首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 2‐year field experiment was conducted in northern Illinois to evaluate the effects of host plant resistance and an insecticidal seed treatment (thiamethoxam) on soybean aphids, Aphis glycines Matsumura and their predators. Densities of soybean aphids varied between the 2 years of the experiment. During both years, resistant plants experienced fewer cumulative aphid days than susceptible plants. Populations of soybean aphids on resistant plants rarely exceeded the economic injury level of 250 soybean aphids per plant. The use of thiamethoxam reduced cumulative aphid days in 2007, but not in 2008. Although soybean aphids reached densities that were sufficient to cause yield‐loss for untreated and susceptible plants, no yield‐benefit was associated with using the two management tactics in either year. This latter finding suggests that densities of soybean aphids need to be greater and sustained for a longer period of time than what we observed if the two management tactics are expected to provide a yield‐benefit. Monitoring natural enemies revealed that densities of key aphidophagous predators were relatively unaffected by host plant resistance or thiamethoxam; the effect of these management tactics on densities of predators, as well as the effectiveness of the method used to sample predators, is discussed.  相似文献   

2.
Soybean aphid, Aphis glycines, has caused serious economic damage to soybean across the North Central US since its introduction to North America in 2000. The management of another invasive soybean pest, Asian soybean rust, Phakopsora pachyrhizi, using foliar fungicide applications has the potential to impact soybean aphid populations by suppressing beneficial fungal entomopathogens. In 2005 and 2006, we applied recommended soybean rust fungicide treatments, consisting of strobilurin and triazole fungicides, to small soybean plots in two locations to assess if such applications might suppress aphid fungal epizootics. In Lamberton, MN, in 2005, during the epizootic, fungicide-treated plots averaged 2.0 ± 0.7% (mean ± SE) disease prevalence while untreated plots averaged 14.2 ± 5.6%. In 2007, we applied strobilurin and strobilurin-triazole mix fungicides to single-plant microplots either before or after release of Pandora neoaphidis, the most commonly observed aphid pathogen in 2005 and 2006. Treatments that contained a mixture of two active ingredients significantly lowered peak and cumulative aphid disease prevalence in both early and late reproductive stage soybeans indicating that fungicide mixtures used to manage soybean rust can negatively impact an aphid-specific fungal pathogen. However, no consistent soybean aphid population response was observed in these studies of low levels of aphid fungal infection.  相似文献   

3.
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean, Glycine max (L.). Merr., that significantly reduces yield in northern production areas of North America. Insecticides are widely used to control soybean aphid outbreaks, but efforts are underway to develop host plant resistance as an effective alternative management strategy. Here, previously identified resistant lines were evaluated in laboratory tests against field-collected populations of soybean aphid and in field-plot tests over 2 yr in South Dakota. Six lines previously identified with resistance to soybean aphid--Jackson, Dowling, K1639, Cobb, Palmetto and Sennari--were resistant in this study, but relatively high aphid counts on Tie-feng 8 in field plots contrasted with its previously reported resistance. Bhart-PI 165989 showed resistance in one of two laboratory tests, but it had relatively large aphid infestations in both years of field tests. Intermediate levels of soybean aphid occurred in field plots on lines previously shown to have strong (Sugao Zairai, PI 230977, and D75-10169) or moderate resistance to soybean aphid (G93-9223, Bragg, Braxton, and Tracy-M). Sugao Zairai also failed to have a significant proportion of resistant plants in two laboratory tests against aphids field-collected in 2008, but it was resistant in laboratory tests with aphids collected in 2002, 2005, and 2006. Overall, results showed that lines with Rag (i.e., Jackson) or Rag1 gene (i.e., Dowling) had low aphid numbers, whereas lines with Rag2 (i.e., Sugao Zairai, Sennari) had mixed results. Collectively, responses of soybean aphid populations in laboratory and field tests in 2008 resembled a virulence pattern reported previously for biotype 3 soybean aphids, but virulence in soybean aphid populations was variable and dynamic over years of the study. These results, coupled with previous reports of biotypes virulent to Rag1, suggest that deployment of lines with a single aphid-resistance gene is limited for soybean aphid management, and that deployment strategies relying on multiple resistance genes may be needed to effectively use plant resistance against soybean aphid.  相似文献   

