共查询到20条相似文献,搜索用时 0 毫秒
1.
We tested six commercial sources of honey bees, Apis mellifera L. (Hymenoptera: Apidae), whose breeding incorporated the trait of Varroa sensitive hygiene (VSH). VSH confers resistance to the parasitic mite Varroa destructor Anderson & Trueman by enhancing the ability of the bees to hygienically remove mite-infested brood. VSH production queens (i.e., queens commercially available for use in beekeepers' production colonies) from the six sources were established in colonies which later were measured for VSH. Their responses were compared with those of colonies with three other types of queens, as follows: VSH queens from the selected closed population maintained by USDA-ARS for research and as a source of breeding germplasm, queens from the cooperating commercial distributor of this germplasm, and queens of a commercial, mite-susceptible source. The reduction of mite infestation in brood combs exposed to test colonies for 1 wk differed significantly between groups. On average, colonies with VSH production queens reduced infestation by 44%. This group average was intermediate between the greater removal by pure ARS VSH (76%) and the cooperators' breeding colonies (64%), and the lesser removal by susceptible colonies (7%). VSH production colonies from the different sources had variable expression of hygiene against mites, with average reduced infestations ranging from 22 to 74%. In addition, infertility was high among mites that remained in infested cells in VSH breeder colonies from ARS and the commercial distributor but was lower and more variable in VSH production colonies and susceptible colonies. Commercial VSH production colonies supply mite resistance that generally seems to be useful for beekeeping. Resistance probably could be improved if more VSH drones sources were supplied when VSH production queens are being mated. 相似文献
2.
Honey bee (Apis mellifera L.) colonies bred for hygienic behavior were tested in a large field trial to determine if they were able to resist the parasitic mite Varroa destructor better than unselected colonies of"Starline" stock. Colonies bred for hygienic behavior are able to detect, uncap, and remove experimentally infested brood from the nest, although the extent to which the behavior actually reduces the overall mite-load in untreated, naturally infested colonies needed further verification. The results indicate that hygienic colonies with queens mated naturally to unselected drones had significantly fewer mites on adult bees and within worker brood cells than Starline colonies for up to 1 yr without treatment in a commercial, migratory beekeeping operation. Hygienic colonies actively defended themselves against the mites when mite levels were relatively low. At high mite infestations (>15% of worker brood and of adult bees), the majority of hygienic colonies required treatment to prevent collapse. Overall, the hygienic colonies had similar adult populations and brood areas, produced as much honey, and had less brood disease than the Starline colonies. Thus, honey bees bred for hygienic behavior performed as well if not better than other commercial lines of bees and maintained lower mite loads for up to one year without treatment. 相似文献
3.
This study demonstrated (1) that honey bees, Apis mellifera L, can express a high level of resistance to Varroa destructor Anderson & Trueman when bees were selected for only one resistant trait (suppression of mite reproduction); and (2) that a significant level of mite-resistance was retained when these queens were free-mated with unselected drones. The test compared the growth of mite populations in colonies of bees that each received one of the following queens: (1) resistant--queens selected for suppression of mite reproduction and artificially inseminated in Baton Rouge with drones from similarly selected stocks; (2) resistant x control--resistant queens, as above, produced and free-mated to unselected drones by one of four commercial queen producers; and (3) control--commercial queens chosen by the same four queen producers and free-mated as above. All colonies started the test with approximately 0.9 kg of bees that were naturally infested with approximately 650 mites. Colonies with resistant x control queens ended the 115-d test period with significantly fewer mites than did colonies with control queens. This suggests that beekeepers can derive immediate benefit from mite-resistant queens that have been free-mated to unselected drones. Moreover, the production and distribution of these free-mated queens from many commercial sources may be an effective way to insert beneficial genes into our commercial population of honey bees without losing the genetic diversity and the useful beekeeping characteristics of this population. 相似文献
4.
