共查询到20条相似文献,搜索用时 15 毫秒
1.
Victoria V. Hargreaves Scarlet S. Shell Dan J. Mazur Martin T. Hess Richard D. Kolodner 《The Journal of biological chemistry》2010,285(12):9301-9310
Indirect evidence has suggested that the Msh2-Msh6 mispair-binding complex undergoes conformational changes upon binding of ATP and mispairs, resulting in the formation of Msh2-Msh6 sliding clamps and licensing the formation of Msh2-Msh6-Mlh1-Pms1 ternary complexes. Here, we have studied eight mutant Msh2-Msh6 complexes with defective responses to nucleotide binding and/or mispair binding and used them to study the conformational changes required for sliding clamp formation and ternary complex assembly. ATP binding to the Msh6 nucleotide-binding site results in a conformational change that allows binding of ATP to the Msh2 nucleotide-binding site, although ATP binding to the two nucleotide-binding sites appears to be uncoupled in some mutant complexes. The formation of Msh2-Msh6-Mlh1-Pms1 ternary complexes requires ATP binding to only the Msh6 nucleotide-binding site, whereas the formation of Msh2-Msh6 sliding clamps requires ATP binding to both the Msh2 and Msh6 nucleotide-binding sites. In addition, the properties of the different mutant complexes suggest that distinct conformational states mediated by communication between the Msh2 and Msh6 nucleotide-binding sites are required for the formation of ternary complexes and sliding clamps. 相似文献
2.
Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6 总被引:3,自引:0,他引:3
Gorman J Chowdhury A Surtees JA Shimada J Reichman DR Alani E Greene EC 《Molecular cell》2007,28(3):359-370
The ability of proteins to locate specific sites or structures among a vast excess of nonspecific DNA is a fundamental theme in biology. Yet the basic principles that govern these mechanisms remain poorly understood. For example, mismatch repair proteins must scan millions of base pairs to find rare biosynthetic errors, and they then must probe the surrounding region to identify the strand discrimination signals necessary to distinguish the parental and daughter strands. To determine how these proteins might function we used single-molecule optical microscopy to answer the following question: how does the mismatch repair complex Msh2-Msh6 interrogate undamaged DNA? Here we show that Msh2-Msh6 slides along DNA via one-dimensional diffusion. These findings indicate that interactions between Msh2-Msh6 and DNA are dominated by lateral movement of the protein along the helical axis and have implications for how MutS family members travel along DNA at different stages of the repair reaction. 相似文献
3.
DNA mismatch repair is thought to act through two subpathways involving the recognition of base-base and insertion/deletion mispairs by the Msh2-Msh6 heterodimer and the recognition of insertion/deletion mispairs by the Msh2-Msh3 heterodimer. Here, through genetic and biochemical approaches, we describe a previously unidentified role of the Msh2-Msh3 heterodimer in the recognition of base-base mispairs and the suppression of homology-mediated duplication and deletion mutations. Saccharomyces cerevisiae msh3 mutants did not show an increase in the rate of base substitution mutations by the CAN1 forward mutation assay compared to the rate for the wild type but did show an altered spectrum of base substitution mutations, including an increased accumulation of base pair changes from GC to CG and from AT to TA; msh3 mutants also accumulated homology-mediated duplication and deletion mutations. The mutation spectrum of mlh3 mutants paralleled that of msh3 mutants, suggesting that the Mlh1-Mlh3 heterodimer may also play a role in the repair of base-base mispairs and in the suppression of homology-mediated duplication and deletion mutations. Mispair binding analysis with purified Msh2-Msh3 and DNA substrates derived from CAN1 sequences found to be mutated in vivo demonstrated that Msh2-Msh3 exhibited robust binding to specific base-base mispairs that was consistent with functional mispair binding. 相似文献
4.