4.
Currently there are several neonicotinoid insecticide seed treatments registered for use on soybean (Glycine max L.), with disparity in adoption rates in the eastern United States. A complex of seedling insect pests is found in mid-south soybean, but thrips are the primary early season pest of soybean in Virginia and North Carolina. Published knowledge regarding their impact on soybean yield is minimal, as is the impact of thrips on soybean yield; thrips species composition is also understudied. In 2008 through 2010, nine field experiments in Virginia and North Carolina were conducted to evaluate the impact on thrips population dynamics; the influence on yield of neonicotinoid seed treatments, imidacloprid and thiamethoxam, was reported from nine of these experiments. Moreover, thrips species abundance was recorded in three of these experiments. Both imidacloprid and thiamethoxam reduced thrips densities compared with untreated soybean. Thiamethoxam was more effective than imidacloprid in reducing adult thrips densities at 5 wk after planting. Adult densities peaked at 3 wk after planting, followed by larval densities, which peaked at 4 wk after planting. The most abundant thrips species was Frankliniella fusca (Hinds), followed by Neohydatothrips variabilis (Beach). Other common species included F. occidentalis (Pergande) and F. tritici (Fitch). In general, F. fusca was more common earlier in the season, while N. variabilis was more common later in the season. There were no significant differences in yield among any of the treatments or in the untreated controls. Although neonicotinoid insecticides reduced thrips abundance, data collected in these studies demonstrated that there was no positive yield response.  相似文献   

5.
Soybean varieties that exhibit resistance to the soybean aphid Aphis glycines have been developed for use in North America. In principle, host-plant resistance to soybean aphid can influence the interactions between the soybean aphid and its natural enemies. Resistance could change the quality of soybean aphids as a food source, the availability of soybean aphids, or resistance traits could directly affect aphid predators and parasitoids. Here, we focus on the effect of soybean aphid resistance on the interactions between soybean aphids, the parasitoid Binodoxys communis (Hymenoptera: Braconidae), and predators of these two species. We determined whether host-plant resistance affected within-season persistence of B. communis by releasing parasitoids into resistant and susceptible soybean plots. We observed higher B. communis densities in susceptible soybean plots than in resistant plots. There were also higher overall levels of intraguild predation of B. communis in susceptible plots, although the per-capita risk of intraguild predation of B. communis was affected neither by plant genotype nor by aphid density. We discuss these effects and whether they were caused by direct effects of the resistant plants on B. communis or indirect effects through soybean aphid or predators.  相似文献   

6.
The soybean aphid, Aphis glycines, is native to Asia, but during the last decade it has invaded North America, where it has spread to most soybean growing regions and become the most important insect pest of soybean. Current control of soybean aphid relies primarily on insecticides, but alternatives to insecticidal control are being explored, especially host plant resistance and biological control, which may interact positively or negatively. Research on host plant resistance to the soybean aphid has revealed six genes that affect resistance. We measured the impact of the two most studied resistance loci, Rag1 and Rag2, on two parasitoid species: Aphelinus glycinis, a recently described species from Asia, which is being introduced into the USA to control the soybean aphid, and Aphelinus certus, also from Asia but accidentally introduced into the USA. Resistance did not affect oviposition by either parasitoid species. However, resistance did reduce successful parasitism by A. glycinis, with each resistance allele causing a two-fold reduction in number of mummified aphids. The resistance alleles did not affect adult emergence, sex ratio, or the size of A. glycinis. For A. certus, the Rag1 resistance allele had no effect on parasitism, while the Rag2 resistance allele reduced parasitism four-fold. On the other hand, the Rag1 resistance allele increased the frequency of males among progeny and decreased female size of A. certus. Despite the reduction in parasitism, these parasitoids are nonetheless able to parasitize the soybean aphid on resistant soybean, which means that they should still contribute to the management of soybean aphid on resistant varieties.  相似文献   

