共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of retroviruses and transposons to insert their genome into the host cell makes them attractive objects for constructing gene therapy vectors. However, enzymes that insert genetic material do not possess any selectivity relative to target nucleotide sequences, which results in almost random DNA insertion into the recipient cell genome. This leads to mutations that in turn may cause certain undesirable consequences and sometimes neoplastic cell transformation. For successful functioning, it is a primary necessity to modify a retrovirus and transposon based genetic therapy systems in such a way that the directed vector integration into a target sequence in the human genome can be achieved. In this review, the approaches to date that have been developed for highly specific modification of the genome using fusion protein construction based on retroviral integrases and transposases are discussed, as well as cellular factors interacting with these enzymes. 相似文献
2.
Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. 总被引:79,自引:1,他引:79
下载免费PDF全文

J Kulkosky K S Jones R A Katz J P Mack A M Skalka 《Molecular and cellular biology》1992,12(5):2331-2338
Our comparison of deduced amino acid sequences for retroviral/retrotransposon integrase (IN) proteins of several organisms, including Drosophila melanogaster and Schizosaccharomyces pombe, reveals strong conservation of a constellation of amino acids characterized by two invariant aspartate (D) residues and a glutamate (E) residue, which we refer to as the D,D(35)E region. The same constellation is found in the transposases of a number of bacterial insertion sequences. The conservation of this region suggests that the component residues are involved in DNA recognition, cutting, and joining, since these properties are shared among these proteins of divergent origin. We introduced amino acid substitutions in invariant residues and selected conserved and nonconserved residues throughout the D,D(35)E region of Rous sarcoma virus IN and in human immunodeficiency virus IN and assessed their effect upon the activities of the purified, mutant proteins in vitro. Changes of the invariant and conserved residues typically produce similar impairment of both viral long terminal repeat (LTR) oligonucleotide cleavage referred to as the processing reaction and the subsequent joining of the processed LTR-based oligonucleotides to DNA targets. The severity of the defects depended upon the site and the nature of the amino acid substitution(s). All substitutions of the invariant acidic D and E residues in both Rous sarcoma virus and human immunodeficiency virus IN dramatically reduced LTR oligonucleotide processing and joining to a few percent or less of wild type, suggesting that they are essential components of the active site for both reactions.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
Bushman F Lewinski M Ciuffi A Barr S Leipzig J Hannenhalli S Hoffmann C 《Nature reviews. Microbiology》2005,3(11):848-858
Retroviral vectors are often used to introduce therapeutic sequences into patients' cells. In recent years, gene therapy with retroviral vectors has had impressive therapeutic successes, but has also resulted in three cases of leukaemia caused by insertional mutagenesis, which has focused attention on the molecular determinants of retroviral-integration target-site selection. Here, we review retroviral DNA integration, with emphasis on recent genome-wide studies of targeting and on the status of efforts to modulate target-site selection. 相似文献
4.
Mobile DNA elements are found in all kingdoms of life, and they employ numerous mechanisms to move within and between genomes. Here we review recent structural advances in understanding two very different families of DNA transposases and retroviral integrases: the DDE and Y1 groups. Even within the DDE family which shares a conserved catalytic domain, there is great diversity in the architecture of the synaptic complexes formed by the intact enzymes with their cognate element-end DNAs. However, recurring themes arise from comparing these complexes, such as stabilization by an intertwined network of protein-DNA and protein-protein contacts, and catalysis in trans, where each active subunit catalyzes the chemical steps on one DNA segment but also binds specific sequences on the other. 相似文献
5.
Correct integration of retroviral DNA in vitro 总被引:100,自引:0,他引:100
6.
7.
8.
