首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activation of PLD is believed to play an important role in the regulation of cell function and cell fate by extracellular signal molecules. Multiple PLD activities have been characterized in mammalian cells and, more recently, several PLD genes have been cloned. Current evidence indicates that diverse PLD activities are localized in most, if not all, cellular organelles, where they are likely to subserve different functions in signal transduction, membrane vesicle trafficking and cytoskeletal dynamics.  相似文献   

2.
The beta isoforms of phospholipase C (PLCbetas) are thought to mediate signals from metabotropic glutamate receptor subtype 1 (mGluR1) that is crucial for the modulation of synaptic transmission and plasticity. Among four PLCbeta isoforms, PLCbeta4 is one of the two major isoforms expressed in cerebellar Purkinje cells. The authors have studied the roles of PLCbeta4 by analyzing PLCbeta4 knockout mice, which are viable, but exhibit locomotor ataxia. Their cerebellar histology, parallel fiber synapse formation, and basic electrophysiology appear normal. However, developmental elimination of multiple climbing fiber innervation is clearly impaired in the rostral portion of the cerebellar vermis, where PLCbeta4 mRNA is predominantly expressed in the wild-type mice. In the adult, long-term depression is deficient at parallel fiber to Purkinje cell synapses in the rostral cerebellum of the PLCbeta4 knockout mice. The impairment of climbing fiber synapse elimination and the loss of long-term depression are similar to those seen in mice defective in mGluR1, Galphaq, or protein kinase C. Thus, the authors' results strongly suggest that PLCbeta4 is part of a signaling pathway, including the mGluR1, Galphaq and protein kinase C, which is crucial for both climbing fiber synapse elimination in the developing cerebellum and long-term depression induction in the mature cerebellum.  相似文献   

3.
Localization and possible functions of phospholipase D isozymes.   总被引:14,自引:0,他引:14  
The activation of PLD is believed to play an important role in the regulation of cell function and cell fate by extracellular signal molecules. Multiple PLD activities have been characterized in mammalian cells and, more recently, several PLD genes have been cloned. Current evidence indicates that diverse PLD activities are localized in most, if not all, cellular organelles, where they are likely to subserve different functions in signal transduction, membrane vesicle trafficking and cytoskeletal dynamics.  相似文献   

4.
Summary Recent studies on the alkaline phosphatases of the mouse duodenum have revealed the presence of two classes of isozymes, differing in immunochemical, electrophoretic, chromatographic, and kinetic properties. We have now examined the localization of these two types of phosphatases by the immunofluorescence technique. The use of antisera prepared against both types reveals that the isozymes of both classes are localized in the microvilli of the epithelial cells, and both are found from the villi tips to their bases. No significant intracellular localization of either class of phosphatase was observed.Supported by research grant HD03490 from the National Institute of Child Health and Human Development, U.S. Public Health Service.  相似文献   

5.
Philip F  Guo Y  Scarlata S 《FEBS letters》2002,531(1):28-32
Since their discovery almost 10 years ago pleckstrin homology (PH) domains have been identified in a wide variety of proteins. Here, we focus on two proteins whose PH domains play a defined functional role, phospholipase C (PLC)-beta(2) and PLCdelta(1). While the PH domains of both proteins are responsible for membrane targeting, their specificity of membrane binding drastically differs. However, in both these proteins the PH domains work to modulate the activity of their catalytic core upon interaction with either phosphoinositol lipids or G protein activators. These observations show that these PH domains are not simply binding sites tethered onto their host enzyme but are intimately associated with their catalytic core. This property may be true for other PH domains.  相似文献   

6.
Phosphatidylinositol bisphosphate hydrolysis is an immediate response to many hormones, including growth factors. The hydrolysis of phosphatidylinositol bisphosphate is catalyzed by phosphatidylinositol-specific phospholipase C. A number of phospholipase C isozymes have been identified. Different isozymes are activated by different receptor classes. This review will summarize the different isozymes of phospholipase C, and the current knowledge of the mechanisms by which phospholipase C acitivity is modulated by growth factors.  相似文献   