7.
Performance and prospects of Rag genes for management of soybean aphid   总被引:1,自引:0,他引:1  
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is an invasive insect pest of soybean [Glycine max (L.) Merr. (Fabaceae)] in North America, and it has led to extensive insecticide use in northern soybean‐growing regions there. Host plant resistance is one potential alternative strategy for managing soybean aphid. Several Rag genes that show antibiosis and antixenosis to soybean aphid have been recently identified in soybean, and field‐testing and commercial release of resistant soybean lines have followed. In this article, we review results of field tests with soybean lines containing Rag genes in North America, then present results from a coordinated regional test across several field sites in the north‐central USA, and finally discuss prospects for use of Rag genes to manage soybean aphids. Field tests conducted independently at multiple sites showed that soybean aphid populations peaked in late summer on lines with Rag1 or Rag2 and reached economically injurious levels on susceptible lines, whereas lines with a pyramid of Rag1 + Rag2 held soybean aphid populations below economic levels. In the regional test, aphid populations were generally suppressed by lines containing one of the Rag genes. Aphids reached putative economic levels on Rag1 lines for some site years, but yield loss was moderated, indicating that Rag1 may confer tolerance to soybean aphid in addition to antibiosis and antixenosis. Moreover, no yield penalty has been found for lines with Rag1, Rag2, or pyramids. Results suggest that use of aphid‐resistant soybean lines with Rag genes may be viable for managing soybean aphids. However, virulent biotypes of soybean aphid were identified before release of aphid‐resistant soybean, and thus a strategy for optimal deployment of aphid‐resistant soybean is needed to ensure sustainability of this technology.  相似文献   

8.
Studies were conducted to examine the effect of potassium (K) on soybean aphid, Aphis glycines Matsumura, population growth. A laboratory feeding assay examined the effect of K-deficient foliage on life table parameters of soybean aphids, and field experiments were designed to determine the effect of three soil K treatment levels on aphid populations and their impact on soybean yields. The feeding assay found that life table parameters differed between aphids feeding on the K-deficient and nondeficient soybean leaves. Soybean aphids in the K-deficient treatment exhibited significantly greater intrinsic rate of increase (r(m)), finite rate of increase (lambda), and net reproductive rate (Ro) relative to aphids feeding on nondeficient leaves. No significant difference was observed in mean generation time (T) between the two treatments. However, the field experiment repeated over 2 yr showed no effect of K on soybean aphid populations. Soybean aphid populations were high in unsprayed plots and feeding resulted in significant yield losses in 2002 at all three K treatment levels: when averaged across 2001 and 2002, unsprayed treatments yielded 22, 18, and 19.5% less than the sprayed plots in the low, medium, and high K treatments, respectively. No significant interaction was observed between aphid abundance and K level on soybean yields in either year. This study therefore suggests that although aphids can perform better on K-deficient plants, aphid abundance in the field may be dependent on additional factors, such as dispersal, that may affect final densities within plots.  相似文献   

9.
Aphis glycines Matsumura (Hemiptera: Aphididae) can reduce the yield of aphid-susceptible soybean (Glycine max (L.) Merrill) cultivars. The Rag1 and Rag2 genes conferresistance to some biotypes of A. glycines. These genes individually can limit population growth of A. glycines and prevent yield loss. The impact of these genes when combined is not known. We compared the development of A. glycines on soybean with Rag1 alone (R1/S2), Rag2 alone (S1/R2), both genes combined (R1/R2), or neither gene (S1/S2). In addition, we determined the impact of different levels of aphid infestation on seed yield. The genotypes were grown in cages and artificially infested with A. glycines to achieve five treatment levels: aphid-free, 675 aphids per plant, 25,000 cumulative aphid days (CAD) (25K), 50,000 CAD (50K), and 75,000 CAD (75K). The S1/S2 line reached the 50K treatment, but did not reach the 75K treatment. Aphid development on R1/S2 and S1/R2 soybeans after two infestations reached a maximum of 25K. The maximum treatment reached on R1/R2 was only 675 aphids per plant after two infestations, at which there was no significant yield reduction when compared with the aphid-free treatment. The maximum yield reduction of S1/S2 was 27% at 50K treatment compared with 2% for R1/S2 and 12% for S1/R2 at the 25K treatment. Our results indicated that for A. glycines used in our study, cultivars with both Rag1 and Rag2 had less aphid exposure and less yield reduction than soybeans with only one resistant gene.  相似文献   

