首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abnormal dopamine signaling in brain has been implicated in several conditions such as cocaine abuse, Parkinson's disease and depression. Potent and selective dopamine transporter inhibitors may be useful as pharmacological tools and therapeutic agents. Simple substituted pyridines were discovered as novel dopamine transporter (DAT) inhibitors through pharmacophore-based 3D-database search. The most potent compound 18 has a K(i) value of 79 nM in inhibition of WIN35,248 binding to dopamine transporter and 255 nM in inhibition of dopamine reuptake, respectively, as potent as cocaine. Preliminary structure-activity relationship studies show that the geometry and the nature of the substituents on the pyridine ring determine the inhibitory activity and selectivity toward the three monoamine transporters. The substituted pyridines described herein represent a class of novel DAT inhibitors with simple chemical structures and their discovery provides additional insights into the binding site of DAT.  相似文献   

2.
3.
Cocaine is a powerful reinforcer and stimulant that binds to specific recognition sites associated with monoamine transporters in the mammalian brain. The search for a functional antagonist to the addictive properties of cocaine has focused on the discovery of a molecule that can inhibit cocaine binding to the dopamine transporter (DAT) but continue to allow dopamine transport by the DAT. No such dopamine-sparing cocaine antagonist has been reported and it is becoming evident that dopamine-sparing antagonism of the pharmacological effects of cocaine by a classical antagonist may not be possible. Herein we present a new concept for the design of dopamine-sparing cocaine antagonists. A unique approach is utilized to deliver an inhibitor that binds irreversibly to the DAT, then cleaves and leaves behind a small fragment attached to the DAT that blocks access by cocaine but permits dopamine transport. The design of these compounds takes advantage of a cysteinyl sulfhydryl group in the DAT. This group is hypothesized to attack the incoming inhibitor and lead to selective inhibition of the cocaine binding site while sparing dopamine transport. This concept of a mechanism based irreversible dopamine-sparing cocaine antagonist has now been demonstrated to be viable and, as example, the unsaturated 6 showed inhibition of cocaine (63%) at the DAT after 24h incubation, while at that point considerably less inhibition of dopamine is manifested (23%). In contrast, the epoxide 7 showed a greater inhibition of dopamine reuptake than cocaine binding at 24h (68% versus 18%).  相似文献   

4.
Cocaine, a potent addictive substance, is an inhibitor of monoamine transporters, including DAT (dopamine transporter), SERT (serotonin transporter) and NET (norepinephrine transporter). Cocaine administration induces complex behavioral alterations in mammals, but the underlying mechanisms are not well understood. Here, we tested the effect of cocaine on C. elegans behavior. We show for the first time that acute cocaine treatment evokes changes in C. elegans locomotor activity. Interestingly, the neurotransmitter serotonin, rather than dopamine, is required for cocaine response in C. elegans. The C. elegans SERT MOD-5 is essential for the effect of cocaine, consistent with the role of cocaine in targeting monoamine transporters. We further show that the behavioral response to cocaine is primarily mediated by the ionotropic serotonin receptor MOD-1. Thus, cocaine modulates locomotion behavior in C. elegans primarily by impinging on its serotoninergic system.  相似文献   

5.
A series of new 3-aryl-tropanes have been synthesized, and their affinities and selectivities were evaluated for monoamine transporters. (1RS)-3-(Fluoren-2-yl)-8-methyl-8-azabicyclo[3.2.1]oct-2-ene exhibited the highest affinity for the human serotonin transporter (IC50 = 14.5 nM). It is also 52-fold and 230-fold selective over human dopamine and norepinephrine transporters, respectively.  相似文献   

6.
7.
Preparation of cocaine analogues has been aimed largely at development of stable compounds with high affinity and selectivity for the dopamine transporter (DAT). We now report the synthesis and monoamine transporter affinity of 10 new 2beta-carbomethoxy-3beta-[4-(substituted thiophenyl)]phenyltropanes. Among these, compound 4b exhibited very high affinity for the serotonin transporter (SERT: K(i)=17 pM) and good selectivity over dopamine (DAT: 710-fold) and norepinephrine transporters (NET: 11,100-fold).  相似文献   

