首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The antennae of adult Damalinia ovis, the sheep louse, were studied using light and scanning electron microscopy. Sensory structures are located on all three antennal segments with the predominant sensilla type being tactile. Nine different types of sensilla are described on the basis of external appearance. One of the sensilla, designated a "pit organ" because of its unusual shape, has not been described previously. A pair of these sensilla are present on each antenna, and their function is unknown. A group of 11 sensilla on the tip of each antenna contains olfactory and chemosensory pegs, and a possible thermohygroreceptor. The antennae are sexually dimorphic, the male having more tactile sensilla, two well-developed terminal hooks, and a different cuticular architecture on the posterior surface of antennal segment 1.  相似文献   

2.
Structure and distribution of sensilla were studied in sixteen species of the caddisfly family Philopotamidae. Their antennae bear numerous curved trichoid and pseudoplacoid sensilla and fewer coronal, styloconic and chaetoid sensilla on the flagellar segments. The most numerous pseudoplacoid sensilla have non-specific localization. The curved trichoid sensilla form clusters ventrally on each antennal segment. Sensilla belonging to coronal, styloconic and chaetoid types have specific positions. Long grooved trichoid sensilla are located nonspecifically in all the studied species. The average number of sensilla per segment decreases from the proximal to distal part of the flagellum. Scapus and pedicellum are devoid of most types of sensilla, however, they bear the Böhm bristles and long trichoid sensilla. A positive correlation between antenna dimensions and its cuticular structures is found.  相似文献   

3.
Structure of antenna segments and ultrastructure of antennal sensillae in representatives of 28 caddisfly families from both modern suborders were studied by electron and light microscopy methods. On Trichoptera antennae, 16 types of sensillae were found, some of them being described for the first time. Morphological peculiarities of cuticular ultrastructures on the antennal surface demonstrate essential differences in structure both at the family level and at the lower taxonomic levels. Specialized sensory fields structurally different from the remaining antennal surface were revealed on antennal flagellae in representatives of the Phryganeina suborder. A new classification of sensillae based on the structure of their cuticular section is proposed.  相似文献   

4.
This study describes the morphology and function of the antennal sensilla in two gall midge species, Contarinia nasturtii and Mayetiola destructor, where multi-component sex pheromones have been identified. Both species possess sensilla trichodea, s. coeloconica, s. chaetica and s. circumfila. Sensilla circumfila, which consist of several sensilla that bifurcate and fuse into one structure, are unique for the gall midges. In C. nasturtii s. circumfila are sexually dimorphic. In males, they form elongated loops suspended on cuticular spines, whereas in females they run like worm-like structures directly on the antennal surface. Single sensillum recordings demonstrated that olfactory sensory neurons housed in male s. circumfila in C. nasturtii responded to the female sex pheromone. In M. destructor, s. circumfila were attached to the antennal surface in both sexes, and displayed no response to sex pheromone components.A sexual dimorphism was also found in the number of s. trichodea per antennal segment in both C. nasturtii (male 1 vs. female 7) and M. destructor (male 13 vs. female 10). OSNs located in male M. destructor s. trichodea responded to the sex pheromone. This is the first gall midge single sensillum study, and the first demonstration of the functional significance of s. circumfila.  相似文献   

5.
《Journal of Asia》2019,22(1):296-307
Pseudoligosita yasumatsui Viggiani and Subba Rao 1978 (Hymenoptera: Trichogrammatidae) is a common egg parasitoid of rice insect pests. The surface morphology of the antenna and ovipositor on P. yasumatsui was examined using scanning electron microscopy. The antenna of P. yasumatsui is geniculate in shape, hinged at the scape-pedicel joint, approximately 190 μm in length and consists of seven antennomeres. In total, the male and female antennae have ten different types of sensilla: trichoid sensilla type 1, 2, 3, 4, 5, 6, campaniform sensilla, basiconic sensilla, and placoid sensilla type 1 and 2. The flagellum of the female antenna is covered with cuticular pores, which are absent on the male antennal flagellum. The distal extremity of its ovipositor stylet has campaniform sensilla and styloconic sensilla. Trichoid sensilla found on its apical abdomen part may play a role in the host detection and egg placement. The types and distribution of antennal and ovipositor sensilla on the parasitoid were discussed.  相似文献   