10.
The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), poses a new threat to soybean, Glycine max (L.) Merrill (Fabaceae), production in the north central USA. As H. halys continues to spread and increase in abundance in the region, the interaction between H. halys and management tactics deployed for other pests must be determined. Currently, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is the most abundant and damaging insect pest of soybean in the region. Aphid‐resistant soybean, mainly with the Rag1 gene, is commercially available for management of A. glycines. Here, experiments were performed to evaluate the effects of Rag1 aphid‐resistant soybean on the mortality, development, and preference of H. halys. In a no‐choice test, mortality of H. halys reared on Rag1 aphid‐resistant soybean pods was significantly lower than when reared on aphid‐susceptible soybean pods (28 vs. 53%). Development time, adult weight, and proportion females of surviving adults did not differ when reared on Rag1 aphid‐resistant or aphid‐susceptible soybean pods. In choice tests, H. halys exhibited a preference for Rag1 aphid‐resistant over aphid‐susceptible soybean pods after 4 h, but not after 24 h. Halyomorpha halys exhibited no preference when tested with vegetative‐stage or reproductive‐stage soybean plants. The preference by H. halys for Rag1 aphid‐resistant soybean pods and the decreased mortality when reared on these pods suggests that the use of Rag1 aphid‐resistant soybean may favor this emerging pest in the north central USA.  相似文献   

11.
Hydrophobic and hydrophilic kaolin-based particle films are effective for control of insect pests in certain agricultural crops. How these products interact with potential biological control agents is not well documented. This study was conducted to evaluate the effects of the hydrophobic (M96-018) and hydrophilic (Surround WP) kaolin-based particle films (Engelhard Corporation, Iselin, NJ) on pea aphid, Acyrthosiphon pisum (Harris), on peas (Pisum spp.), and on the fungal aphid pathogen Pandora neoaphidis (Remaudière and Hennebert) Humber. Over two field seasons (2001 and 2002) in northern Idaho, applications of M96-018 significantly reduced the rate of pea aphid increase on pea, but Surround WP, tested only in 2001, did not reduce aphid population growth rate. Neither particle film treatment was as effective as a standard application of esfenvalerate (DuPont Asana). In the laboratory, particle films suppressed pea aphid populations by up to 30%. M96-018 seemed to have some repellent activity based on aphid distributions after treating plants. When applied along with P. neoaphidis conidia, M96-018 but not Surround WP caused higher percentage of infection mortality of pea aphids by P. neoaphidis than occurred on controls treated only with P. neoaphidis conidia. P. neoaphidis conidia deposited on glass slides coated with M96-018, produced more germ tubes and secondary conidia than those deposited on untreated glass slides or slides treated with Surround WP. This result suggests that greater infection of pea aphids on plants treated with M96-018 is in part a result of a direct enhancement of fungal germination by the particle film.  相似文献   

12.
Multiple strategies are being developed for pest management of the soybean aphid, Aphis glycines Matsumura; however, there has been little published research thus far to determine how such strategies may influence each other, thereby complicating their potential effectiveness. A susceptible soybean (Glycine max L.) variety without the Rag1 gene and a near isogenic resistant soybean variety with the Rag1 gene were evaluated in the laboratory for their effects on the fitness of the soybean aphid parasitoid, Binodoxys communis (Gahan). The presence or absence of the Rag1 gene was verified by quantifying soybean aphid growth. To test for fitness effects, parasitoids were allowed to attack soybean aphids on either a susceptible or resistant plant for 24 h and then aphids were kept on the same plant throughout parasitoid development. Parasitoid fitness was measured by mummy and adult parasitoid production, adult parasitoid emergence, development time, and adult size. Parasitoids that attacked soybean aphids on susceptible plants produced more mummies, more adult parasitoids, and had a higher emergence rate compared with those on resistant plants. Adult parasitoids that emerged from resistant plants took 1 d longer and were smaller compared with those from susceptible plants. This study suggests that biological control by B. communis may be compromised when host plant resistance is widely used for pest management of soybean aphids.  相似文献   