8.
A series of 3-carbomethoxy-4-(aryl-substituted)piperidines with various aryl groups were synthesized and examined for binding and reuptake inhibition at the human dopamine transporter, the human serotonin transporter, and the human norepinephrine transporter. The binding potency and reuptake inhibition efficacy was compared with that of (-)-cocaine to determine the significance of removing the two-carbon bridge of the cocaine nucleus on the inhibition of transporter binding and reuptake. Of the transporters examined, the substituted piperidines were relatively selective for the human dopamine transporter. In all cases examined, the cis-diastereomer of the 3-carbomethoxy-4-(aryl-substituted)piperidine was observed to be a more potent inhibitor of the human dopamine transporter than the trans diastereomer. Based on the K(i) (binding) and IC(50) (reuptake inhibition) values obtained, the most potent inhibitor of the series was cis-3-carbomethoxy-4-(4'-chlorophenyl)piperidine, and this compound suppressed spontaneous- and cocaine-induced stimulation in non-habituated male Swiss-Webster mice. The conclusion is that substantial portions of the cocaine structure can be dissected away to provide compounds with significant binding and reuptake inhibition of the human dopamine transporter.  相似文献   

9.
The present study used voltammetry to ascertain whether electrically stimulated somatodendritic dopamine release in ventral tegmental area slices from C57BL/6 and dopamine transporter knockout mice was due to exocytosis or dopamine transporter reversal, as has been debated. The maximal concentration of electrically evoked dopamine release was similar between ventral tegmental area slices from dopamine transporter knockout and C57BL/6 mice. Dopamine transporter blockade (10 μM nomifensine) in slices from C57BL/6 mice inhibited dopamine uptake but did not alter peak evoked dopamine release. In addition, dopamine release and uptake kinetics in ventral tegmental area slices from dopamine transporter knockout mice were unaltered by the norepinephrine transporter inhibitor, desipramine (10 μM), or the serotonin transporter inhibitor, fluoxetine (10 μM). Furthermore, maximal dopamine release in ventral tegmental area slices from both C57BL/6 and dopamine transporter knockout mice was significantly decreased in response to Na+ channel blockade by 1 μM tetrototoxin, removal of Ca2+ from the perfusion media and neuronal vesicular monoamine transporter inhibition by RO-04-1284 (10 μM) or tetrabenazine (10 and 100 μM). Finally, the glutamate receptor antagonists AP-5 (50 and 100 μM) and CNQX (20 and 50 μM) had no effect on peak somatodendritic dopamine release in C57BL/6 mice. Overall, these data suggest that similar mechanisms, consistent with exocytosis, govern electrically evoked dopamine release in ventral tegmental area slices from C57BL/6 and dopamine transporter knockout mice.  相似文献   

10.
Abstract: Concurrent cocaine and alcohol use is common practice in the general population, as indicated by recent prevalence studies. In the presence of ethyl alcohol, cocaine is metabolized to its ethyl homolog, cocaethylene. The transesterification of cocaine and ethanol to cocaethylene takes place in the liver and represents a novel metabolic reaction. Cocaethylene was detected in postmortem blood, liver, and neurological tissues in concentrations equal to and sometimes exceeding those of cocaine. In vitro binding studies demonstrate that cocaethylene has a pharmacological profile similar but not identical to that of cocaine at monoamine transport sites assayed in the human brain. Cocaethylene was equipotent to cocaine at inhibiting [3H]mazindol binding to the dopamine transporter. The blockade of dopamine reuptake in the synaptic cleft by cocaethylene may account for the enhanced euphoria associated with combined alcohol and cocaine abuse.  相似文献   

11.
We previously disclosed the discovery of 4-hydroxy-1-methyl-4-(4-methylphenyl)-3-piperidyl 4-methylphenyl ketone (3) as a novel class of dopamine transporter (DAT) inhibitors and showed that (+/-)-3 has a significant functional antagonism against cocaine in vitro. Our previous preliminary structure-activity relationship study led to identification of a more potent DAT inhibitor [(+/-)-4] but this compound failed to show any significant functional antagonism. To search for more potent analogues than 3 but still displaying significant functional antagonism, further SARs, molecular modeling studies and in vitro pharmacological evaluation of this novel class of DAT inhibitors were performed. Sixteen new analogues were synthesized in racemic form and evaluated as DAT inhibitors. It was found that seven new analogues are reasonably potent DAT inhibitors with K(i) values of 0.041--0.30 and 0.052--0.16 microM in [(3)H]mazindol binding and inhibition of DA reuptake. Chiral isomers of several potent DAT inhibitors were obtained through chiral HPLC separation and evaluated as inhibitors at all the three monoamine transporter sites. In general, the (-)-isomer is more active than the (+)-isomer in inhibition of DA reuptake and all the (-)-isomers are selective inhibitors at the DAT site. Evaluation of cocaine's effect on dopamine uptake in the presence and absence of (+)-3 and (-)-3 showed that (-)-3 is responsible for the functional antagonism obtained with the original lead (+/-)-3. Out of the new compounds synthesized, analogue (+/-)-20, which is 8- and 3-fold more potent than (+/-)-3 in binding and inhibition of DA reuptake, appeared to have improved functional antagonism as compared to (+/-)-3.  相似文献   