6.
[目的]本研究旨在明确黄胸蓟马Thrips hawaiiensis各个发育阶段触角感器类型、形态和分布.[方法]运用扫描电镜技术观察黄胸蓟马雌雄成虫、若虫、预蛹、蛹触角的形态结构以及触角上感器类型、形态和分布.[结果]黄胸蓟马成虫触角由柄节、梗节和鞭节3个部分组成,其中长的鞭节分为5个鞭小节(Ⅰ-Ⅴ).雌成虫触角平均长...  相似文献   

7.
Highly developed chemoreception allows insects to detect foods, find mates, and escape natural enemies. We described the structures and distributions of antennal chemosensilla in Adelphocoris fasciaticollis Reuter by scanning electron microscopy and transmission electron microscopy. Seven major types of antennal sensilla were identified in adults of both sexes. Types 1 and 2 are sensilla chaetica and have thick cuticular walls with conspicuous grooves at their surfaces. Types 3 and 4 are multiporous sensilla trichodea with 1–3 dendrites located at the sensillum lymph, indicating a putative olfactory function. Types 5 and 6 are typical sensilla basiconica but share different characteristics in both external morphology and internal ultrastructure, and may be involved in the perception of host-associated odorants. The last sensilla were Böhm bristles. In addition to the morphological characterization, electrophysiological responses of antennal chemosensilla to 51 semiochemicals were investigated based on electroantennogram (EAG) recordings. Results revealed that different chemical stimuli elicited significantly different dose-dependent EAG responses, in which potential sex pheromone components and green leaf volatiles showed relatively higher EAG responses, but neither monoterpenes nor sesquiterpenes can elicit favorable EAG values. The results provided direct morphological and electrophysiological evidence that the adult antennae of A. fasciaticollis could function in searching for mates and host plants.  相似文献   

8.
Detailed information on sensory organs of Diplopoda especially on antennal sensilla are still sparse and fragmentary. The present study on the antennae of Oranmorpha guerinii (Polydesmida, Paradoxosomatidae) utilizing scanning electron microscopy revealed the presence of six sensillar types: (1) apical cones, (2) sensilla trichodea, (3) sensilla microtrichodea, (4) sensilla chaetica, (5) sensilla basiconica bacilliformia, and (6) sensilla basiconica spiniformia. External structure and distribution of cuticular antennal sensilla are compared with data from other diplopod species. We moreover discuss possible functions of antennal sensilla in millipedes.  相似文献   

9.
The antennae are a critically important component of the ant’s highly elaborated chemical communication systems. However, our understanding of the organization of the sensory systems on the antennae of ants, from peripheral receptors to central and output systems, is poorly understood. Consequently, we have used scanning electron and confocal laser microscopy to create virtually complete maps of the structure, numbers of sensory neurons, and distribution patterns of all types of external sensilla on the antennal flagellum of all types of colony members of the carpenter ant Camponotus japonicus. Based on the outer cuticular structures, the sensilla have been classified into seven types: coelocapitular, coeloconic, ampullaceal, basiconic, trichoid-I, trichoid-II, and chaetic sensilla. Retrograde staining of antennal nerves has enabled us to count the number of sensory neurons housed in the different types of sensilla: three in a coelocapitular sensillum, three in a coeloconic sensillum, one in an ampullaceal sensillum, over 130 in a basiconic sensillum, 50–60 in a trichoid-I sensillum, and 8–9 in a trichoid-II sensillum. The basiconic sensilla, which are cuticular hydrocarbon-receptive in the ant, are present in workers and unmated queens but absent in males. Coelocapitular sensilla (putatively hygro- and thermoreceptive) have been newly identified in this study. Coelocapitular, coeloconic, and ampullaceal sensilla form clusters and show biased distributions on flagellar segments of antennae in all colony members. The total numbers of sensilla per flagellum are about 9000 in unmated queens, 7500 in workers, and 6000 in males. This is the first report presenting comprehensive sensillar maps of antennae in ants.  相似文献   