13.
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is one of the most destructive insect pests on soybeans in the United States. One method for managing this pest is through host plant resistance. Since its arrival in 2000, 4 aphid biotypes have been identified that are able to overcome soybean aphid resistance (Rag) genes. A soybean aphid isolate collected from Moline, Illinois readily colonized soybean plants with the soybean aphid resistance gene Rag2, unlike biotypes 1 and 2, but similar to soybean aphid biotype 3. Two no‐choice experiments compared the virulence of the Moline isolate with biotype 3. In both experiments, differences in aphid population counts were not significant (P > 0.05) on soybean genotypes LD08–12957a (Rag2) and LD11–5413a (Rag2), but the aphid counts for the Moline isolate were significantly (P < 0.05) lower than the aphid counts for the biotype 3 isolate on the soybean genotypes Dowling (Rag1), LD05–16611 (Rag1), LD11–4576a (Rag1), and PI 567598B (rag1b and rag3). The Moline isolate was a variant of aphid biotype 3, which is the first report showing that soybean aphid isolates classified as the same biotype, based on virulence against specific Rag genes, can differ in aggressiveness or ability to colonize specific host genotypes.  相似文献   

14.

Key message

Five soybean plant introductions expressed antibiosis resistance to multiple soybean aphid biotypes. Two introductions had resistance genes located in the Rag1, Rag2, and Rag3 regions; one introduction had resistance genes located in the Rag1, Rag2, and rag4 regions; one introduction had resistance genes located in the Rag1 and Rag2 regions; and one introduction had a resistance gene located in the Rag2 region.

Abstract

Soybean aphid (Aphis glycines Matsumura) is the most important soybean [Glycine max (L.) Merr.] insect pest in the USA. The objectives of this study were to characterize the resistance expressed in five plant introductions (PIs) to four soybean aphid biotypes, determine the mode of resistance inheritance, and identify markers associated with genes controlling resistance in these accessions. Five soybean PIs, from an initial set of 3000 PIs, were tested for resistance against soybean aphid biotypes 1, 2, 3, and 4 in choice and no-choice tests. Of these five PIs, PI 587663, PI 587677, and PI 587685 expressed antibiosis against all four biotypes, while PI 587972 and PI 594592 expressed antibiosis against biotypes 1, 2, and 3. F2 populations derived from PI 587663 and PI 587972 were evaluated for resistance against soybean aphid biotype 1, and populations derived from PIs 587677, 587685, and 594592 were tested against biotype 3. In addition, F2:3 plants were tested against biotypes 2 and 3. Genomic DNA from F2 plants was screened with markers linked to Rag1, Rag2, Rag3, and rag4 soybean aphid-resistance genes. Results showed that PI 587663 and PI 594592 each had three genes with variable gene action located in the Rag1, Rag2, and Rag3 regions. PI 587677 had three genes with variable gene action located in the Rag1, Rag2 and rag4 regions. PI 587685 had one dominant gene located in the Rag1 region and an additive gene in the Rag2 region. PI 587972 had one dominant gene located in the Rag2 region controlling antixenosis- or antibiosis-type resistance to soybean aphid biotypes 1, 2, or 3. PIs 587663, 587677, and 587685 also showed antibiosis-type resistance against biotype 4. Information on multi-biotype aphid resistance and resistance gene markers will be useful for improving soybean aphid resistance in commercial soybean cultivars.
  相似文献   