The λ-related (lambdoid) coliphages are related to one another by frequent natural recombination and maintain a high level of functional polymorphism for several activities of the phages. Arguments are presented that the polymorphism of the integration module results from selection (presumably frequency-dependent) for new (not improved) specificities of site recognition. Analysis of phages λ and HK022 by Weisberg and collaborators previously showed that changes in five noncontiguous amino acids could switch site recognition specificity. Phage 21 and defective element e14, which integrate at the same site, differ in recognition specificity for both core and arm sites. In vitro assays of e14 and 21 insertion and excision confirm this conclusion. Inhibition by ds arm site oligonucleotides defines the sequence specificity more precisely. 相似文献
9.
10.
11.
12.
13.
Integration of the retroviral genome into host DNA is a critical step in the life cycle of a retrovirus. Although assays for in vitro integration have been developed, the actual DNA sequences targeted by murine leukemia retrovirus (MLV) during in vitro reproduction are unknown. While previous studies used artificial target sequences, we developed an assay using target DNA sequences from common MLV integration sites in Stat5a and c-myc in the genome of murine lymphomas and successfully integrated MLV into the target DNA in vitro. We calculated the free energy change during folding of the target sequence DNA and found a close correlation between the calculated free energy change and the number of integrations. Indeed, the integrations closely correlated with fluctuation of the structure of the target DNA segment. These data suggest that the fluctuation may generate a DNA structure favorable for in vitro integration into the target DNA. The approach described here can provide data on the biochemical properties of the integration reaction to which the target DNA structure may contribute. 相似文献
14.
A large nucleoprotein assembly at the ends of the viral DNA mediates retroviral DNA integration. 总被引:8,自引:1,他引:8
下载免费PDF全文

We have probed the nucleoprotein organization of Moloney murine leukemia virus (MLV) pre-integration complexes using a novel footprinting technique that utilizes a simplified in vitro phage Mu transposition system. We find that several hundred base pairs at each end of the viral DNA are organized in a large nucleoprotein complex, which we call the intasome. This structure is not formed when pre-integration complexes are made by infecting cells with integrase-minus virus, demonstrating a requirement for integrase. In contrast, footprinting of internal regions of the viral DNA did not reveal significant differences between pre-integration complexes with and without integrase. Treatment with high salt disrupts the intasome in parallel with loss of intermolecular integration activity. We show that a cellular factor is required for reconstitution of the intasome. Finally, we demonstrate that DNA-protein interactions involving extensive regions at the ends of the viral DNA are functionally important for retroviral DNA integration activity. Current in vitro integration systems utilizing purified integrase lack the full fidelity of the in vivo reaction. Our results indicate that both host factors and long viral DNA substrates may be required to reconstitute an in vitro system with all the hallmarks of DNA integration in vivo. 相似文献
15.
An amino acid in the central catalytic domain of three retroviral integrases that affects target site selection in nonviral DNA
下载免费PDF全文

Integrase can insert retroviral DNA into almost any site in cellular DNA; however, target site preferences are noted in vitro and in vivo. We recently demonstrated that amino acid 119, in the alpha2 helix of the central domain of the human immunodeficiency virus type 1 integrase, affected the choice of nonviral target DNA sites. We have now extended these findings to the integrases of a nonprimate lentivirus and a more distantly related alpharetrovirus. We found that substitutions at the analogous positions in visna virus integrase and Rous sarcoma virus integrase changed the target site preferences in five assays that monitor insertion into nonviral DNA. Thus, the importance of this protein residue in the selection of nonviral target DNA sites is likely to be a general property of retroviral integrases. Moreover, this amino acid might be part of the cellular DNA binding site on integrase proteins. 相似文献
16.
17.
Anthony P. Green Simon Hardy Alan T. L. Lee Eric J. Thomas 《Phytochemistry Reviews》2010,9(4):501-513
Progress on a total synthesis of the marine natural products, the bryostatins, is reviewed. Following studies aimed at the synthesis of the 1,16- and 17,27-fragments, procedures for the assembly of the macrocyclic ring of the bryostatins were investigated. Although ring-closing metathesis was not found to be useful for the synthesis of bryostatins with geminal dimethyl groups at C18, the modified Julia reaction was found to be useful for the stereoselective formation of the 16,17-double-bond and led to a synthesis of an advanced macrocyclic intermediate. Several novel synthetic procedures feature in this work. 相似文献
18.