10.
The distribution and fine morphology of antennal sensilla of nymphal and adult mayfly, Baetis rhodani (Ephemeroptera : Baetidae), were examined. In the nymph, various kinds of sensilla (chaetica, basiconica, coeloconica and cuticular pits) are differently arranged on the antennal segments, whereas sensilla campaniformia delimit the distal border of the pedicel. A peculiar kind of sensillum basiconicum, named flat-tipped sensillum, is present along the entire antenna, even though in the flagellum it has a regular arrangement between the cuticular lobes that delimit the distal border of each article. In the subimago the scape and pedicel are profusely covered with microtrichia and scattered sensilla trichodea, whereas the flagellum shows cuticular ribs. Sensilla coeloconica are present along the ventral side of the flagellum. In the imago, the antenna is completely decorated with scales among which sensilla trichodea and sensilla coeloconica occasionally occur. As in the nymph, adult mayflies have a ring of sensilla campaniformia along the distal border of the pedicel. When compared with nymphal antennae, those of adults have fewer types of sensilla, presumably in relation to the short, non-feeding terrestrial life.  相似文献   

11.
In insects, olfactory receptor neurons (ORNs) are located in cuticular sensilla, that are present on the antennae and on the maxillary palps. Their axons project into spherical neuropil, the glomeruli, which are characteristic structures in the primary olfactory center throughout the animal kingdom. ORNs in insects often respond specifically to single odor compounds. The projection patterns of these neurons within the primary olfactory center, the antennal lobe, are, however, largely unknown.We developed a method to stain central projections of intact receptor neurons known to respond to host odor compounds in the malaria mosquito, Anopheles gambiae. Terminal arborizations from ORNs from antennal sensilla had only a few branches apparently restricted to a single glomerulus. Axonal arborizations of the different neurons originating from the same sensillum did not overlap.ORNs originating from maxillary palp sensilla all projected into a dorso-medial area in both the ipsi- and contralateral antennal lobe, which received in no case axon terminals from antennal receptor neurons. Staining of maxillary palp receptor neurons in a second mosquito species (Aedes aegypti) revealed unilateral arborizations in an area at a similar position as in An. gambiae.  相似文献   

12.
While the pore plates of some species of the Sphecoidea (Hymenoptera) rise above the antennal surface, those of other species are flush with it. Not all species possess pore plates. On the antennae of those species, which lack pore plates, small sensilla basiconica are found. The pore plates of Psenulus concolor were studied in detail. The cuticular apparatus rises above the antennal surface. Cuticular features are the encircling ledge and delicate cuticular ledges reinforcing the perforated plate, as well as a joint-like membrane that anchors the plate into the antennal cuticle. Each pore plate is associated with 9–23 sense cells and 4 envelope cells, the second of which is doubled. In very early developmental stages, however, supernumerary envelope cells are observed; they degenerate before the cuticulin layer is secreted. Envelope cell 1 secretes a temporary dendrite sheath, while the envelope cells 2–4 are responsible for the secretion of the cuticular apparatus.The morphology and the development of the small sensilla basiconica are described in Trypoxylon attenuatum. The curved sensillum pointing to the tip of the antenna is anchored by a joint-like membrane. About 15 sense cells innervate the sensillum. The number and the arrangement of the envelope cells resemble that of the sensilla placodea. During very early developmental stages, supernumerary envelope cells are also observed. They degenerate before the cuticle of the cone is secreted by the surviving envelope cells 2–4.  相似文献   