12.
3,4-Disubstituted pyrrolidines were discovered as a novel class of monoamine transporter inhibitors through 3-D database pharmacophore searching using a new pharmacophore model. The most potent analogue 12 has Ki values of 0.084 microM in [3H]mazindol binding, 0.20, 0.23, and 0.031 microM in inhibition of dopamine (DA), serotonin (SER), and norepinephrine (NE) reuptake, respectively. Functional antagonism testing in vitro showed that 11 and 12 are weak cocaine antagonists.  相似文献   

13.
Cocaine inhibits the dopamine transporter and the consequent elevation of dopamine is thought to contribute to the addictive properties of cocaine. Tropane analogues of cocaine, targeted to the dopamine transporter (DAT), are a significant focus of drug design for cocaine addiction medications. Herein, we report the function of the ortho hydroxy substituents in dopamine with respect to the azabicyclo[3.2.1]octane skeleton. The introduction of the o-dihydroxyl functionality led to reduced binding potency at monoamine transporters, rather than enhanced interaction with the DAT. It is therefore likely that the binding site for these compounds on the DAT is not the same as that for dopamine. Notwithstanding the moderate potency of the free catechols (>100 nM), 7 manifested stimulant activity with a duration of effect that exceeded 4 h in a rat locomotor activity assay. Compound 10, a diacetoxy prodrug for 7, substituted fully for cocaine in a rat drug-discrimination paradigm and is now undergoing further investigation as a potential medication for cocaine abuse.  相似文献   

14.
In this study, we investigated whether treatment with L-deprenyl, a selective monoamine oxidase B (MAO B) inhibitor, also inhibits MAO A or the dopamine transporter in the human brain. Six normal volunteers (age 46+/-6 yrs) had two PET sessions, one at baseline and one following L-deprenyl (10 mg/day) for 1 week. Each session included one scan with [11C]clorgyline (to assess MAO A) and one scan 2 hours later with [11C]cocaine (to assess dopamine transporter availability). A 3-compartment model was used to compare the plasma-to-brain transfer constant, K1 (a function of blood flow) and lambdak3 (a kinetic term proportional to brain MAO A) before and after treatment. Dopamine transporter availability was measured as the ratio of distribution volumes of the striatum to cerebellum (DVR) which is equal to Bmax/KD +1. L-Deprenyl treatment for 1 week did not affect either brain MAO A activity or dopamine transporter availability. There was a non-significant trend for an increase in K1 after L-deprenyl. These results confirm that L-deprenyl after one week of treatment at doses typically used clinically is selective for MAO B and that it does not produce a measurable affect on the dopamine transporter, suggesting that MAO A inhibition and dopamine transporter blockade do not contribute to its pharmacological effects.  相似文献   

15.
Cocaine is a potent stimulant of the central nervous system. Its reinforcing and stimulant properties have been associated with inhibition of the dopamine transporter (DAT) on presynaptic neurons. In the search for medications for cocaine abuse, we have prepared 2-carbomethoxy-3-aryl-8-thiabicyclo[3.2.1]octane analogues of cocaine. We report that this class of compounds provides potent and selective inhibitors of the DAT and SERT. The selectivity resulted from reduced activity at the SERT. The 3beta-(3,4-dichlorophenyl) analogue inhibits the DAT and SERT with a potency of IC(50)=5.7 nM and 8.0 nM, respectively. The 3-(3,4-dichlorophenyl)-2,3-unsaturated analogue inhibits the DAT potently (IC(50)=4.5 nM) and selectively (>800-fold vs SERT). Biological enantioselectivity of DAT inhibition was limited for both the 3-aryl-2,3-unsaturated and the 3alpha-aryl analogues (2-fold), but more robust (>10-fold) for the 3beta-aryl analogues. The (1R)-configuration provided the eutomers.  相似文献   

