首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pFh fragments from the hinge region of human IgG3 Kuc and Sur are able to fold into a compact structure, thereby giving proteins with secondary (supersecondary) structure, mainly represented by the left-handed polyproline II helix. It has been shown that thermal denaturation of a compact pFh from the hinge region of IgG3 Kuc and Sur comprises two stages. At the first stage, the compact protein structure unfolds according to the all-or-none model with retention of the secondary structure. At the second stage, the left-handed polyproline II helix, composed of four separate cooperative blocks formed of strands with a high content of proline residues, melts itself. A polyproline conformation of the secondary structure and a large number of disulfide bonds between the chains determine a high specific enthalpy of denaturation and a high thermal stability, respectively.  相似文献   

2.
It has been shown using scanning microcalorimetry and densitometry that partial specific heat and specific partial volume of two pFh fragments of IgG3 increase during the decay of its tertiary structure, the secondary structure, the double poly-L-proline helix, being unchanged. This effect may be explained by a high degree of hydration, which increases on globule decompactization due to increased accessibility of peptide groups of the helix to solvent.  相似文献   

3.
It has been shown by scanning microcalorimetry and densitometry that the partial specific heat and the partial specific volume of pFh fragments of two myeloma IgG3 increase during breakdown of the tertiary structure, while the secondary structure—left-handed poly-L-proline II double helix—does not change. This effect may be explained by a high degree of hydration, which increases upon globule decompactization because of enhanced solvent accessibility of the peptide groups of the helix.  相似文献   

4.
The structure of the pFh-fragment (hinge region) from human myeloma IgG3 Kuc (the third subclass immunoglobulin) was studied by hydrodynamic methods in the pH range from 3.0 to 8.0. The pFh-fragment was found to occur in three states, each with a high content of the secondary structure: a rod-like state at pH < or = 4.0, a "molten globule" state at pH 4.2-5.5, and the native state at pH 7. 5-8.0.  相似文献   

5.
An electron microscopy study of human myeloma IgG3 Kuc has shown that the hinge region in an intact molecule is in a compact state. The subunits are not fixed rigidly and are very mobile. These data are supported by results of ultracentrifugation and microcalorimetry. Non-extremal denaturating effects (pH 4.0, 20 degrees C or pH 7.8, 65 degrees C) lead to 'unfolding' of the hinge region which has a rod-like shape in electron micrographs.  相似文献   

6.
Temperature dependent vibrational circular dichroism (VCD) spectra of type I collagen, in solution and film states, have been measured. These spectra obtained for solution sample suggest that the thermal denaturation of collagen results in transition from poly-L-proline II (PPII) to unordered structure. The PPII structure of collagen is identified by the presence of negative VCD couplet in the amide I region, while the formation of unordered structure is indicated by the disappearance of VCD in the amide I region. The temperature dependent spectra obtained for the supported collagen film indicated a biphasic transition, which is believed to be the first vibrational spectroscopic report to support a biphasic transition during thermal denaturation of collagen film. The temperature dependent spectra of collagen films suggest that the thermal stability of collagen structure depends on its state and decreases in the order: supported film > free standing film > solution state. These observations are believed to be significant in the VCD spectroscopic analysis of secondary structures of proteins and peptides.  相似文献   

7.
1. The thermal denaturation of DNA from rat liver was studied spectrophotometrically. In sodium phosphate buffers denaturation led to a single-stranded form having, at 25 degrees , about 25% of the hypochromism of the intact double helix. 2. The hypochromism of the denatured form was the same in 1mm- as in 10mm-sodium phosphate buffer and was scarcely affected by reaction with formaldehyde. The hypochromism was decreased by about 40% in the presence of 8m-urea. 3. The hypochromism of denatured DNA at low ionic strengths was about the same as that of fragments of reticulocyte ribosomal RNA that were too short to form double-helical secondary structure and about the same as that of RNA after reaction with formaldehyde. 4. The spectrum of DNA was slightly affected by the presence of 8m-urea or 4m-guanidinium chloride. The differences in the spectrum of the native and denatured forms of DNA in 0.1m-sodium phosphate buffer, in 8m-urea-10mm-sodium phosphate buffer and in 4m-guanidinium chloride-10mm-sodium phosphate buffer, pH7.6, were similar but not identical. 5. Denatured rat liver DNA appears to have no double-helical character at 25 degrees in 10mm-sodium phosphate buffer, pH7.6; increasing the buffer concentration to 0.1m leads to a more compact form in which about 40% of the residues form base pairs.  相似文献   