13.
Eggs of a number of cockroach species are parasitized by Tetrastichus hagenowii. The ultrastructure of the sensilla on the antennae of females and males was examined by scanning and transmission electron microscopy. The females have two types of multiporous plate sensilla while the males have only one. Type 1 is found in females and males and has a relatively thin cuticular wall and many pores, while type 2 is found only in females and has a relatively thick cuticular wall and few pores. Both sexes have nonporous, thick-walled, socketed hairs; multiporous, nonsocketed hairs; multiporous, thick-walled pegs; and terminal hairs. In addition, males have multiporous, nonsocketed, long hairs. The sensilla are similar, in many respects, to the sensilla of other chalcid parasitoids. The antennal sensilla of female T. hagenowii are probably involved in ovipositional behavior. The multiporous, long hairs of the male possibly receive stimuli during mating behavior A chemoreceptive function is proposed for the multiporous plate sensilla.  相似文献   

14.
【目的】明确小菜蛾Plutella xylostella成虫下唇须感器的形态结构及感器神经元的投射。【方法】利用光学显微镜观察和扫描电子显微镜观察下唇须结构和感器类型,利用神经回填技术和激光共聚焦显微镜观察下唇须感器神经元在脑部的投射。【结果】小菜蛾成虫下唇须共3节,其上存在Böhm氏鬃毛、钟形感器、鳞形感器、锥形感器、微毛形感器5种不同类型的感器和一个陷窝器结构。Böhm氏鬃毛短小尖细,钟形感器形如顶部凹陷的圆帽,两种感器均分布于下唇须第1节,且大小上均无雌雄二型差异;鳞形感器形同柳叶,锥形感器粗而直,均散生于下唇须的第2和3节,两种感器在大小上均存在雌雄二型差异,其中雌性的鳞形感器显著大于雄性的,根据其雌雄二型差异现象推测雌蛾的鳞形感器可能与感受寄主植物挥发物有关;下唇须第3节中上部具有一个圆形陷窝器结构,雄虫的陷窝器内径为5.68±0.33μm,雌虫的为6.03±0.23μm,雌雄间无显著性差异;凹坑内长有表面光滑的微毛形感器。小菜蛾下唇须感器神经元主要投射于脑部咽下神经节、每个触角叶的下唇须陷窝器神经纤维球和腹神经索3条通路。【结论】阐明了小菜蛾下唇须感器的类型、分布和形态特征及其感器神经元在脑部的投射形态,为深入了解小菜蛾下唇须感器的生理和功能奠定了基础。  相似文献   

15.
松褐天牛六种类型的触角感器的超微结构   总被引:2,自引:0,他引:2  
利用扫描电镜和透射电镜对松褐天牛Monochamus alternatus Hope不同类型触角感器的超微结构进行了观察和研究。在松褐天牛触角上存在6种类型的感器:机械感器、锥形感器、毛型感器、耳形感器、刺形感器和栓锥形感器。机械感器壁厚无孔,淋巴腔中无树突。锥形感器壁薄多孔,有50多个树突分支,每个分支有1~10个微管。毛型感器单壁,壁上有小孔,孔数相对较少,感器内树突1~8个不等,树突内含不同数量的微管。耳形感器,壁薄多孔,内部有少于5个的树突分支,树突内含有数量不等的微管。刺形感器又分为2个亚型:Ⅰ型壁上具纵脊无孔,顶端有孔;Ⅱ型壁上无脊无孔,顶端具单孔。刺形感器Ⅰ型和Ⅱ型均壁厚无孔,树突鞘一直通到顶端小孔。栓锥形感器上半部具纵脊无孔,下端有少量孔,顶端具三瓣状开口的孔。对感受器功能的讨论认为:机械感器不是化学感器;锥形、毛型和耳形感器是嗅觉感器;刺形和栓锥形感器可能是接触化学(味觉)感器。  相似文献   

