sections and individuals. The system is suitable for use in developing countries and low-income districts.  相似文献   

9.
The primary aim of this review was to evaluate the state of knowledge of the geographical distribution of all infectious diseases of clinical significance to humans. A systematic review was conducted to enumerate cartographic progress, with respect to the data available for mapping and the methods currently applied. The results helped define the minimum information requirements for mapping infectious disease occurrence, and a quantitative framework for assessing the mapping opportunities for all infectious diseases. This revealed that of 355 infectious diseases identified, 174 (49%) have a strong rationale for mapping and of these only 7 (4%) had been comprehensively mapped. A variety of ambitions, such as the quantification of the global burden of infectious disease, international biosurveillance, assessing the likelihood of infectious disease outbreaks and exploring the propensity for infectious disease evolution and emergence, are limited by these omissions. An overview of the factors hindering progress in disease cartography is provided. It is argued that rapid improvement in the landscape of infectious diseases mapping can be made by embracing non-conventional data sources, automation of geo-positioning and mapping procedures enabled by machine learning and information technology, respectively, in addition to harnessing labour of the volunteer ‘cognitive surplus’ through crowdsourcing.  相似文献   

10.
The data on the sanitary and epidemiological situation in the Southern Federal District are presented. The analysis of morbidity in tuberculosis, measles, HIV infection, viral hepatitis A, typhoid fever, cholera and quarantine infections, Crimean hemorrhagic fever, West Nile fever, rabies, malaria has been carried out. Special attention has been given to "new and newly returning infections", and among them to the spread of SARS ("atypical pneumonia"). The role of regional epidemiological safety programs, in particular such program as "The prophylaxis of quarantine and natural focal infections and the sanitary protection of the territory of the Southern Federal District of the Russian Federation from the import and spread infectious diseases in 2003-2005", has been substantiated.  相似文献   

11.

Background

Transboundary animal movements facilitate the spread of pathogens across large distances. Cross-border cattle trade is of economic and cultural importance in West Africa. This study explores the potential disease risk resulting from large-scale, cross-border cattle trade between Togo, Burkina Faso, Ghana, Benin, and Nigeria for the first time.

Methods and Principal Findings

A questionnaire-based survey of livestock movements of 226 cattle traders was conducted in the 9 biggest cattle markets of northern Togo in February-March 2012. More than half of the traders (53.5%) operated in at least one other country. Animal flows were stochastically simulated based on reported movements and the risk of regional disease spread assessed. More than three quarters (79.2%, range: 78.1–80.0%) of cattle flowing into the market system originated from other countries. Through the cattle market system of northern Togo, non-neighbouring countries were connected via potential routes for disease spread. Even for diseases with low transmissibility and low prevalence in a given country, there was a high risk of disease introduction into other countries.

Conclusions

By stochastically simulating data collected by interviewing cattle traders in northern Togo, this study identifies potential risks for regional disease spread in West Africa through cross-border cattle trade. The findings highlight that surveillance for emerging infectious diseases as well as control activities targeting endemic diseases in West Africa are likely to be ineffective if only conducted at a national level. A regional approach to disease surveillance, prevention and control is essential.  相似文献   

12.
There has been increasing contact between mountain gorillas (Gorilla gorilla beringei) and the human population surrounding Bwindi Impenetrable Forest National Park (BIFNP) in Uganda. Due to the close taxonomic relationship between humans and gorillas there is potential for disease transmission between them. Preventing the introduction or spread of transmissible diseases to the gorillas is essential to protect them. We interviewed 301 villagers living in close proximity to BIFNP with a medical questionnaire in July, 2000. We collected information on demographics, vaccination and health history, and human/gorilla interaction. Our objectives were to estimate the prevalence of several diseases in the human population and to evaluate the risk of anthropozoonotic transmission from humans to gorillas. We found a high prevalence of disease symptoms such as coughing (72.1%) and fever (56.1%) compatible with acute infectious diseases; over half of the respondents (59.1%) had a specific disease diagnosis within the 6 mo preceding the study. We compared villagers who had visual contact with gorillas in the 6 mo preceding the study (53.5%) to villagers who had no visual contact (46.5%). Men were 2.3 times more likely than women to have visual contact with gorillas. In general, the frequency of disease history and symptoms was similar for people with and without contact. The high prevalence of acute infectious diseases in the population surrounding BIFNP and the high rate of contact with gorillas creates the potential for anthropozoonotic disease transmission.  相似文献   