8.
The interaction of netropsin, a minor groove binding drug, with T-A-T triple helix and A-T double helix was studied using circular dichroism spectroscopy and thermal denaturation. The triple helix was made by an oligonucleotide (dA)12-x-(dT)12-x-(dT)12, where x is a hexaethylene glycol chain bridged between the 3' phosphate of one strand and the 5' phosphate of the following strand. This oligonucleotide is able to fold back on itself to form a very stable triplex. Changing the conditions allows the same oligonucleotide in a duplex form with a (dT)12 dangling arm. Circular dichroism spectroscopy demonstrates that netropsin can bind to the triple helical structure. Spectral analysis shows that the bound drug exhibits a conformation and an environment similar in double-stranded and in triple-stranded structure. However, the binding constant to the triple-stranded structure is found smaller than the binding constant to the double-stranded one. Thermal denaturation experiments demonstrate that netropsin destabilizes the triplex whereas it stabilizes the duplex.  相似文献   

9.
The paper exhibits results of hydration shell Monte Carlo calculations in poly-L-proline II and extended helix conformation and in alpha-helical and beta-structural conformations for comparison. It was found that left-handed helix of poly-L-proline II type as well as epsilon-helix are characterized by very favorable hydration. Therefore this conformation has preference as compared to other standard conformations of the main polypeptide chain. This determined inevitability of cold denaturation of protein.  相似文献   

10.
The secondary structure of β - melanocyte-stimulating hormone is studied with circular dichroism and infrared spectroscopy methods. A left-handed poly-L-proline II-type helix has been found in aqueous solution. It becomes more stable on cooling the solution down, its content becomes lower in 60% ethanol. Relative humidity and H-D exchange effects upon the hormone films have been studied to show that the twisted -form and the extended poly-L-proline II-type helix are present.  相似文献   

11.
Conformation of viroids.   总被引:5,自引:4,他引:1       下载免费PDF全文
Viroids are uncoated infectious RNA molecules (MW 107 000-127 000) known as pathogens of certain higher plants. Thermodynamic and kinetic studies were carried out on highly purified viroid preparations by applying UV-absorption melting analysis and temperature jump methods. The thermal denaturation of viroids is characterized by high thermal stability, high cooperativity and a high degree of base pairing. Two relaxation processes could be resolved; a process in the sec range could be evaluated as an independent all-or-none-transition with the following properties: reaction enthalpy= 550 kcal/mol, activation enthalpy of the dissociation = 470 kcal/mol; G : C content = 72 %. These data indicate the existence of an uninterrupted double helix of 52 base pairs. A process in the msec range involves 15 - 25 base pairs which are most probably distributed over several short double helical stretches. A tentative model for the secondary structure of viroids isproposed and the possible functional implications of their physicochemical properties are discussed.  相似文献   

12.
H Kessler  S Mronga  G Müller  L Moroder  R Huber 《Biopolymers》1991,31(10):1189-1204
The hinge region links the antigen binding Fab part to the constant Fc domain in immunoglobulins. For the hinge peptide derivative [AcThr(OtBu)-Cys-Pro-Pro-Cys-Pro-Ala-ProNH2]2 the assignment of the 1H and 13C resonances was achieved by two-dimensional nmr techniques: total correlation spectroscopy (TOCSY), nuclear Overhauser enhancement spectroscopy (NOESY), rotating frame nuclear Overhauser enhancement spectroscopy (ROESY), heteronuclear multiple quantum coherence (HMQC) transfer, and a HSQC (modified Overbodenhausen experiment) with high resolution in F1, which was several times folded in F1 but still phase correctable. Conformational relevant parameters (78 nuclear Overhauser effect distance restraints, 3JHH for prochiral assignments, temperature gradients) were determined by nmr and served as input data for molecular dynamics (MD) structure refinement. A simulated model compound corresponding to the [Cys-Pro-Pro-Cys]2 core elongated by the peptide chains in the Fab and Fc direction served as a starting structure for the final MD run. The conformation calculated in in vacuo does not agree with the C2 symmetry required from nmr data, but the structure obtained by a water simulation fulfills the requirement. Here the core of the hinge peptide derivative adopts a polyproline II double helix as in the x-ray structure of IgG1. Hence, segments responsible for the internal flexibility are located outside the core as confirmed by the flexibility of the solvent exposed C termini.  相似文献   