We have taken samples of honey from individual beekeepers (N = 64), and of domestic (N = 35) and imported honey (N = 15) retailed in supermarkets in several sub-Saharan countries and cultivated these samples for Paenibacillus larvae subsp. larvae Heyndrickx et al. causing American foulbrood in honey bee colonies. The results are compared with samples of similar backgrounds and treated the same way but collected in Sweden (N = 35). No P. larvae subsp. larvae spores were found in any honey produced in Africa south of the Sahara although honey imported into this region frequently contains the pathogen. Swedish honey frequently contains P. larvae subsp. larvae spores although the general level of visibly infected bee colonies is low (roughly 0.5%). The results suggest that large parts of Africa may be free from American foulbrood. Behavioral studies (hygienic behavior) on Apis mellifera subsp. scutellata Lepeletier in Zimbabwe suggest that hygienic behavior of African bees could influence the apparent low level, or even absence of American foulbrood in large parts of Africa. 相似文献
5.
Background
Honey bees (Apis mellifera L.) are the most important pollinators of many agricultural crops worldwide and are a key test species used in the tiered safety assessment of genetically engineered insect-resistant crops. There is concern that widespread planting of these transgenic crops could harm honey bee populations.Methodology/Principal Findings
We conducted a meta-analysis of 25 studies that independently assessed potential effects of Bt Cry proteins on honey bee survival (or mortality). Our results show that Bt Cry proteins used in genetically modified crops commercialized for control of lepidopteran and coleopteran pests do not negatively affect the survival of either honey bee larvae or adults in laboratory settings.Conclusions/Significance
Although the additional stresses that honey bees face in the field could, in principle, modify their susceptibility to Cry proteins or lead to indirect effects, our findings support safety assessments that have not detected any direct negative effects of Bt crops for this vital insect pollinator. 相似文献6.
7.
Although commercially reared colonies of bumble bees (Bombus sp.) are the primary pollinator world-wide for greenhouse tomatoes (Lycopersicon esculentum Mill.) previous research indicates that honey bees (Apis mellifera L.) might be a feasible alternative or supplement to bumble bee pollination. However, management methods for honey bee greenhouse tomato pollination scarcely have been explored. We 1) tested the effect of initial amounts of brood on colony population size and flight activity in screened greenhouses during the winter, and 2) compared foraging from colonies with brood used within screened and unscreened greenhouses during the summer. Brood rearing was maintained at low levels in both brood and no-brood colonies after 21 d during the winter, and emerging honey bees from both treatments had significantly lower weights than bees from outdoor colonies. Honey bee flight activity throughout the day and over the 21 d in the greenhouse was not influenced by initial brood level. In our summer experiment, brood production in screened greenhouses neared zero after 21 d but higher levels of brood were reared in unscreened greenhouses with access to outside forage. Flower visitation measured throughout the day and over the 21 d the colonies were in the greenhouse was not influenced by screening treatment. An economic analysis indicated that managing honey bees for greenhouse tomato pollination would be financially viable for both beekeepers and growers. We conclude that honey bees can be successfully managed for greenhouse tomato pollination in both screened and unscreened greenhouses if the foraging force is maintained by replacing colonies every 3 wk. 相似文献
8.
Two major parasitic pests threaten honey bee populations, the external mite Varroa destructor and the internal mite Acarapis woodi (Rennie). Varroa are beginning to develop resistance to the main chemical defense fluvalinate, and alternative control methods are being pursued. Previous studies have shown that botanical oils, especially thymol, can be effective. Six release devices for either thymol or a blend of botanical oils known as Magic 3 were tested in beehives. The release devices were as follows: (1) low density polyethylene (LDPE) sleeves filled with Magic 3, (2) Magic 3-infused florist blocks, (3) thymol infused florist blocks, (4) a canola oil and thymol mixture wick release, (5) a plastic strip coated with calcium carbonate and Magic 3, and (6) an untreated control. There were significant decreases in varroa levels with the use of Magic 3 sleeves, but brood levels also decreased. Tracheal mite levels significantly decreased with the Magic 3 sleeve treatment, the Magic 3 florist block treatment, and the thymol canola wick treatment. A second experiment showed that changing the location of Magic 3 sleeves in the colony did not detrimentally effect brood levels, but also did not effectively control varroa mites. 相似文献
9.
