首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactobacillus plantarum J23 was previously characterized as a bacteriocin-producer-strain when it was cocultured with other lactic acid bacteria. In this work, the genetic organization of the pln locus in the J23 strain was studied and compared with those of previously described L. plantarum C11, WCFS1 and NC8 strains. A new organization of the plantaricin locus was detected in the J23 strain. The sequenced fragment (20,266 bp) comprised plnJLR, plnMNOP, plnEFI, plnGHSTUVWXY, and plNC8IF-plNC8HK-plnD operons, as well as a new region that includes three new orfs (GenBank accession number DQ323671). When the J23 pln gene sequences were compared with those included in the GenBank database, the identity of the putative encoded proteins was in the range 67.1–100%. The regulatory system and the repertoire of putative bacteriocins of the J23 pln locus presented important differences with respect to the ones of C11, WCFS1 and NC8, such as the absence of plnK and the presence of a larger plnJ gene than the previously described for the other L. plantarum strains. The pln locus in L. plantarum strains seems to be a mosaic-like structure with different modules and reorganizations that presents highly conserved regions related to transport and bacteriocin maturation and variable regions related to regulation and bacteriocin production.  相似文献   

2.
Lactobacillus plantarum NC8 was shown to produce plantaricin NC8 (PLNC8), a recently purified and genetically characterized inducible class IIb bacteriocin, only when it was co-cultured with other gram-positive bacteria. Among 82 strains belonging to the genera Bacillus, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Staphylococcus, and Streptococcus, 41 were shown to induce PLNC8 production in L. plantarum NC8. There was apparently no relationship between the sensitivity of the strains and their ability to induce the bacteriocin, indicating that the inducer and sensitive phenotypes may not be linked. In some instances, induction was promoted by both living and heat-killed cells of the inducing bacteria. However, no PLNC8-inducing activity was found in the respective cell-free, pure culture supernatants. Inducer strains also promoted the production of a PLNC8-autoinducing activity by L. plantarum NC8, which was found only in the cell-free co-culture supernatants showing inhibitory activity. This PLNC8-autoinducing activity was diffusible, heat resistant, and of a proteinaceous nature, and was different from the bacteriocin itself. Taken together, the results suggest that the presence of specific gram-positive bacteria acts as an environmental stimulus activating both PLNC8 production by L. plantarum NC8 and a PLNC8-autoinducing activity, which in turn triggers or maintains bacteriocin production in the absence of inducing cells.  相似文献   

3.
Plantaricin 423, produced by Lactobacillus plantarum 423, was encapsulated in nanofibers that were produced by the electrospinning of 18% (w/v) polyethylene oxide (200 000 Da). The average diameter of the nanofibers was 288 nm. Plantaricin 423 activity decreased from 51 200 AU/ml to 25 600 AU/ml and from 204 800 AU/ml to 51 200 AU/ml after electrospinning, as determined against Lactobacillus sakei DSM 20017 and Enterococcus faecium HKLHS, respectively. Cells of L. plantarum 423 encapsulated in nanofibers decreased from 2.3 × 1010 cfu/ml before electrospinning to 4.7 × 108 cfu/ml thereafter. Cells entrapped in the nanofibers continued to produce plantaricin 423. This is the first report on the encapsulation of a bacteriocin and cells of L. plantarum in nanofibers. The method may be used to design a drug delivery system for bacteriocins and the encapsulation of probiotic lactic acid bacteria. The technology is currently being optimized.  相似文献   

4.
Six bacteriocinlike peptides (plantaricin A [PlnA], PlnE, PlnF, PlnJ, PlnK, and PlnN) produced by Lactobacillus plantarum C11 were detected by amino acid sequencing and mass spectrometry. Since purification to homogeneity was problematic, all six peptides were obtained by solid-phase peptide synthesis and were tested for bacteriocin activity. It was found that L. plantarum C11 produces two two-peptide bacteriocins (PlnEF and PlnJK); a strain-specific antagonistic activity was detected at nanomolar concentrations when PlnE and PlnF were combined and when PlnJ and PlnK were combined. Complementary peptides were at least 103 times more active when they were combined than when they were present individually, and optimal activity was obtained when the complementary peptides were present in approximately equal amounts. The interaction between complementary peptides was specific, since neither PlnE nor PlnF could complement PlnJ or PlnK, and none of these peptides could complement the peptides constituting the two-peptide bacteriocin lactococcin G. Interestingly, PlnA, which acts as an extracellular signal (pheromone) that triggers bacteriocin production, also possessed a strain-specific antagonistic activity. No bacteriocin activity could be detected for PlnN.  相似文献   