7.
8.
Phospholipase A2 (PLA2) can participate in the regulation of eicosanoid biosynthesis via PLA2-mediated control of the release of arachidonic acid from phospholipids. Arachidonoyl-hydrolyzing PLA2s were examined in cells from normal mouse mammary glands and mammary carcinomas. Tumor-derived cells exhibited significant PLA2 activity(ies) with arachidonoyl containing phosphatidylcholine and phosphatidylethanolamine as substrates in cell-free assays. In contrast, arachidonoyl containing phosphatidylinositol was a poor substrate. When phosphatidylcholines with varying sn-2 fatty acyl groups were tested as substrates, activity was highest with the arachidonoyl containing lipid. The pH profiles for hydrolysis of phosphatidylcholine and phosphatidylethanolamine differed; all other aspects of PLA2-mediated hydrolysis of these two substrates were similar including a Ca2+ requirement for activity. Moreover, Ca2+ affected the subcellular localization of the enzyme activity. Activity was predominately in the supernatant fraction when cells were harvested in an EGTA (ethylene glycol bis(beta-aminoethylether)-N,N,N',N'-tetraacetic acid) containing buffer and largely in the particulate fraction when cells were harvested in a buffer containing free Ca2+. The localization of activity could be modulated from the supernatant fraction to the particulate fraction by recentrifugation in the presence of Ca2+. Normal gland-derived cells contained a PLA2 activity with properties similar to those of the tumor-derived cells. There was a significant difference in the level of activity in the normal versus tumor cells, the normal gland-derived cells had less than half the PLA2 activity of the carcinoma-derived cells.  相似文献   

9.
Although fibroblast growth factor-2 (FGF-2) plays an important role in cardioprotection and growth, little is known about the signals triggered by it in the adult heart. We therefore examined FGF-2-induced effects on phosphoinositide-specific phospholipase C (PI-PLC) isozymes, which produce second messengers linked to the inotropic and hypertrophic response of the myocardium. FGF-2, administered by retrograde perfusion to the isolated heart, induced an increase in inositol-1,4,5-trisphosphate levels in the cytosol, as well as an increase in total PI-PLC activity associated with sarcolemmal and cytosolic fractions. Furthermore FGF-2 induced a time-dependent elevation in cardiomyocyte membrane-associated PLC gamma1 and PLC beta1 activities, assayed in immunoprecipitated fractions, and moreover, increased the membrane levels of PLC beta1 and PLC beta3. Activation of PLC beta is suggestive of FGF-2-induced cross-talk between FGF-receptor tyrosine kinase and G-protein-coupled signaling in adult cardiomyocytes and underscores the importance of FGF-2 in cardiac physiology.  相似文献   

10.
Two mammalian phospholipase D (PLD) isozymes (PLD1 and PLD2) have been reported. In this study, we differentially tagged these isozymes with enhanced green fluorescent protein (EGFP-rPLD1 and EGFP-rPLD2) or Xpress peptide epitope (Xpress-rPLD1 and Xpress-rPLD2) to examine the association between these isozymes. Overexpressed EGFP-rPLD1 coimmunoprecipitated with Xpress-rPLD1 using anti-Xpress antibody. However, the coimmunoprecipitation was independent of the activity of rPLD1. Xpress-rPLD2 also bound to EGFP-rPLD1 although the binding was less efficient than observed with Xpress-rPLD1. The association between rPLD2 and rPLD1 was confirmed by coimmunoprecipitation of EGFP-rPLD2 with Xpress-rPLD1. EGFP-rPLD2 also bound to Xpress-rPLD2 as shown by coimmunoprecipitation. Immunofluorescence staining of COS-7 cells coexpressing EGFP-rPLDs and Xpress-rPLDs showed that the PLD isozymes colocalized in the perinuclear and plasma membrane regions, suggesting that they could associate in a cellular setting. These results suggest that rPLD1 and rPLD2 can exist as homodimers and can form heterodimers.  相似文献   