Mismatch repair proteins act during double-strand break repair (DSBR) to correct mismatches in heteroduplex DNA, to suppress recombination between divergent sequences, and to promote removal of nonhomologous DNA at DSB ends. We investigated yeast Msh2p association with recombination intermediates in vivo using chromatin immunoprecipitation. During DSBR involving nonhomologous ends, Msh2p localized strongly to recipient and donor sequences. Localization required Msh3p and was greatly reduced in rad50delta strains. Minimal localization of Msh2p was observed during fully homologous repair, but this was increased in rad52delta strains. These findings argue that Msh2p-Msh3p associates with intermediates early in DSBR to participate in the rejection of homeologous pairing and to stabilize nonhomologous tails for cleavage by Rad1p-Rad10p endonuclease. 相似文献
5.
Kumar C Piacente SC Sibert J Bukata AR O'Connor J Alani E Surtees JA 《Journal of molecular biology》2011,411(4):765-780
DNA mismatch repair (MMR) is a highly conserved mutation avoidance mechanism that corrects DNA polymerase misincorporation errors. In initial steps in MMR, Msh2-Msh6 binds mispairs and small insertion/deletion loops, and Msh2-Msh3 binds larger insertion/deletion loops. The msh2Δ1 mutation, which deletes the conserved DNA-binding domain I of Msh2, does not dramatically affect Msh2-Msh6-dependent repair. In contrast, msh2Δ1 mutants show strong defects in Msh2-Msh3 functions. Interestingly, several mutations identified in patients with hereditary non-polyposis colorectal cancer map to domain I of Msh2; none have been found in MSH3. To understand the role of Msh2 domain I in MMR, we examined the consequences of combining the msh2Δ1 mutation with mutations in two distinct regions of MSH6 and those that increase cellular mutational load (pol3-01 and rad27). These experiments reveal msh2Δ1-specific phenotypes in Msh2-Msh6 repair, with significant effects on mutation rates. In vitro assays demonstrate that msh2Δ1-Msh6 DNA binding is less specific for DNA mismatches and produces an altered footprint on a mismatch DNA substrate. Together, these results provide evidence that, in vivo, multiple factors insulate MMR from defects in domain I of Msh2 and provide insights into how mutations in Msh2 domain I may cause hereditary non-polyposis colorectal cancer. 相似文献
6.
Tomer G Buermeyer AB Nguyen MM Liskay RM 《The Journal of biological chemistry》2002,277(24):21801-21809
MutLalpha, a heterodimer composed of Mlh1 and Pms2, is the major MutL activity in mammalian DNA mismatch repair. Highly conserved motifs in the N termini of both subunits predict that the protein is an ATPase. To study the significance of these motifs to mismatch repair, we have expressed in insect cells wild type human MutLalpha and forms altered in conserved glutamic acid residues, predicted to catalyze ATP hydrolysis of Mlh1, Pms2, or both. Using an in vitro assay, we showed that MutLalpha proteins altered in either glutamic acid residue were each partially defective in mismatch repair, whereas the double mutant showed no detectable mismatch repair. Neither strand specificity nor directionality of repair was affected in the single mutant proteins. Limited proteolysis studies of MutLalpha demonstrated that both Mlh1 and Pms2 N-terminal domains undergo ATP-induced conformational changes, but the extent of the conformational change for Mlh1 was more apparent than for Pms2. Furthermore, Mlh1 was protected at lower ATP concentrations than Pms2, suggesting Mlh1 binds ATP with higher affinity. These findings imply that ATP hydrolysis is required for MutLalpha activity in mismatch repair and that this activity is associated with differential conformational changes in Mlh1 and Pms2. 相似文献
7.