13.
In this paper, an SEIS epidemic model is proposed to study the effect of transport-related infection on the spread and control of infectious disease. New result implies that traveling of the exposed (means exposed but not yet infectious) individuals can bring disease from one region to other regions even if the infectious individuals are inhibited from traveling among regions. It is shown that transportation among regions will change the disease dynamics and break infection out even if infectious diseases will go to extinction in each isolated region without transport-related infection. In addition, our analysis shows that transport-related infection intensifies the disease spread if infectious diseases break out to cause an endemic situation in each region, in the sense of that both the absolute and relative size of patients increase. This suggests that it is very essential to strengthen restrictions of passengers once we know infectious diseases appeared.  相似文献   

14.
Amyloids are highly ordered aggregates of protein fibrils exhibiting cross-β structure formed by intermolecular hydrogen bonds. Pathological amyloid deposition is associated with the development of several socially significant incurable human diseases. Of particular interest are infectious amyloids, or prions, that cause several lethal neurodegenerative diseases in humans and can be transmitted from one organism to another. Because of almost complete absence of criteria for infectious and non-infectious amyloids, there is a lack of consensus, especially, in the definition of similarities and differences between prions and non-infectious amyloids. In this review, we formulated contemporary molecular-biological criteria for identification of prions and non-infectious amyloids and focused on explaining the differences between these two types of molecules.  相似文献   

15.
Compartmental models are commonly used to describe the spread of infectious diseases by estimating the probabilities of transitions between important disease states. A significant challenge in fitting Bayesian compartmental models lies in the need to estimate the duration of the infectious period, based on limited data providing only symptom onset date or another proxy for the start of infectiousness. Commonly, the exponential distribution is used to describe the infectious duration, an overly simplistic approach, which is not biologically plausible. More flexible distributions can be used, but parameter identifiability and computational cost can worsen for moderately sized or large epidemics. In this article, we present a novel approach, which considers a curve of transmissibility over a fixed infectious duration. The incorporation of infectious duration-dependent (IDD) transmissibility, which decays to zero during the infectious period, is biologically reasonable for many viral infections and fixing the length of the infectious period eases computational complexity in model fitting. Through simulation, we evaluate different functional forms of IDD transmissibility curves and show that the proposed approach offers improved estimation of the time-varying reproductive number. We illustrate the benefit of our approach through a new analysis of the 1995 outbreak of Ebola Virus Disease in the Democratic Republic of the Congo.  相似文献   

16.
Understanding where and how fast an infectious disease will spread during an epidemic is critical for its control. However, the task is a challenging one as numerous factors may interact and drive the spread of a disease, specifically when vector-borne diseases are involved. We advocate the use of simultaneous autoregressive models to identify environmental features that significantly impact the velocity of disease spread. We illustrate this approach by exploring several environmental factors influencing the velocity of bluetongue (BT) spread in France during the 2007-2008 epizootic wave to determine which ones were the most important drivers. We used velocities of BT spread estimated in 4,495 municipalities and tested sixteen covariates defining five thematic groups of related variables: elevation, meteorological-related variables, landscape-related variables, host availability, and vaccination. We found that ecological factors associated with vector abundance and activity (elevation and meteorological-related variables), as well as with host availability, were important drivers of the spread of the disease. Specifically, the disease spread more slowly in areas with high elevation and when heavy rainfall associated with extreme temperature events occurred one or two months prior to the first clinical case. Moreover, the density of dairy cattle was correlated negatively with the velocity of BT spread. These findings add substantially to our understanding of BT spread in a temperate climate. Finally, the approach presented in this paper can be used with other infectious diseases, and provides a powerful tool to identify environmental features driving the velocity of disease spread.  相似文献   