5.
Optimization of bacteriocin production by Lactobacillus plantarum LPCO10 was explored by an integral statistical approach. In a prospective series of experiments, glucose and NaCl concentrations in the culture medium, inoculum size, aeration of the culture, and growth temperature were statistically combined using an experimental 235-2 fractional factorial two-level design and tested for their influence on maximal bacteriocin production by L. plantarum LPCO10. After the values for the less-influential variables were fixed, NaCl concentration, inoculum size, and temperature were selected to study their optimal relationship for maximal bacteriocin production. This was achieved by a new experimental 323-1 fractional factorial three-level design which was subsequently used to build response surfaces and analyzed for both linear and quadratic effects. Results obtained indicated that the best conditions for bacteriocin production were shown with temperatures ranging from 22 to 27°C, salt concentration from 2.3 to 2.5%, and L. plantarum LPCO10 inoculum size ranging from 107.3 to 107.4 CFU/ml, fixing the initial glucose concentration at 2%, with no aeration of the culture. Under these optimal conditions, about 3.2 × 104 times more bacteriocin per liter of culture medium was obtained than that used to initially purify plantaricin S from L. plantarum LPCO10 to homogeneity. These results indicated the importance of this study in obtaining maximal production of bacteriocins from L. plantarum LPCO10 so that bacteriocins can be used as preservatives in canned foods.  相似文献   

6.
Plantaricin EF and JK are both two-peptide bacteriocins produced by Lactobacillus plantarum C11. The mechanism of plantaricin EF and JK action was studied on L. plantarum 965 cells. Both plantaricins form pores in the membranes of target cells and dissipate the transmembrane electrical potential (Deltapsi) and pH gradient (DeltapH). The plantaricin EF pores efficiently conduct small monovalent cations, but conductivity for anions is low or absent. Plantaricin JK pores show high conductivity for specific anions but low conductivity for cations. These data indicate that L. plantarum C11 produces bacteriocins with complementary ion selectivity, thereby ensuring efficient killing of target bacteria.  相似文献   

7.
The interaction of four different bacteriocins produced byKlebsiella pneumoniae andCitrobacter freundii strains with cells ofKlebsiella edwardsii var.edwardsii has been studied. All four bacteriocins have different activity spectra. The existence of multi-tolerant and multi-receptor-negative mutants supports the hypothesis that the specific receptor sites for these bacteriocins on sensitive bacteria have some components in common.Bacteriocins S6 and S8, produced byKlebsiella pneumoniae strains inhibit protein biosynthesis. Colicin A, produced byCitrobacter freundii inhibits all macromolecular synthesis, but pre-treatment of sensitive cells with colicin A had no influence on the production of ATP by oxidative phosphorylation in cell homogenates. Bacteriocin G196, also produced byCitrobacter freundii inhibits protein and RNA synthesis, with little effect on DNA synthesis. Homogenates of cells pre-treated with bacteriocin G196, show a substantial phosphorylating activity.The authors wish to thank Dr. W. de Vries for performing P:O measurements. The skilful technical assistance of Miss E. A. Spanjaerdt Speckman and Miss W. M. C. Kapteijn is gratefully acknowledged.The investigations were supported (in part) by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO).  相似文献   

8.
The production rate of a bacteriocin, produced by Lactobacillus plantarum TMW1.25 and previously named plantaricin1.25, was studied during pH-constant batch fermentations under various growth media conditions. The growth of L. plantarum and production of bacteriocin during the retardation phase were modelled, using 11 different empirical and mechanistic approaches. The optimal pH for bacteriocin production was 4.5. Among the different nitrogen sources tested, yeast extract was the most important, on the basis of the fact that the maximum growth rate decreased 16% without yeast extract, and only 7.2% or 8.1% without meat extract or peptone respectively. However, the change of nitrogen source did not have a significant effect on bacteriocin production. The progression of plantaricin1.25 production during the retardation phase and growth of L. plantarum TMW1.25 could be described by a structured model in which the bacteriocin concentration induces its own production. Among those models not implementing bacteriocin induction, only the one with an exponential increase of bacteriocin yield per unit biomass was suitable to describe bacteriocin production. Computer-aided evaluation of experimental data appears to be helpful in elucidating the relationship between the growth of lactic acid bacteria and bacteriocin production. Received: 22 May 1998 / Received last revision: 9 November 1998 / Accepted: 14 November 1998  相似文献   