Carneiro FE Torres RR Strapazzon R Ramírez SA Guerra JC Koling DF Moretto G 《Neotropical Entomology》2007,36(6):949-952
Varroa destructor has been in Brazil for more than 30 years, but no mortality of honeybee colonies due to this mite has been recorded. Africanized bee infestation rates attained by varroa have been low, without causing measurable damage to Brazilian apiculture. The low reproductive ability of this parasite in Africanized bee worker brood cells has been considered an important factor for maintaining the host-parasite equilibrium. Nevertheless, the possible substitution of the haplotype of the mite Varroa destructor that has occurred recently in Brazil could affected the reproductive ability of the population of this parasite in Brazil. The reproductive ability of worker of the mite females was evaluated in over one thousand 17-18 day-old Africanized worker brood cells each of the two periods. The percentage of fertile mites increased from 56% in the 1980s to 86% in 2005-2006. The difference in the percentage of females that produced deutonymphs, female progeny that can reach the adult stage at bee emergence, was even greater. In 2005-2006, 72% of the females that invaded worker brood had left at the least one viable descendant, compared to 35% in 1986-1987. 相似文献
10.
Pankiw T 《Journal of economic entomology》2004,97(3):748-751
Brood pheromone modulated the foraging behavior of commercial honey bee, Apis mellifera L., colonies pollinating a 10-ha market garden of cucumber, Cucurbita pepo L., and zucchini, Cucumis saticus L., in Texas in late autumn. Six colonies were randomly selected to receive 2000 larval equivalents of brood pheromone and six received a blank control. The ratio of pollen to nonpollen foragers entering colonies was significantly greater in pheromone-treated colonies 1 h after treatment. Pheromone-treated foragers returned with pollen load weights that were significantly heavier than controls. Pollen returned by pheromone-treated foragers was 43% more likely to originate from the target crop. Number of pollen grains washed from the bodies of nonpollen foragers from pheromone-treated colonies was significantly greater than controls and the pollen was 54% more likely to originate from the target crop. Increasing the foraging stimulus environment with brood pheromone increased colony-level foraging and individual forager efforts. Brood pheromone is a promising technology for increasing the pollination activity and efficiency of commercial honey bee colonies. 相似文献
11.
Abstract. Varroa destructor is a parasitic mite of the honey bee species Apis cerana Fabr . and A. mellifera L. Mature females reproduce on the immature stages of their hosts, producing more viable female offspring on drone hosts than on worker hosts. Thus, immature drones are more likely to be infested with mites than immature workers. To investigate the hypothesis that differences in host chemistries underlie the biased distribution of mites between worker and drone brood, the arrestment responses of mites to solvent extracts of a number of stimuli normally encountered by a mite during its life cycle were measured. Mites were arrested by cuticular extracts of worker and drone larvae obtained at 0, 24 and 48 h prior to the time when cell capping is completed. Mites were also arrested by extracts of worker and drone, brood food and cocoons, and by a blend of synthetic fatty acid esters previously shown to be active in the host acquisition process. In a wind tunnel bioassay, mites were attracted to odours from living fifth-instar worker and drone larvae, but not to volatiles from cocoons, brood food or a blend of fatty acid esters. The sex of the host was not an important factor affecting the behavioural responses of the mites in any assay. We conclude that host kairomones play a role in the host acquisition process, but we found no evidence to support the hypothesis that mites use these substances to differentiate between worker and drone brood. 相似文献
12.
13.