Drotschmann K Hall MC Shcherbakova PV Wang H Erie DA Brownewell FR Kool ET Kunkel TA 《Biological chemistry》2002,383(6):969-975
We describe here our recent studies of the DNA binding properties of Msh2-Msh6 and Mlh1-Pms1, two protein complexes required to repair mismatches generated during DNA replication. Mismatched DNA binding by Msh2-Msh6 was probed by mutagenesis based on the crystal structure of the homologous bacterial MutS homodimer bound to DNA. The results suggest that several amino acid side chains inferred to interact with the DNA backbone near the mismatch are critical for repair activity. These contacts, which are different in Msh2 and Msh6, likely facilitate stacking and hydrogen bonding interactions between side chains in Msh6 and the mismatched base, thus stabilizing a kinked DNA conformation that permits subsequent repair steps coordinated by the Mlh1-Pms1 heterodimer. Mlh1-Pms1 also binds to DNA, but independently of a mismatch. Mlh1-Pms1 binds short DNA substrates with low affinity and with a slight preference for single-stranded DNA. It also binds longer duplex DNA molecules, but with a higher affinity indicative of cooperative binding. Indeed, imaging by atomic force microscopy reveals cooperative DNA binding and simultaneous interaction with two DNA duplexes. The novel DNA binding properties of Mlh1-Pms1 may be relevant to signal transduction during DNA mismatch repair and to recombination, meiosis and cellular responses to DNA damage. 相似文献
8.
Saccharomyces cerevisiae Msh2p and Msh6p ATPase Activities Are Both Required during Mismatch Repair 总被引:3,自引:0,他引:3 下载免费PDF全文
In the Saccharomyces cerevisiae Msh2p-Msh6p complex, mutations that were predicted to disrupt ATP binding, ATP hydrolysis, or both activities in each subunit were created. Mutations in either subunit resulted in a mismatch repair defect, and overexpression of either mutant subunit in a wild-type strain resulted in a dominant negative phenotype. Msh2p-Msh6p complexes bearing one or both mutant subunits were analyzed for binding to DNA containing base pair mismatches. None of the mutant complexes displayed a significant defect in mismatch binding; however, unlike wild-type protein, all mutant combinations continued to display mismatch binding specificity in the presence of ATP and did not display ATP-dependent conformational changes as measured by limited trypsin protease digestion. Both wild-type complex and complexes defective in the Msh2p ATPase displayed ATPase activities that were modulated by mismatch and homoduplex DNA substrates. Complexes defective in the Msh6p ATPase, however, displayed weak ATPase activities that were unaffected by the presence of DNA substrate. The results from these studies suggest that the Msh2p and Msh6p subunits of the Msh2p-Msh6p complex play important and coordinated roles in postmismatch recognition steps that involve ATP hydrolysis. Furthermore, our data support a model whereby Msh6p uses its ATP binding or hydrolysis activity to coordinate mismatch binding with additional mismatch repair components. 相似文献
9.
A previous study described four dominant msh6 mutations that interfere with both the Msh2-Msh6 and Msh2-Msh3 mismatch recognition complexes (Das Gupta, R., and Kolodner, R. D. (2000) Nat. Genet. 24, 53-56). Modeling predicted that two of the amino acid substitutions (G1067D and G1142D) interfere with protein-protein interactions at the ATP-binding site-associated dimer interface, one (S1036P) similarly interferes with protein-protein interactions and affects the Msh2 ATP-binding site, and one (H1096A) affects the Msh6 ATP-binding site. The ATPase activity of the Msh2-Msh6-G1067D and Msh2-Msh6-G1142D complexes was inhibited by GT, +A, and +AT mispairs, and these complexes showed increased binding to GT and +A mispairs in the presence of ATP. The ATPase activity of the Msh2-Msh6-S1036P complex was inhibited by a GT mispair, and it bound the GT mispair in the presence of ATP, whereas its interaction with insertion mispairs was unchanged compared with the wild-type complex. The ATPase activity of the Msh2-Msh6-H1096A complex was generally attenuated, and its mispair-binding behavior was unaffected. These results are in contrast to those obtained with the wild-type Msh2-Msh6 complex, which showed mispair-stimulated ATPase activity and ATP inhibition of mispair binding. These results indicate that the dominant msh6 mutations cause more stable binding to mispairs and suggest that there may be differences in how base base and insertion mispairs are recognized. 相似文献
10.