9.
Genetic investigation and in silico analysis of plantaricin EFI (plnEFI) locus was performed in three indigenous isolates of Lactobacillus plantarum EL3, L28 and BL1. Amplification with plnEFI specific primers and production of ~ 10 KDa size protein suggested the existence of class II bacteriocins. The analysis demonstrated that the studied fragment included structural bacteriocin, immunity, partial transporter and potential regulatory encoding regions. Based on the results, there was one DNA polymorphic site in plnE as well as plnF of the studied sequences. One nucleotide substitution in plnE of BL1 isolate lead to replacement of Glycin with Valine. These two are of non-polar type which did not affect instability index of plnE protein. The only nucleotide variation in plnF of EL3 isolate did not change the amino acid sequence since the modified nucleotide constituted alternative codon of the original amino acid. The highest DNA polymorphism occurred in the region with immunity function which in BL1 resulted in the conversion of start codon to amino acid codon. In the partial transporter sequence, one variable nucleotide site caused amino acid replacement in all the isolates which elevated stability of N-terminal domain in the transporter protein compared to nominated reference isolate L. plantarum C11. The region with possible regulatory function was identical in all three isolates. © 2018 American Institute of Chemical Engineers Biotechnol Progress, 35: e2773, 2019.  相似文献   

10.
In this paper, we investigated the production of plantaricin 423, produced by Lactobacillus plantarum 423 in both MRS broth and partially deproteinated MRS with Amberlite XAD-1180. Improved production of plantaricin 423 was observed in MRS broth pre-treated with Amberlite XAD-1180. Precipitation of plantaricin with ammonium sulphate, followed by gel filtration chromatography and subsequent analysis on a modified tricine-SDS PAGE, significantly increased the yield and purity of plantaricin 423. This paper describes a novel method to partially deproteinate growth medium in order to facilitate bacteriocin purification.  相似文献   

11.
The bacteriocin-producing Lactobacillus plantarum BFE 5092 was assessed for its potential as a protective culture in the biopreservation of aerobically stored turkey meat. This strain produces three bacteriocins, i.e. plantaricins EF, JK and N. The absolute expression of Lactobacillus plantarum BFE 5092 16S rRNA housekeeping gene, as well as l-ldh, plnEF and plnG genes as determined by quantitative, real-time-PCR, revealed that these genes were expressed to similar levels when the strain was grown at 8 and 30 °C in MRS broth. On turkey meat, Lactobacillus plantarum BFE 5092 did not grow but survived, as indicated by similar viable cell numbers during a 9-day storage period at 8 °C. When inoculated at 1 × 107 CFU/g on the turkey meat and subsequently stored at 10 °C, the culture did again not show good growth. Lactobacillus plantarum BFE 5092 could not inhibit the growth of naturally occurring listeriae or Gram-negative bacteria on the turkey meat at 10 °C, or that of Listeria monocytogenes when it was co-inoculated at a level of 1 × 105 CFU/g. Gene expression analyses showed that the bacteriocin genes were expressed on turkey meat stored at 10 °C. Moreover, the investigation into the absolute expression of the three plantaricin genes of Lactobacillus plantarum BFE 5092 in co-culture with Listeria monocytogenes on turkey meat by qRT-PCR showed that the plantaricin genes were indeed expressed during the low-temperature storage condition. The Lactobacillus plantarum BFE 5092 strain overall could not effectively inhibit L. monocytogenes and therefore it would not make a suitable protective culture for biopreservation of turkey meat stored aerobically at low temperature.  相似文献   

12.

In Lactobacillus plantarum C11, bacteriocin production has previously been shown to be an inducible process, in which a secreted peptide, produced by the host itself, is involved. The inducing factor, designated plantaricin A (PlnA), is a bacteriocin-like peptide encoded by a gene (plnA) located on the same operon as the genes for a two-component regulatory system (plnBCD). This system consists of a histidine kinase (PlnB) and two response regulators (PlnC,D), and belongs to a recently defined subfamily of two-component regulatory systems, which are activated by secreted peptide pheromones through a quorum-sensing mechanism. We show here that the two response regulators PlnC and PlnD bind specifically to imperfect direct repeats found within the adjacent promoter of the plnABCD operon, and to similar sequences found within the promoter regions of two nearby operons containing bacteriocin structural genes (plnEFI and plnJKLR). Binding of PlnC and PlnD was increased two to three fold in the presence of acetyl phosphate. The results suggest that bacteriocin synthesis in L. plantarum C11 is regulated by the DNA-binding activity of the two response regulators PlnC and PlnD.