Controlling populations of varroa mites is crucial for the survival of the beekeeping industry. Many treatments exist, and all are designed to kill mites on adult bees. Because the majority of mites are found under capped brood, most treatments are designed to deliver active ingredients over an extended period to control mites on adult bees, as developing bees and mites emerge. In this study, a 17-h application of 50% formic acid effectively killed mites in capped worker brood and on adult bees without harming queens or uncapped brood. Neither acetic acid nor a combined treatment of formic and acetic acids applied to the West Virginia formic acid fumigator was as effective as formic acid alone in controlling varroa mites. In addition, none of the treatments tested in late summer had an effect on the late-season prevalence of deformed wing virus. The short-term formic acid treatment killed > 60% of varroa mites in capped worker brood; thus, it is a promising tool for beekeepers, especially when such treatments are necessary during the nectar flow. 相似文献
14.
Nine different genetic families of honey bees (Apis mellifera L.) were compared using summed z-scores (phenotypic values) and a modified selection index (Imod). Imod values incorporated both the phenotypic scores of the different traits and the economic weightings of these traits, as determined by a survey of commercial Ontario beekeepers. Largely because of the high weight all beekeepers place on honey production, a distinct difference between line rankings based on phenotypic scores and Imod scores was apparent, thereby emphasizing the need to properly weight the traits being evaluated to select bee stocks most valuable for beekeepers. Furthermore, when beekeepers who made >10% of their income from queen and nucleus colony sales assigned relative values to the traits used in the Imod calculations, the results differed from those based on weightings assigned by honey producers. Our results underscore the difficulties the North American beekeeping industry must overcome to devise effective methods of evaluating colonies for breeding purposes. 相似文献
15.
The visitation pattern by worker honey bees to cells in the brood nest was monitored on an artificially created brood pattern consisting of about one-fourth brood cells evenly distributed among empty cells. The majority (63 %) of the observed workers selectively entered larval cells. In contrast, some workers avoided egg cells when presented a choice of egg vs empty cells. The results suggest that larvae produce a general signal indicating their presence to worker bees. Eggs also seem to produce a signal, which is perceived to be different from the one from larvae. 相似文献
16.
The objective of this study was to measure the efficacy of two organic acid treatments, formic acid (FA) and oxalic acid (OA)
for the spring control of Varroa destructor (Anderson and Trueman) in honey bee (Apis mellifera L.) colonies. Forty-eight varroa-infested colonies were randomly distributed amongst six experimental groups (n = 8 colonies
per group): one control group (G1); two groups tested applications of different dosages of a 40 g OA/l sugar solution 1:1
trickled on bees (G2 and G3); three groups tested different applications of FA: 35 ml of 65% FA in an absorbent Dri-Loc? pad (G4); 35 ml of 65% FA poured directly on the hive bottom board (G5) and MiteAwayII™ (G6). The efficacy of treatments
(varroa drop), colony development, honey yield and hive survival were monitored from May until September. Five honey bee queens
died during this research, all of which were in the FA treated colonies (G4, G5 and G6). G6 colonies had significantly lower
brood build-up during the beekeeping season. Brood populations at the end of summer were significantly higher in G2 colonies.
Spring honey yield per colony was significantly lower in G6 and higher in G1. Summer honey flow was significantly lower in
G6 and higher in G3 and G5. During the treatment period, there was an increase of mite drop in all the treated colonies. Varroa
daily drop at the end of the beekeeping season (September) was significantly higher in G1 and significantly lower in G6. The
average number of dead bees found in front of hives during treatment was significantly lower in G1, G2 and G3 versus G4, G5
and G6. Results suggest that varroa control is obtained from all spring treatment options. However, all groups treated with
FA showed slower summer hive population build-up resulting in reduced honey flow and weaker hives at the end of summer. FA
had an immediate toxic effect on bees that resulted in queen death in five colonies. The OA treatments that were tested have
minimal toxic impacts on the honey bee colonies. 相似文献
17.