Van Komen S Reddy MS Krejci L Klein H Sung P 《The Journal of biological chemistry》2003,278(45):44331-44337
Saccharomyces cerevisiae SRS2 encodes an ATP-dependent DNA helicase that is needed for DNA damage checkpoint responses and that modulates the efficiency of homologous recombination. Interestingly, strains simultaneously mutated for SRS2 and a variety of DNA repair genes show low viability that can be overcome by inactivating homologous recombination, thus implicating inappropriate recombination as the cause of growth impairment in these mutants. Here, we report on our biochemical characterization of the ATPase and DNA helicase activities of Srs2. ATP hydrolysis by Srs2 occurs efficiently only in the presence of DNA, with ssDNA being considerably more effective than dsDNA in this regard. Using homopolymeric substrates, the minimal DNA length for activating ATP hydrolysis is found to be 5 nucleotides, but a length of 10 nucleotides is needed for maximal activation. In its helicase action, Srs2 prefers substrates with a 3' ss overhang, and approximately 10 bases of 3' overhanging DNA is needed for efficient targeting of Srs2 to the substrate. Even though a 3' overhang serves to target Srs2, under optimized conditions blunt-end DNA substrates are also dissociated by this protein. The ability of Srs2 to unwind helicase substrates with a long duplex region is enhanced by the inclusion of the single-strand DNA-binding factor replication protein A. 相似文献
11.
Mismatch recognition-coupled stabilization of Msh2-Msh6 in an ATP-bound state at the initiation of DNA repair 总被引:1,自引:0,他引:1
Mismatch repair proteins correct errors in DNA via an ATP-driven process. In eukaryotes, the Msh2-Msh6 complex recognizes base pair mismatches and small insertion/deletions in DNA and initiates repair. Both Msh2 and Msh6 proteins contain Walker ATP-binding motifs that are necessary for repair activity. To understand how these proteins couple ATP binding and hydrolysis to DNA binding/mismatch recognition, the ATPase activity of Saccharomyces cerevisiae Msh2-Msh6 was examined under pre-steady-state conditions. Acid-quench experiments revealed that in the absence of DNA, Msh2-Msh6 hydrolyzes ATP rapidly (burst rate = 3 s(-1) at 20 degrees C) and then undergoes a slow step in the pathway that limits catalytic turnover (k(cat) = 0.1 s(-1)). ATP is hydrolyzed similarly in the presence of fully matched duplex DNA; however, in the presence of a G:T mismatch or +T insertion-containing DNA, ATP hydrolysis is severely suppressed (rate = 0.1 s(-1)). Pulse-chase experiments revealed that Msh2-Msh6 binds ATP rapidly in the absence or in the presence of DNA (rate = 0.1 microM(-1) s(-1)), indicating that for the Msh2-Msh6.mismatched DNA complex, a step after ATP binding but before or at ATP hydrolysis is the rate-limiting step in the pathway. Thus, mismatch recognition is coupled to a dramatic increase in the residence time of ATP on Msh2-Msh6. This mismatch-induced, stable ATP-bound state of Msh2-Msh6 likely signals downstream events in the repair pathway. 相似文献
12.
Bacterial MutS homodimers contain two ATPase active sites that have non-equivalent functions in DNA mismatch repair. The homologous Msh2-Msh6 complex in eukaryotes also has intrinsic ATPase activity that is essential for mismatch repair. Here, we investigate differences in the two putative ATPase active sites by examining the properties of heterodimers containing alanine substituted for an invariant glutamic acid in the active site of either Msh2, Msh6 or both. Mutation rates in wild type versus Glu-->Ala mutant haploid yeast strains indicate that both ATPase active sites are essential for mismatch repair activity in vivo. The properties of purified heterodimers suggest that the ATPase active site in Msh6 binds ATP with higher affinity and hydrolyzes ATP faster and with higher efficiency than does the ATPase active site in Msh2. This suggests sequential action of the two ATPase active sites, in which ATP binds to Msh6 first to trigger downstream events in mismatch repair. 相似文献
13.