15.
The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a major pest of corn (Zea mays L.) in North America and has evolved resistance to crop rotation by ovipositing in alternate crops such as soybeans [Glycine max (L.) Merr.]. Through experiments with plants grown in the greenhouse and the field, we tested whether soybeans with resistance to the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), affected survival, fecundity, and consumption of soybean for D. v. virgifera. Soybean varieties tested included those types resistant to A. glycines (Rag1 and rag1/rag3) and a susceptible near isoline of the Rag1 variety. Females were provided with a diet of corn tissue for 4 d after which they were fed a diet of tissue from one of three soybean varieties for 4 d, starved for 4 d, or fed corn tissue. When fed greenhouse grown plants, strains differed significantly in survival and consumption, but consumption did not differ by variety of soybean. Diet treatment only affected fecundity; individuals fed corn continuously had greater fecundity than those individuals fed soybeans. In the experiment with plants grown in the field, leaf consumption differed among strains and individuals fed corn continuously had greater fecundity than the other treatments. Soybean varieties with Rag1 and rag1/rag3 resistance to A. glycines did not appear to affect the fitness of D. v. virgifera. Thus, planting of these A. glycines-resistant soybean varieties should not directly affect the spread of rotation-resistant D. v. virgifera.  相似文献   

16.
Genetic linkage mapping of the soybean aphid resistance gene in PI 243540   总被引:1,自引:0,他引:1  
The soybean aphid (Aphis glycines Matsumura) is a pest of soybean [Glycine max (L.) Merr.] in many soybean growing countries of the world, mainly in Asia and North America. A single dominant gene in PI 243540 confers resistance to the soybean aphid. The objectives of this study were to identify simple sequence repeat (SSR) markers closely linked to the gene in PI 243540 and to position the gene on the consensus soybean genetic map. One hundred eighty-four F(2) plants and their F(2:3) families from a cross between the susceptible cultivar Wyandot and PI 243540, and the two parental lines were screened with the Ohio biotype of soybean aphid using greenhouse choice tests. A SSR marker from each 10-cM section of the consensus soybean map was selected for bulked segregant analysis (BSA) to identify the tentative genomic location of the gene. The BSA technique was useful to localize the gene to a genomic region in soybean linkage group (LG) F. The entire F(2) population was then screened with polymorphic SSR markers from this genomic region and a linkage map with nine SSR markers flanking the gene was constructed. The aphid resistance gene was positioned in the interval between SSR markers Satt334 and Sct_033 on LG F. These SSR markers will be useful for marker assisted selection of this gene. The aphid resistance gene from PI 243540 mapped to a different linkage group than the only named soybean aphid resistance gene, Rag1, from 'Dowling'. Also, the responses of the two known biotypes of the soybean aphid to the gene from PI 243540 and Rag1 were different. Thus, the aphid resistance gene from PI 243540 was determined to be a new and independent gene that has been named Rag2.  相似文献   

17.
Methyl salicylate, an herbivore-induced plant volatile, has been shown to attract natural enemies and affect herbivore behavior. In this study, methyl salicylate was examined for its attractiveness to natural enemies of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), and for its direct effects on soybean aphid population growth rates. Methyl salicylate lures were deployed in plots within organic soybean [Glycine max (L.) Merr.] fields. Sticky card traps adjacent to and 1.5 m from the lure measured the relative abundance of natural enemies, and soybean aphid populations were monitored within treated and untreated plots. In addition, exclusion cage studies were conducted to determine methyl salicylate's effect on soybean aphid population growth rates in the absence of natural enemies. Significantly greater numbers of syrphid flies (Diptera: Syrphidae) and green lacewings (Neuroptera: Chrysopidae) were caught on traps adjacent to the methyl salicylate lure, but no differences in abundance were found at traps 1.5 m from the lure. Furthermore, abundance of soybean aphids was significantly lower in methyl salicylate-treated plots. In exclusion cage studies, soybean aphid numbers were significantly reduced on treated soybean plants when all plants were open to natural enemies. When plants were caged, however, soybean aphid numbers and population growth rates did not differ between treated and untreated plants suggesting no effect of methyl salicylate on soybean aphid reproduction and implicating the role of natural enemies in depressing aphid populations. Although aphid populations were reduced locally around methyl salicylate lures, larger scale studies are needed to assess the technology at the whole-field scale.  相似文献   