13.
Muscle myosin heavy chain (MHC) rod domains intertwine to form alpha-helical coiled-coil dimers; these subsequently multimerize into thick filaments via electrostatic interactions. The subfragment 2/light meromyosin "hinge" region of the MHC rod, located in the C-terminal third of heavy meromyosin, may form a less stable coiled-coil than flanking regions. Partial "melting" of this region has been proposed to result in a helix to random-coil transition. A portion of the Drosophila melanogaster MHC hinge is encoded by mutually exclusive alternative exons 15a and 15b, the use of which correlates with fast (hinge A) or slow (hinge B) muscle physiological properties. To test the functional significance of alternative hinge regions, we constructed transgenic fly lines in which fast muscle isovariant hinge A was switched for slow muscle hinge B in the MHC isoforms of indirect flight and jump muscles. Substitution of the slow muscle hinge B impaired flight ability, increased sarcomere lengths by approximately 13% and resulted in minor disruption to indirect flight muscle sarcomeric structure compared with a transgenic control. With age, residual flight ability decreased rapidly and myofibrils developed peripheral defects. Computational analysis indicates that hinge B has a greater coiled-coil propensity and thus reduced flexibility compared to hinge A. Intriguingly, the MHC rod with hinge B was approximately 5 nm longer than myosin with hinge A, consistent with the more rigid coiled-coil conformation predicted for hinge B. Our study demonstrates that hinge B cannot functionally substitute for hinge A in fast muscle types, likely as a result of differences in the molecular structure of the rod, subtle changes in myofibril structure and decreased ability to maintain sarcomere structure in indirect flight muscle myofibrils. Thus, alternative hinges are important in dictating the distinct functional properties of myosin isoforms and the muscles in which they are expressed.  相似文献   

14.
Alternating d(GA.TC)n DNA sequences are known to undergo transition to *H-DNA in the presence of zinc. Here, the effect of zinc on the secondary DNA structure of d(GA.TC)n sequences of different length (n = 5, 8, 10 and 19) was determined. Short d(GA.TC)n sequences form *H-DNA with a higher difficulty than longer ones. At bacterial negative superhelical density (- sigma = 0.05), zinc still induces transition to the *H-DNA conformation at a d(GA.TC)10 sequence but shorter sequences do not form *H-DNA. Transition to *H-DNA at a d(GA.TC)8 sequence is observed under conditions which destabilize the DNA double helix such as high negative supercoiling or low ionic strength. Our results indicate that a first step in the transition to *H-DNA is the formation of a denaturation bubble at the centre of the repeated DNA sequence, suggesting that the primary role of zinc is to induce a local denaturation of the DNA double helix. Subsequently, zinc might also participate in the stabilization of the altered DNA conformation through its direct interaction with the bases. Based on these results a model for the formation of *H-DNA is proposed.  相似文献   

15.
Type VII collagen (Col7) is important for skin integrity. As a major component of the anchoring fibrils, Col7 is essential for linking different skin layers together. The central collagenous domain of Col7 contains several interruptions of the collagen triple helix. The longest interruption is 39 amino acids long and referred to as the hinge region. The hinge region is highly conserved between species. This region was predicted to adopt a coiled coil structure and to serve as the trimerization domain of Col7.To gain insight into the potential function of the hinge region we investigated a heterologous expressed peptide by CD and NMR spectroscopy. CD spectroscopy implies that the hinge region is intrinsically disordered. Resonance assignment was performed and allowed secondary structure analysis based on the chemical shift values. Seven amino acids in the N-terminal moiety show residual α-helical conformation. Subsequent investigation of temperature dependency of amide chemical shifts indicated participation in hydrogen bonding of amino acid residues in the C-terminal moiety of the hinge region. Therefore, the hinge region does not form a coiled coil structure under the employed experimental conditions. The intrinsic disorder of the hinge region might be desired for flexibility to serve as a “hinge” or the hinge region is an important interaction site as typically observed for intrinsically disordered proteins.  相似文献   

16.
The Fc fragment of human IgG1 can be trapped in a stable intermediate state during thermal denaturation. In this conformation the molecule is compact with a native-like secondary structure, however, the tertiary structure is perturbed as revealed by intrinsic fluorescence measurements, the near-UV CD spectra and by mapping of antigenic sites with monoclonal antibodies. Similar phenomena were recently described for a few globular proteins of small size, and termed 'the molten globule' state. Our observation is a unique example of this phenomenon for a four domain protein.  相似文献   