The Msh2-Msh6 heterodimer plays a key role in the repair of mispaired bases in DNA. Critical to its role in mismatch repair is the ATPase activity that resides within each subunit. Here we show that both subunits can simultaneously bind ATP and identify the Msh6 subunit as containing the high-affinity ATP binding site and Msh2 as containing a high-affinity ADP binding site. Stable binding of ATP to Msh6 causes decreased affinity of Msh2 for ADP, and binding to mispaired DNA stabilized the binding of ATP to Msh6. Our results support a model in which mispair binding encourages a dual-occupancy state with ATP bound to Msh6 and Msh2; this state supports hydrolysis-independent sliding along DNA. 相似文献
14.
15.
Owen BA Yang Z Lai M Gajec M Gajek M Badger JD Hayes JJ Edelmann W Kucherlapati R Wilson TM McMurray CT 《Nature structural & molecular biology》2005,12(8):663-670
Cells have evolved sophisticated DNA repair systems to correct damaged DNA. However, the human DNA mismatch repair protein Msh2-Msh3 is involved in the process of trinucleotide (CNG) DNA expansion rather than repair. Using purified protein and synthetic DNA substrates, we show that Msh2-Msh3 binds to CAG-hairpin DNA, a prime candidate for an expansion intermediate. CAG-hairpin binding inhibits the ATPase activity of Msh2-Msh3 and alters both nucleotide (ADP and ATP) affinity and binding interfaces between protein and DNA. These changes in Msh2-Msh3 function depend on the presence of A.A mispaired bases in the stem of the hairpin and on the hairpin DNA structure per se. These studies identify critical functional defects in the Msh2-Msh3-CAG hairpin complex that could misdirect the DNA repair process. 相似文献
16.
A role for DNA mismatch repair protein Msh2 in error-prone double-strand-break repair in mammalian chromosomes 总被引:2,自引:0,他引:2 下载免费PDF全文
We examined error-prone nonhomologous end joining (NHEJ) in Msh2-deficient and wild-type Chinese hamster ovary cell lines. A DNA substrate containing a thymidine kinase (tk) gene fused to a neomycin-resistance (neo) gene was stably integrated into cells. The fusion gene was rendered nonfunctional due to a 22-bp oligonucleotide insertion, which included the 18-bp I-SceI endonuclease recognition site, within the tk portion of the fusion gene. A double-strand break (DSB) was induced by transiently expressing the I-SceI endonuclease, and deletions or insertions that restored the tk-neo fusion gene's reading frame were recovered by selecting for G418-resistant colonies. Overall, neither the frequency of recovery of G418-resistant colonies nor the sizes of NHEJ-associated deletions were substantially different for the mutant vs. wild-type cell lines. However, we did observe greater usage of terminal microhomology among NHEJ events recovered from wild-type cells as compared to Msh2 mutants. Our results suggest that Msh2 influences error-prone NHEJ repair at the step of pairing of terminal DNA tails. We also report the recovery from both wild-type and Msh2-deficient cells of an unusual class of NHEJ events associated with multiple deletion intervals, and we discuss a possible mechanism for the generation of these "discontinuous deletions." 相似文献
17.
18.
Altering the conserved nucleotide binding motif in the Salmonella typhimurium MutS mismatch repair protein affects both its ATPase and mismatch binding activities. 总被引:15,自引:0,他引:15 下载免费PDF全文
The Salmonella typhimurium and Escherichia coli MutS protein is one of several methyl-directed mismatch repair proteins that act together to correct replication errors. MutS is homologous to the Streptococcus pneumoniae HexA mismatch repair protein and to the Duc1 and Rep1 proteins of human and mouse. Homology between the deduced amino acid sequence of both MutS and HexA, and the type A nucleotide binding site consensus sequence, suggested that ATP binding and hydrolysis play a role in their mismatch repair functions. We found that MutS does indeed weakly hydrolyze ATP to ADP and Pi, with a Km of 6 microM and kcat of 0.26. To show that this activity is intrinsic to MutS, we made a site-directed mutation, which resulted in the invariant lysine of the nucleotide binding consensus sequence being changed to an alanine. The mutant MutS allele was unable to complement a mutS::Tn10 mutation in vivo, and was dominant over wild type when present in high copy number. The purified mutant protein had reduced ATPase activity, with the Km affected more severely than the kcat. Like the wild type MutS protein, the mutant protein is able to bind heteroduplex DNA specifically, but the mutant protein does so with a reduced affinity. 相似文献
19.