18.
The development of resistance in aphid populations highlights the importance of biological control as a pest management tactic. Four treatments were evaluated to determine the effects of pesticides on the population dynamics of Aphis gossypii Glover and Neozygites fresenii (Nowakowski) Batko: (1) weekly applications of the insecticide imidacloprid (Provado 1.6 F); (2) weekly applications of the fungicide chlorothalonil (Bravo 720); (3) applications of imidacloprid (Provado 1.6 F) when aphid densities exceeded 30 aphids per leaf, and (4) untreated control. Differences in aphid density among the four treatments were shown only to be significant during the 1997 growing season; however, aphid densities were greater in the chlorothalonil treatment than in the other treatments during each growing season. Percentage of N. fresenii-killed aphids was most often highest in the chlorothalonil treatment as well. The fungal epizootic caused by N. fresenii was delayed approximately 1 wk in the chlorothalonil treatment when compared with the other treatments. This delay allowed the aphids to temporarily escape suppression by the fungus and to continue to increase in density until the density-dependent effects of the epizootic overwhelmed the aphid population. N. fresenii also appeared to persist in the system when imidacloprid was in use and does appear responsible for initial aphid reductions. Treatment did not appear to have a large influence on yield outcome. Yield was variable from year to year and from location to location.  相似文献   

19.
A novel locus for soybean aphid resistance   总被引:2,自引:0,他引:2  
The soybean aphid (Aphis glycines Matsumura) is an important pest on soybean [Glycine max (L.) Merr.] in North America. Aphid resistance has recently been found on plant introduction (PI) 567543C, but little is known about its genetic control. The objectives of this study were to identify the resistance genes in PI 567543C with molecular markers and validate them in a different genetic background. A mapping population of 249 F4 derived lines from a cross between PI 567543C and a susceptible parent was investigated for aphid resistance in both the greenhouse and the field. The broad sense heritability of aphid resistance in the field trial was over 0.95. The segregation of aphid resistance in this population suggests a major gene controlling the resistance. Bulked segregant analysis with molecular markers revealed a potential genomic region. After saturating this putative region with more markers, a genetic locus was mapped in an interval between Sat_339 and Satt414 on chromosome 16 (linkage group J) using the composite interval mapping method. This locus explained the majority of the phenotypic variation ranging from 84.7% in the field trial to 90.4% in the greenhouse trial. Therefore, the aphid resistance in PI 567543C could be mainly controlled by this gene. This aphid resistance gene was mapped on a different chromosome than the other resistance genes reported previously from other resistant germplasms. This gene appears to be additive based on the aphid resistance of the heterozygous lines at this locus. Thus, a new symbol Rag3 is used to designate this gene. Moreover, Rag3 was confirmed in a validation population. This new aphid-resistance gene could be valuable in breeding aphid resistant cultivars.  相似文献   

20.
Sustainable use of insect resistance in crops require insect resistance management plans that may include a refuge to limit the spread of virulence to this resistance. However, without a loss of fitness associated with virulence, a refuge may not prevent virulence from becoming fixed within a population of parthenogenetically reproducing insects like aphids. Aphid-resistance in soybeans (i.e., Rag genes) prevent outbreaks of soybean aphid (Aphis glycines), yet four biotypes defined by their capacity to survive on aphid-resistant soybeans (e.g., biotype-2 survives on Rag1 soybean) are found in North America. Although fitness costs are reported for biotype-3 on aphid susceptible and Rag1 soybean, it is not clear if virulence to aphid resistance in general is associated with a decrease in fitness on aphid susceptible soybeans. In laboratory assays, we measured fitness costs for biotype 2, 3 and 4 on an aphid-susceptible soybean cultivar. In addition, we also observed negative cross-resistance for biotype-2 on Rag3, and biotype-3 on Rag1 soybean. We utilized a simple deterministic, single-locus, four compartment genetic model to account for the impact of these findings on the frequency of virulence alleles. When a refuge of aphid susceptible was included within this model, fitness costs and negative cross-resistance delayed the increase of virulence alleles when virulence was inherited recessively or additively. If virulence were inherited additively, fitness costs decreased the frequency of virulence. Combined, these results suggest that a refuge may prevent virulent A. glycines biotypes from overcoming Rag genes if this aphid-resistance were used commercially in North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号