16.
A series of meperidine analogues was synthesized and the binding affinities for the dopamine and serotonin transporters were determined. The substituents on the phenyl ring greatly influenced the potency and selectivity of these compounds for the transporter binding sites. In general, meperidine (3) and its analogues were more selective for serotonin transporter binding sites and the esters 9 were more potent than the corresponding nitriles 8. The 3,4-dichloro derivative 9e was the most potent ligand of the series for dopamine transporter binding sites while the 2-naphthyl derivative 9g exhibited the most potent binding affinity and was highly selective for serotonin transporter binding sites.  相似文献   

17.
A series of 3alpha-benzyl-8-(diarylmethoxyethyl)-8-azabicyclo[3.2.1]octanes was synthesized and the binding affinities of the compounds were determined at the dopamine transporter. The unsubstituted analogue 7b (K(i)=98nM) was the most potent compound of the series with binding affinity three-times greater than cocaine and only 5-fold less than GBR-12909. The structure-activity data for 7a-f suggests that these compounds may be binding at the dopamine transporter in a similar fashion to GBR 12909.  相似文献   

18.
Abstract: The inhibition by cocaine of the apparent initial rate of the transport of striatal dopamine was compared with inhibitions produced by cocaethylene, benztropine, GBR-12909, mazindol, and nomifensine. Rotating disk electrode voltammetry was used to measure the kinetically resolved, inwardly directed transport of dopamine in striatal suspensions. Evidence is presented that the primary site of action of cocaine may be at the external face of the transporter. Experiments to determine whether or not the other inhibitors bind to the same site as cocaine were conducted by comparing the inhibitions observed for each of the inhibitors alone with that observed when paired with cocaine. The resulting changes in the velocity of the transport of dopamine induced by the inhibitors were then fit to one of the previously developed models of inhibition by pairs of inhibitors affecting the kinetics of actively transporting systems: a single-site model, a two-site model in which the two binding sites for the inhibitors interact, and a two-site model in which the two binding sites for the two inhibitors act independently. Cocaine inhibited the transport of dopamine competitively with its structural analogues, cocaethylene and benztropine. The structurally dissimilar inhibitor, GBR-12909, was found also to be competitive with cocaine. In contrast, mazindol and nomifensine were found to bind to separate interactive sites when individually paired with cocaine. These results suggest that mazindol and nomifensine may interact with the kinetically active transporter for dopamine in a manner different from that of cocaine. Mazindol was tested and found to inhibit competitively the inward transport of dopamine into striatal suspensions. In contrast, our previous published findings show cocaine to be an uncompetitive inhibitor of the transport of striatal dopamine. These results suggest that cocaine inhibits inward transport of dopamine by reducing the intramembrane turnover of the transporter, whereas mazindol alters the kinetics of the recognition of dopamine by the transporter. Finally, the potential effects of these binding modes of inhibitors on synaptic chemical communication in dopaminergic systems were analyzed. The results of these analyses suggest that different effects on the extracellular concentrations of dopamine can result from the different patterns of inhibition, suggesting that different modulatory influences on pre- and postsynaptic receptor occupation can result from inhibition of the transport of dopamine.  相似文献   

19.
Substituted 3,4-diphenyl-1,3-thiazols were identified as a class of novel and potent monoamine transporter inhibitors through a 3-D pharmacophore search using a new pharmacophore model derived from mazindol. The most potent compound (13) has K(i) values of 24 and 23 nM in binding to dopamine transporter and inhibition of dopamine reuptake, respectively.  相似文献   

20.
Amphetamine (AMPH) and methamphetamine (METH) are members of a collection of phenethylamine psychostimulants that are commonly referred to collectively as "amphetamines." Amphetamines exert their effects, in part, by affecting neuronal dopamine transport. This review thus focuses on the effects of AMPH and METH on the plasmalemmal dopamine transporter and the vesicular monoamine transporter-2 in animal models with a particular emphasis on how these effects, which may vary for the different stereoisomers, contribute to persistent dopaminergic deficits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号