17.
We have employed the recently described crystallohydrodynamic approach to compare the time-averaged domain orientation of human chimeric IgG3wt (wild-type) and IgG4wt as well as two hinge mutants of IgG3 and an IgG4S331P (mutation from serine to proline at position 331, EU numbering) mutant of IgG4. The approach involves combination of the known shape of the Fab and Fc regions from crystallography with hydrodynamic data for the Fab and Fc fragments and hydrodynamic and small angle x-ray scattering data for the intact IgG structures. In this way, ad hoc assumptions over hydration can be avoided and model degeneracy (uniqueness problems) can be minimized. The best fit model for the solution structure of IgG3wt demonstrated that the Fab regions are directed away from the plane of the Fc region and with a long extended hinge region in between. The best fit model of the IgG3m15 mutant with a short hinge (and enhanced complement activation activity) showed a more open, but asymmetric structure. The IgG3HM5 mutant devoid of a hinge region (and also devoid of complement-activation activity) could not be distinguished at the low-resolution level from the structure of the enhanced complement-activating mutant IgG3m15. The lack of inter-heavy-chain disulphide bond rather than a significantly different domain orientation may be the reason for the lack of complement-activating activity of the IgG3HM5 mutant. With IgG4, there are significant and interesting conformational differences between the wild-type IgG4, which shows a symmetric structure, and the IgG4S331P mutant, which shows a highly asymmetric structure. This structural difference may explain the ability of the IgG4S331P mutant to activate complement in stark contrast to the wild-type IgG4 molecule which is devoid of this activity.  相似文献   

18.
The thermal denaturation of the synthetic high molecular weight double stranded polynucleotide poly(dA-dT) x poly(dA-dT) has been studied in aqueous buffered solution (Tris 1.0 mM; pH 7.8+/-0.2) in the presence of increasing concentrations of either Ni(2+) (borderline cation) or Cd(2+) (soft cation) at four different constant ionic strength values (NaCl), making use of UV and circular dichroism (CD) spectroscopies. The experimental results show that the B-type double helix of the polymer is stabilized against thermal denaturation in the presence of both cations at low concentrations, relative to the systems where only NaCl is present, in the same conditions of ionic strength and pH. The effect is more pronounced for Ni(2+) than for Cd(2+). At higher concentrations, both cations start to destabilize the double helix, with Cd cations inducing larger variations of T(m). In many cases, when denaturation starts, interstrand cross-linking occurs with formation of aggregates that precipitate.  相似文献   

19.
20.
The crystal structures of the intact immunoglobulin G1, (λ) Kol and its Fab2 fragment were crystallographically refined at 3.0 Å and 1.9 Å resolution, respectively. The methods used were real space refinement (RLSP) energy and residual refinement (EREF), phase combination, constrained rigid body refinement (CORELS) and difference and Fourier map inspection. The final R-values are 0.24 and 0.26. These analyses allowed the construction of atomic models of parts not seen in detail in the previous analyses at 5 Å and 3 Å resolution, respectively (Colman et al., 1976; Matsushima et al., 1978): i.e. the hinge segment, the hypervariable segments and their intimate interaction with the hinge segment of a crystallographically related molecule.The hinge segment forms a short poly-l-proline double helix from Cys527 to Cys530 (Eu numbering 226 to 230). The preceding segment forms an open turn of helix. This segment and the segment following the poly-l-proline part, which was found to be flexible in Fc fragment crystals (Deisenhofer et al., 1976) probably allow arm and stem movement of the antibody molecule. The combining site of Kol is compared with the combining site of Fab New (Saul et al., 1978). The narrow cleft formed by the hypervariable loops in Kol is filled with aromatic amino acid side-chains. In the crystal, the hypervariable loops contact the hinge and adjacent segments of a related molecule accompanied by a substantial loss in accessible surface area. This contact is preserved in Kol Fab crystals and presumably occurs in the Kol cryoprecipitate. A comparison of the quaternary structures of intact Kol and Fab New showed, in addition to the large change in elbow angle (Colman et al., 1976), changes in lateral domain association. These are discussed in the context of a possible signal transmission from the combining site to the distal end. An attempt was made to model build the IgG3 hinge segment, which is quadruplicated with respect to IgG1 (Michaelsen et al., 1977), on the basis of the Kol hinge structure. A polyproline double helix appeared to be the most plausible model. The Fc part was found to be disordered in intact Kol crystals (Colman et al., 1976). Refinement has reduced the electron density further in the crystal space, where the Fc parts must be located. Disorder, if static, must be fourfold or more in the crystalline state.Intensity measurements on Kol F(ab′)2 and their comparison with intact Kol crystals provide evidence that the disorder is predominantly of a static nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号