A study of sunflower, Helianthus annuus L., pollen collection by Africanized and European honey bees, Apis mellifera L., was conducted in a hybrid seed production field in Argentina. Africanized honey bees collected significantly larger proportions of sunflower pollen than did European honey bees. The result suggests that Africanized bees would be more efficient for commercial sunflower seed production. 相似文献
18.
The behaviour of the endoparasitic tracheal mite, Acarapis woodi (Rennie) on honey bees (Apis mellifera L.) is a challenge to observe because of its small size. Through a microscope, we videotaped this mite's movement on young bees, dead bees and bees exposed to vegetable oil. Previous studies have shown that solid vegetable oil decreases mite infestations in a bee colony. We hypothesized that the oil alters mite behaviour to the detriment of the parasite, thus helping to safeguard the host. Habitat-seeking behaviour, identified as necessary for mites to locate a new host environment, was disrupted on both dead and oil-treated bees. Questing behaviour, which is associated with transfer between hosts, increased significantly on the dead and oily bees. The behaviours of mites were significantly different between all three treatments (x
2=494.96, p<0.001 on dead bees and x
2=851.11, p<0.001 on oily bees). Both questing and seeking behaviours were significantly different on each of the thoracic treatments (F
2,66=7.88, p<0.001 and F
2,66=21.28, p<0.001) and mite questing behaviour was not altered between males and females on live or oily bees (F
1,22=0.25, p<0.62), but habitat seeking was (F
1,22=7.42, p<0.012). The male questing and habitat-seeking behaviours were observed. We conclude that oil-treated bees gained protection from habitat-seeking mites because the normal behaviour of the mites seeking an oviposition site is interrupted. 相似文献
19.
Adgaba N Al-Ghamdi AA Chernet MH Ali YA Ansari MJ Radloff SE Howard RH 《Journal of economic entomology》2012,105(3):777-782
The orientation of combs in traditional beehives is extremely important for obtaining a marketable honey product. However, the factors that could determine comb orientation in traditional hives and the possibilities of inducing honey bees, Apis mellifera (L.), to construct more desirable combs have not been investigated. The goal of this experiment was to determine whether guide marks in traditional hives can induce bees to build combs of a desired orientation. Thirty-two traditional hives of uniform dimensions were used in the experiment. In 24 hives, ridges were formed on the inner surfaces of the hives with fermented mud to obtain different orientations, circular, horizontal, and spiral, with eight replicates of each treatment. In the remaining eight control hives, the inner surface was left smooth. Thirty-two well-established honey bee colonies from other traditional hives were transferred to the prepared hives. The colonies were randomly assigned to the four treatment groups. The manner of comb construction in the donor and experimental hives was recorded. The results showed that 22 (91.66%) of the 24 colonies in the treated groups built combs along the ridges provided, whereas only 2 (8.33%) did not. Comb orientation was strongly associated with the type of guide marks provided. Moreover, of the 18 colonies that randomly fell to patterns different from those of their previous nests, 17 (94.4%) followed the guide marks provided, irrespective of the comb orientation type in their previous nest. Thus, comb orientation appears to be governed by the inner surface pattern of the nest cavity. The results suggest that even in fixed-comb hives, honey bees can be guided to build combs with orientations suitable to honey harvesting, without affecting the colonies. 相似文献
20.
The application of smoke to honey bee(Apis mellifera) antennae reduced the subsequent electroantennograph response of the antennae to honey bee alarm pheromones, isopentyl acetate, and 2-heptanone. This effect was reversible, and the responsiveness of antennae gradually returned to that of controls within 10–20 min. A similar effect occurred with a floral odor, phenylacetaldehyde, suggesting that smoke interferes with olfaction generally, rather than specifically with honey bee alarm pheromones. A reduction in peripheral sensitivity appears to be one component of the mechanism by which smoke reduces nest defense behavior of honey bees. 相似文献