16.
Each antenna of both sexes of adult Rhodnius prolixus has approximately 570 mechanosensitive neurons that innervate five morphologic types of cuticular mechanosensilla: campaniform sensilla, tapered hairs, trichobothria, and type I and type II bristle sensilla. Each campaniform sensillum and tapered hair is presumably innervated by one mechanosensitive bipolar neuron and probably functions in proprioception. The campaniform sensilla being located at the base of the scape could monitor the position of the antenna. Tapered hairs are found at the distal margin of flagellar segment I and projecting laterally from the bases of the pedicel and scape. They probably provide information about the relative positions of the antennal segments. Seven trichobothrium are located on the pedicel and three on flagellar segment I. Each trichobothrium has a long filamentous hair inserted into the base of a socket that extends inwardly as a cuticular tube and is innervated by one bipolar neuron with a tublar body, a parallel arrangement of microtubules associated with electron-dense material. The trichobothria may respond to small variations in air currents. Type I bristles occur at the base of the antenna and are the most numerous type of mechanosensillum; an average of 452 occur on each antenna of females and 440 on males. The bristle is curved toward the antennal shaft and is serrated distally. Type II bristles are located distally and are the second most numerous type of mechanosensillum; an average of 88 were counted on each antenna of females and 94 on males. The type II bristle is straight with small, longitudinal, external grooves and projects laterally from the antennal shaft. Each type I and II bristle sensillum is innervated by a bipolar neuron whose dendrite is divided into an inner and outer segment. The outer segment is encased by a dendritic sheath which may be highly convoluted and distally contains a tubular body. Two sheath cells are associated with each sensillum. Both types of bristle sensilla have a tactile function. The tubular bodies of both types of bristle sensilla have a complex structure indicating that they are very sensitive. Variations in the amount and arrangement of the electron-dense material at the tip of the tubular bodies may reflect differences in viscoelastic properties that underlie functional characteristics.  相似文献   

17.
斑鞘豆叶甲是大豆苗期重要害虫,本文利用扫描电镜技术观察了斑鞘豆叶甲触角感器超微形态与分布。结果表明:斑鞘豆叶甲触角感器绝大部分着生于鞭节,在鞭亚节端部和末节凹陷区感器分布密集,类型较多。基于感器外部形态可分为8种类型:毛形感器Ⅰ型和Ⅱ型、刺形感器、锥形感器、指形感器、腔锥形感器、栓锥形感器Ⅰ型和Ⅱ型、钟形感器和B hm氏鬃毛。其中毛形感器数量最多,其次是锥形感器,钟形感器最少,仅分布于雄虫触角,还着生有大量表皮孔。雌、雄虫触角感器在形态、数量和分布上均存在差异,雄虫毛形和刺形感器显著长于雌虫,刺形感器端部膨大,两种感器的数量也明显多于雌虫;雌虫与雄虫相比末节背面也具感器密集的凹陷区,指形感器短于雄虫但数量显著多于雄虫。斑鞘豆叶甲触角感器种类丰富,分布密集,雌、雄虫感器存在明显的性二型现象,其结构和类型表现出种间分化特性。  相似文献   

18.
The sensilla ampullacea on the apical antennomere of the leaf-cutting ant Atta sexdens were investigated regarding both their responses to CO2 and their ultrastructure. By staining the sensillum during recording, we confirmed that the sensilla ampullacea are responsible for CO2 perception. We showed that the sensory neurons of the sensilla ampullacea are continuously active without adaptation during stimulation with CO2 (test duration: 1 h). This feature should enable ants to assess the absolute CO2 concentration inside their nests. Sensilla ampullacea have been found grouped mainly on the dorso-lateral side of the distal antennal segment. Scanning and transmission electron microscopic investigations revealed that the external pore opens into a chamber which connects to the ampulla via a cuticular duct. We propose protection against evaporation as a possible function of the duct. The ampulla houses a peg which is almost as long as the ampulla and shows cuticular ridges on the external wall. The ridges are separated by furrows with cuticular pores. The peg is innervated by only one sensory neuron with a large soma. Its outer dendritic segment is enveloped by a dendritic sheath up to the middle of the peg. From the middle to the tip numerous dendritic branches (up to 100) completely fill the distal half of the peg. This is the first report of a receptor cell with highly branched dendrites and which probably is tuned to CO2 exclusively.  相似文献   