11.
12.
Phospholipase Cepsilon (PLCepsilon) is one of the newest members of the phosphatidylinositol-specific phospholipase C (PLC) family. Previous studies have suggested that G-protein-coupled receptors (GPCRs) stimulate phosphoinositide (PI) hydrolysis by activating PLCbeta isoforms through G(q) family G proteins and Gbetagamma subunits. Using RNA interference to knock down PLC isoforms, we demonstrate that the GPCR agonists endothelin (ET-1), lysophosphatidic acid (LPA), and thrombin, acting through endogenous receptors, couple to both endogenous PLCepsilon and the PLCbeta isoform, PLCbeta3, in Rat-1 fibroblasts. Examination of the temporal activation of these PLC isoforms, however, reveals agonist- and isoform-specific profiles. PLCbeta3 is activated acutely within the first minute of ET-1, LPA, or thrombin stimulation but does not contribute to sustained PI hydrolysis induced by LPA or thrombin and accounts for only part of ET-1 sustained stimulation. PLCepsilon, on the other hand, predominantly accounts for sustained PI hydrolysis. Consistent with this observation, reconstitution of PLCepsilon in knockdown cells dose-dependently increases sustained, but not acute, agonist-stimulated PI hydrolysis. Furthermore, combined knockdown of both PLCepsilon and PLCbeta3 additively inhibits PI hydrolysis, suggesting independent regulation of each isoform. Importantly, ubiquitination of inositol 1,4,5-trisphosphate receptors correlates with sustained, but not acute, activation of PLCepsilon or PLCbeta3. In conclusion, GPCR agonists ET-1, LPA, and thrombin activate endogenous PLCepsilon and PLCbeta3 in Rat-1 fibroblasts. Activation of these PLC isoforms displays agonist-specific temporal profiles; however, PLCbeta3 is predominantly involved in acute and PLCepsilon in sustained PI hydrolysis.  相似文献   

13.
Phospholipase Cbeta (PLCbeta) isoforms, which are under the control of Galphaq and Gbetagamma subunits, generate Ca2+ signals induced by a broad array of extracellular agonists, whereas PLCdelta isoforms depend on a rise in cytosolic Ca2+ for their activation. Here we find that PLCbeta2 binds strongly to PLCdelta1 and inhibits its catalytic activity in vitro and in living cells. In vitro, this PLC complex can be disrupted by increasing concentrations of free Gbetagamma subunits. Such competition has consequences for signaling, because in HEK293 cells PLCbeta2 suppresses elevated basal [Ca2+] and inositol phosphates levels and the sustained agonist-induced elevation of Ca2+ levels caused by PLCdelta1. Also, expression of both PLCs results in a synergistic release of [Ca2+] upon stimulation in A10 cells. These results support a model in which PLCbeta2 suppresses the basal catalytic activity of PLCdelta1, which is relieved by binding of Gbetagamma subunits to PLCbeta2 allowing for amplified calcium signals.  相似文献   

14.
Abnormal phospholipid metabolism has been implicated in the pathogenesis of schizophrenia, and it was reported that phospholipase C (PLC) β1 is reduced in specific brain areas of patients with schizophrenia. However, the causal relationship of the PLCβ1 gene with behavioral symptoms of schizophrenia remains unclear. To address this issue, we have examined the mutant mice lacking PLCβ1 for schizophrenia-related phenotypes by performing various behavioral tests, including general locomotor activity, sensorimotor gating, social behaviors, and learning and memory. Phospholipase C β1 knockout mice showed hyperactivities in an open field. They showed impaired prepulse inhibition of acoustic startle response, which was ameliorated by a systemic administration of an antipsychotic D2-receptor antagonist, haloperidol. In addition, they showed abnormal social behaviors, such as lack of barbering behavior, socially recessive trait and lack of nesting behavior. Furthermore, they showed impaired performance in the delayed-non-match-to-sample T-maze test. The present results show that the PLCβ1 mutant mice share some of the behavioral abnormalities that have been reported in patients with schizophrenia. Thus, the PLCβ1-linked signaling pathways may be involved in the neural system whose function is disrupted in the pathogenesis of schizophrenia.  相似文献   

15.
Multiple roles of phosphoinositide-specific phospholipase C isozymes   总被引:1,自引:0,他引:1  
Phosphoinositide-specific phospholipase C is an effector molecule in the signal transduction process. It generates two second messengers, inositol-1,4,5-trisphosphate and diacylglycerol from phosphatidylinositol 4,5-bisphosphate. Currently, thirteen mammal PLC isozymes have been identified, and they are divided into six groups: PLC-beta, -gamma, -delta, -epsilon, -zeta and -eta. Sequence analysis studies demonstrated that each isozyme has more than one alternative splicing variant. PLC isozymes contain the X and Y domains that are responsible for catalytic activity. Several other domains including the PH domain, the C2 domain and EF hand motifs are involved in various biological functions of PLC isozymes as signaling proteins. The distribution of PLC isozymes is tissue and organ specific. Recent studies on isolated cells and knockout mice depleted of PLC isozymes have revealed their distinct phenotypes. Given the specificity in distribution and cellular localization, it is clear that each PLC isozyme bears a unique function in the modulation of physiological responses. In this review, we discuss the structural organization, enzymatic properties and molecular diversity of PLC splicing variants and study functional and physiological roles of each isozyme.  相似文献   