The Saccharomyces cerevisiae Msh2 and Msh6 proteins form a complex that specifically binds to duplex oligonucleotides containing mismatched DNA base pairs. 总被引:2,自引:2,他引:2 下载免费PDF全文
E Alani 《Molecular and cellular biology》1996,16(10):5604-5615
The yeast Saccharomyces cerevisiae encodes six proteins, Msh1p to Msh6p, that show strong amino acid sequence similarity to MutS, a central component of the bacterial mutHLS mismatch repair system. Recent studies with humans and S. cerevisiae suggest that in eukaryotes, specific MutS homolog complexes that display unique DNA mismatch specificities exist. In this study, the S. cerevisiae 109-kDa Msh2 and 140-kDa Msh6 proteins were cooverexpressed in S. cerevisiae and shown to interact in an immunoprecipitation assay and by conventional chromatography. Deletion analysis of MSH2 indicated that the carboxy-terminal 114 amino acids of Msh2p are important for Msh6p interaction. Purified Msh2p-Msh6p selectively bound to duplex oligonucleotide substrates containing a G/T mismatch and a +1 insertion mismatch but did not show specific binding to +2 and +4 insertion mismatches. The mismatch binding specificity of the Msh2p-Msh6p complex, as measured by on-rate and off-rate binding studies, was abolished by ATP. Interestingly, palindromic substrates that are poorly repaired in vivo were specifically recognized by Msh2p-Msh6p; however, the binding of Msh2p-Msh6p to these substrates was not modulated by ATP. Taken together, these studies suggest that the repair of a base pair mismatch by the Msh2p-Msh6p complex is dependent on the ability of the Msh2p-Msh6p-DNA mismatch complex to use ATP hydrolysis to activate downstream events in mismatch repair. 相似文献
20.
Anjana Srivatsan Nikki Bowen Richard D. Kolodner 《The Journal of biological chemistry》2014,289(13):9352-9364
DNA mismatch repair is initiated by either the Msh2-Msh6 or the Msh2-Msh3 mispair recognition heterodimer. Here we optimized the expression and purification of Saccharomyces cerevisiae Msh2-Msh3 and performed a comparative study of Msh2-Msh3 and Msh2-Msh6 for mispair binding, sliding clamp formation, and Mlh1-Pms1 recruitment. Msh2-Msh3 formed sliding clamps and recruited Mlh1-Pms1 on +1, +2, +3, and +4 insertion/deletions and CC, AA, and possibly GG mispairs, whereas Msh2-Msh6 formed mispair-dependent sliding clamps and recruited Mlh1-Pms1 on 7 of the 8 possible base:base mispairs, the +1 insertion/deletion mispair, and to a low level on the +2 but not the +3 or +4 insertion/deletion mispairs and not on the CC mispair. The mispair specificity of sliding clamp formation and Mlh1-Pms1 recruitment but not mispair binding alone correlated best with genetic data on the mispair specificity of Msh2-Msh3- and Msh2-Msh6-dependent mismatch repair in vivo. Analysis of an Msh2-Msh6/Msh3 chimeric protein and mutant Msh2-Msh3 complexes showed that the nucleotide binding domain and communicating regions but not the mispair binding domain of Msh2-Msh3 are responsible for the extremely rapid dissociation of Msh2-Msh3 sliding clamps from DNA relative to that seen for Msh2-Msh6, and that amino acid residues predicted to stabilize Msh2-Msh3 interactions with bent, strand-separated mispair-containing DNA are more critical for the recognition of small +1 insertion/deletions than larger +4 insertion/deletions. 相似文献