19.
The morphology of the antennal hair-sensilla of Periplaneta americana, their distribution and frequency on the antennal flagellum have been examined by transmission- and scanning-electron microscopy. The types of sensilla were distinguished with respect to physiologically relevant criteria such as wall structure and number of sensory cells. Among the sensilla of the antenna of the adult male, long, single-walled sensilla with four sensory cells (types sw B), Probably responsible for reception of sexual pheromones, are most frequent, representing about 54% of the antennal sensilla. About half of these sensilla are newly-formed at the imaginal ecdysis; the other half are derived from the shorter type sw B sensilla of the nymphal antenna. Short type sw B sensilla are present in all larval stages of both sexes and in adult females as well. During the imaginal ecdysis of males, however, the length of these sensilla increases to double that found in nymphs. Dendritic branches also increase in number. During postembryonic development, the number of sensory fibers in the antennal flagellum increases nearly 20-fold, from 14,000 in the first larval instar to about 270,000 in the adult male. The greatest increase, approximately 90%, occurs during the last developmental stage.  相似文献   

20.
The third antennal segment (funiculus) and the maxillary palp are the main and accessory olfactory sense organs of Drosophila melanogaster. Cryofixed antennae and palps revealed a superior preservation of the sensory dendrites and other cellular details as compared to conventional chemical fixation. Extensive cross-section series through funiculus and palp were studied in order to obtain as complete an evaluation as possible of the sensillar complement on these appendages. About 75% of all sensilla on the male and female funiculus were individually studied and their position on the antennal surface mapped. Dimensions of the cuticular apparatus of the various types of sensilla are provided as well as the number of innervating receptor neurons. Particular attention has been paid to the cuticular pores important for stimulus transport and to the sensory dendrites. On the funiculus surface, all sensilla have multiple wall pores: sensilla (s.) trichodea and s. basiconica are single-walled, s. coeloconica are double-walled. The distribution of s. trichodea and s. basiconica follows opposing gradients along a diagonal axis parallel to the axis of the arista from proximo-medial to disto-lateral. In this disto-lateral direction the density of s. trichodea increases while that of the s. basiconica decreases. S. trichodea occur in three subtypes with one, two or three receptor neurons. Basiconic sensilla can be subdivided into three subtypes of large s. basiconica (with two or four receptor neurons), three subtypes of thin s. basiconica (with mostly two, rarely four neurons), and one subtype of small s. basiconica with two receptor neurons. Large s. basiconica occur only in the most proximal region (the ‘LB-zone’); thin s. basiconica are most common in a belt that borders the LB-zone distally, while small s. basiconica are most numerous even further distally along the mentioned diagonal axis in between the s. trichodea. S. intermedia are single-walled, multiporous sensilla which combine features of s. trichodea and s. basiconica; they are found in two subtypes with two or three receptor neurons, in the same region where s. trichodea abound. The s. coeloconica are irregularly distributed over the funicular surface, and occur in two subtypes with two or three receptor neurons. Sexual dimorphism on the antenna is moderate, the female funiculus is a bit longer and carries a larger number of small s. basiconica and large s. basiconica of the LB-I subtype; the male funiculus, however, has more s. trichodea than the female. On the maxillary palp, besides mechanoreceptive s. chaetica, there are only s. basiconica with two receptor neurons. According to the fine structure of their sensory dendrites, three subtypes can be discriminated which are distributed in a random pattern. The functional significance of the described structures and distribution awaits future immunocytochemical and electrophysiological experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号