17.
Mammals are infected by a wide array of gastrointestinal parasites, including parasites that also infect humans and domesticated animals. Many of these parasites are acquired through contact with infectious stages present in soil, feces or vegetation, suggesting that ranging behavior will have a major impact on their spread. We developed an individual-based spatial simulation model to investigate how range use intensity, home range overlap, and defecation rate impact the spread of fecally transmitted parasites in a population composed of social groups (i.e., a socially structured population). We also investigated the effects of epidemiological parameters involving host and parasite mortality rates, transmissibility, disease-related mortality, and group size. The model was spatially explicit and involved the spillover of a gastrointestinal parasite from a reservoir population along the edge of a simulated reserve, which was designed to mimic the introduction pathogens into protected areas. Animals ranged randomly within a "core" area, with biased movement toward the range center when outside the core. We systematically varied model parameters using a Latin hypercube sampling design. Analyses of simulation output revealed a strong positive association between range use intensity and the prevalence of infection. Moreover, the effects of range use intensity were similar in magnitude to effects of group size, mortality rates, and the per-contact probability of transmission. Defecation rate covaried positively with gastrointestinal parasite prevalence. Greater home range overlap had no positive effects on prevalence, with a smaller core resulting in less range overlap yet more intensive use of the home range and higher prevalence. Collectively, our results reveal that parasites with fecal-oral transmission spread effectively in socially structured populations. Future application should focus on parameterizing the model with empirically derived ranging behavior for different species or populations and data on transmission characteristics of different infectious organisms.  相似文献   

18.
Sociality has evolved in a wide range of animal taxa but infectious diseases spread rapidly in populations of aggregated individuals, potentially negating the advantages of their social interactions. To disengage from the coevolutionary struggle with pathogens, some hosts have evolved various forms of “behavioral immunity”; yet, the effectiveness of such behaviors in controlling epizootics in the wild is untested. Here we show how one form of behavioral immunity (i.e., the aversion of diseased conspecifics) practiced by Caribbean spiny lobsters (Panulirus argus) when subject to the socially transmitted PaV1 virus, appears to have prevented an epizootic over a large seascape. We capitalized on a "natural experiment" in which a die-off of sponges in the Florida Keys (USA) resulted in a loss of shelters for juvenile lobsters over a ~2500km2 region. Lobsters were thus concentrated in the few remaining shelters, presumably increasing their exposure to the contagious virus. Despite this spatial reorganization of the population, viral prevalence in lobsters remained unchanged after the sponge die-off and for years thereafter. A field experiment in which we introduced either a healthy or PaV1-infected lobster into lobster aggregations in natural dens confirmed that spiny lobsters practice behavioral immunity. Healthy lobsters vacated dens occupied by PaV1-infected lobsters despite the scarcity of alternative shelters and the higher risk of predation they faced when searching for a new den. Simulations from a spatially-explicit, individual-based model confirmed our empirical results, demonstrating the efficacy of behavioral immunity in preventing epizootics in this system.  相似文献   

19.
Does society benefit from encouraging or discouraging private infectious disease-risk mitigation? Private individuals routinely mitigate infectious disease risks through the adoption of a range of precautions, from vaccination to changes in their contact with others. Such precautions have epidemiological consequences. Private disease-risk mitigation generally reduces both peak prevalence of symptomatic infection and the number of people who fall ill. At the same time, however, it can prolong an epidemic. A reduction in prevalence is socially beneficial. Prolongation of an epidemic is not. We find that for a large class of infectious diseases, private risk mitigation is socially suboptimal—either too low or too high. The social optimum requires either more or less private mitigation. Since private mitigation effort depends on the cost of mitigation and the cost of illness, interventions that change either of these costs may be used to alter mitigation decisions. We model the potential for instruments that affect the cost of illness to yield net social benefits. We find that where a disease is not very infectious or the duration of illness is short, it may be socially optimal to promote private mitigation effort by increasing the cost of illness. By contrast, where a disease is highly infectious or long lasting, it may be optimal to discourage private mitigation by reducing the cost of disease. Society would prefer a shorter, more intense, epidemic to a longer, less intense epidemic. There is, however, a region in parameter space where the relationship is more complicated. For moderately infectious diseases with medium infectious periods, the social optimum depends on interactions between prevalence and duration. Basic reproduction numbers are not sufficient to predict the social optimum.  相似文献   

20.
The authors describe their experience in the elaboration and introduction into practice of epidemiological service of the system of operative tracing of infectious morbidity at the level of the central sanitary-epidemiological station under conditions of automatic control system. Data on improvement of information supply and logic analysis of the information with the aid of Minsk-22 computer are presented. Forms of documents are considered. Experience in the use of this system for two years pointed to its expediency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号