16.
The G protein betagamma complex regulates a wide range of effectors, including the phospholipase C isozymes (PLCbetas). Different domains on the beta subunit are known to contact phospholipase Cbeta and affect its regulation. In contrast, the role of the gamma subunit in Gbetagamma modulation of PLCbeta function is not known. Results here show that the gamma subunit C-terminal domain is involved in mediating Gbetagamma interactions with phospholipase Cbeta. Mutations were introduced to alter the position of the post-translational prenyl modification at the C terminus of the gamma subunit with reference to the beta subunit. These mutants were appropriately post-translationally modified with the geranylgeranyl moiety. A deletion that shortened the C-terminal domain, insertions that extended this domain, and a point mutation, F59A, that disrupted the interaction of this domain with the beta subunit were all affected in their ability to activate PLCbeta to varying degrees. All mutants, however, interacted equally effectively with the G(o)alpha subunit. The results indicate that the G protein gamma subunit plays a direct role in the modulation of effector function by the betagamma complex.  相似文献   

17.
18.
Corticotropin releasing factor (CRF) is present in the adult, as well as in the embryonic and postnatal rodent cerebellum. Further, the distribution of the type 1 CRF receptor has been described in adult and postnatal animals. The focus of the present study is to determine the distribution and cellular relationships of the type 1 CRF receptor (CRF-R1) during embryonic development of the cerebellum. Between embryonic day (E)11 and E12, CRF-R1 immunoreactive puncta are uniformly distributed in the ventricular zone, the site of origin of Purkinje cells, nuclear neurons, and GABAergic interneurons, as well as the germinal trigone, the birthplace of the precursors of granule cells. Between E13 and 18, the distribution of immunolabeled puncta decreases in both the ventricular zone and the germinal trigone and increases in the intermediate zone, as well as in the dorsal aspect of the cerebellar plate. Between E14 and 18, antibodies that label specific populations of cerebellar neurons were combined with the antibody for the receptor to determine the cellular elements that expressed CRF-R1. At E14, CRF-R1 immunoreactivity is co-localized in neurons immunolabeled with PAX-2, an antibody that is specific for GABAergic interneurons. These neurons continue to express CRF-R1 as they migrate dorsally toward the cerebellar surface. Between E16 and 18, Purkinje cells, immunolabeled with calbindin, near the dorsal surface of the cerebellum express CRF-R1 in their cell bodies and apical processes. CRF has been shown to have a depolarizing effect on adult and postnatal Purkinje cells. Further, CRF has been shown to contribute to excitability of hippocampal neurons during embryonic development by binding to CRF-R1; depolarization induced excitability appears to be critical for cell survival. The location of the type one CRF receptor and the presence of its primary ligand, CRF, in the germinal zones of the cerebellum and in migrating neurons suggest that this receptor/ligand interaction could be important in the regulation of neuronal survival through cellular mechanisms that lead to depolarization of embryonic cerebellar neurons.  相似文献   

19.
20.
Phospholipase C (PLC) influences cardiac function. This study examined PLC isozymes of the cardiac sarcolemma (SL) membrane and in the cytosol compartment in isolated perfused rat hearts subjected to global ischemia for 30 min followed by up to 30 min of reperfusion. Although the total SL PLC activity was decreased in ischemia and increased upon reperfusion, differential changes in PLC isozymes were detected. PLC beta(1) mRNA and SL protein abundance and activity were increased in ischemia, with concomitant decreases in activity and protein level in the cytosol. On the other hand, upon reperfusion, PLC beta(1) activity was decreased, but remained higher than control values. Although no change in the PLC delta(1) mRNA level in ischemia was detected, SL PLC delta(1) activity and content were depressed. Furthermore, in the cytosol, PLC delta(1) activity was increased, but the protein level decreased. SL PLC gamma(1) activity was decreased, independent of gene expression and protein content; however, decreases in the activity and protein abundance were detected in the cytosol. Increases in PLC gamma(1) and delta(1) activities occurred upon reperfusion, but were not accounted for by altered mRNA and protein levels. The results indicate that ischemia-reperfusion induces differential changes in PLC isozymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号