Retroviral integrases catalyze four endonuclease reactions (processing, joining, disintegration, and nonspecific alcoholysis) that differ in specificity for the attacking nucleophile and target DNA sites. To assess how the two substrates of this enzyme affect each other, we performed quantitative analyses, in three retroviral systems, of the two reactions that use a variety of nucleophiles. The integrase proteins of human immuno- deficiency virus type 1, visna virus, and Rous sarcoma virus exhibited distinct preferences for water or other nucleophiles during site-specific processing of viral DNA and during nonspecific alcoholysis of nonviral DNA. Although exogenous alcohols competed with water as the nucleophile for processing, the alcohols stimulated nicking of nonviral DNA. Moreover, different nucleophiles were preferred when the various integrases acted on different DNA targets. In contrast, the nicking patterns were independent of whether integrase was catalyzing hydrolysis or alcoholysis and were not influenced by the particular exogenous alcohol. Thus, although the target DNA influenced the choice of nucleophile, the nucleophile did not affect the choice of target sites. These results indicate that interaction with target DNA is the critical step before catalysis and suggest that integrase does not reach an active conformation until target DNA has bound to the enzyme. 相似文献
19.
Erik Serrao 《Critical reviews in biochemistry and molecular biology》2016,51(1):26-42
One of the most crucial steps in the life cycle of a retrovirus is the integration of the viral DNA (vDNA) copy of the RNA genome into the genome of an infected host cell. Integration provides for efficient viral gene expression as well as for the segregation of viral genomes to daughter cells upon cell division. Some integrated viruses are not well expressed, and cells latently infected with human immunodeficiency virus type 1 (HIV-1) can resist the action of potent antiretroviral drugs and remain dormant for decades. Intensive research has been dedicated to understanding the catalytic mechanism of integration, as well as the viral and cellular determinants that influence integration site distribution throughout the host genome. In this review, we summarize the evolution of techniques that have been used to recover and map retroviral integration sites, from the early days that first indicated that integration could occur in multiple cellular DNA locations, to current technologies that map upwards of millions of unique integration sites from single in vitro integration reactions or cell culture infections. We further review important insights gained from the use of such mapping techniques, including the monitoring of cell clonal expansion in patients treated with retrovirus-based gene therapy vectors, or patients with acquired immune deficiency syndrome (AIDS) on suppressive antiretroviral therapy (ART). These insights span from integrase (IN) enzyme sequence preferences within target DNA (tDNA) at the sites of integration, to the roles of host cellular proteins in mediating global integration distribution, to the potential relationship between genomic location of vDNA integration site and retroviral latency. 相似文献
20.
Structure of the termini of DNA intermediates in the integration of retroviral DNA: dependence on IN function and terminal DNA sequence 总被引:73,自引:0,他引:73
Linear retroviral DNA, the major precursor to the integrated provirus of the murine leukemia viruses, contains a mixture of two structures at its ends: some termini are full-length and blunt, and some have recessed 3' strands. A temporal study of the end structures showed that the proportion of the DNA with recessed ends increases during the course of infection, and suggests that the blunt ends are precursors to the recessed ends. We have examined the DNA structures of the ends of retroviral mutants defective in the integration (IN) function. The results show that the formation of the recessed ends requires the presence of IN. Finally, we have analyzed the structures at the ends of mutant genomes with alterations in the terminal DNA sequence. The exact position of the recessed 3' end can be recessed one, two, or four nucleotides relative to the 5' end. In all cases the position of the recessed 3' end correlates perfectly with, and thus presumably determines, the site of joining to the target DNA. 相似文献