  相似文献   

13.
Lactobacillus plantarum JJ18 and Lactobacillus plantarum subsp. plantarum JJ60, probiotics from idli batter, produce bacteriocins JJ18 and JJ60 having a wide spectrum of activity. After optimising the environmental conditions for bacteriocin production the effect of various media components was determined. Maximum bacteriocin production was observed in MRS broth, pH 6.4 at 37 °C after 36 h. Tryptone (as nitrogen source) and glucose (as carbon source) are required for optimal production of bacteriocins JJ18 and JJ60. Activity was not affected by surfactants like Triton X-100, Tween 80 and Tween 20 or by treatment with NaCl, urea and EDTA. Protease treatment resulted in complete loss of activity of the partially purified bacteriocins JJ18 and JJ60, while lipase and α-amylase had no effect, indicating that the bacteriocin is a simple protein. Tris tricine SDS-PAGE electrophoresis depicted a single band of less than 3.5 kDa. However, the strain Lactobacillus plantarum JJ18 was inhibited by bacteriocin JJ60 and Lactobacillus plantarum JJ60 by bacteriocin JJ18, whereas no inhibition was observed against the respective producer strains, indicating that the two bacteriocins are different. The bacteriocins remained active over a wide range of pH and temperature. The bacteriocins were able to adsorb onto producer and target cells, Lactobacillus plantarum and Listeria monocytogenes and differentially in the presence of various surfactants, salts and solvents. A bactericidal mode of action was observed against Listeria monocytogenes. Given their wide spectrum of activity against various pathogens, the bacteriocins JJ18 and JJ60 can be applied as bio-preservatives in the food industry.  相似文献   

14.
In Lactobacillus plantarum C11, bacteriocin production has previously been shown to be an inducible process, in which a secreted peptide, produced by the host itself, is involved. The inducing factor, designated plantaricin A (PlnA), is a bacteriocin-like peptide encoded by a gene (plnA) located on the same operon as the genes for a two-component regulatory system (plnBCD). This system consists of a histidine kinase (PlnB) and two response regulators (PlnC,D), and belongs to a recently defined subfamily of two-component regulatory systems, which are activated by secreted peptide pheromones through a quorum-sensing mechanism. We show here that the two response regulators PlnC and PlnD bind specifically to imperfect direct repeats found within the adjacent promoter of the plnABCD operon, and to similar sequences found within the promoter regions of two nearby operons containing bacteriocin structural genes (plnEFI and plnJKLR). Binding of PlnC and PlnD was increased two to three fold in the presence of acetyl phosphate. The results suggest that bacteriocin synthesis in L. plantarum C11 is regulated by the DNA-binding activity of the two response regulators PlnC and PlnD. Received: 21 January 1998 / Accepted: 28 April 1998  相似文献   

15.
Boza is a low-pH and low-alcohol cereal-based beverage produced in the Balkan Peninsula. From a total population of 9 × 106 colony-forming units ml−1, four isolates (JW3BZ, JW6BZ, JW11BZ, and JW15BZ) produced bacteriocins active against a broad spectrum of Gram-positive bacteria. Bacteriocin JW15BZ inhibited the growth of Klebsiella pneumoniae. The producer strains were identified as Lactobacillus plantarum (strains JW3BZ and JW6BZ) and L. fermentum (strains JW11BZ and JW15BZ). The spectrum of antimicrobial activity, characteristics, and mode of action of these bacteriocins were compared with bacteriocins previously described for lactic-acid bacteria isolated from boza.  相似文献   

16.
Lactobacillus gasseri LF221, an isolate from the feces of a child, produces two bacteriocins. Standard procedures for molecular techniques were used to locate, clone and sequence the fragments of LF221 chromosomal DNA carrying the acidocin LF221 A and B structural genes, respectively. Sequencing analysis revealed the gene of acidocin LF221 A to be an open reading frame encoding a protein composed of 69 amino acids, including a 16-amino-acid N-terminal extension. The acidocin LF221 B gene was found to encode a 65-amino-acid bacteriocin precursor with a 17-amino-acid N-terminal leader peptide. DNA homology searches showed similarities of acidocin LF221 A to brochocin B, lactococcin N and thermophilin B, whereas acidocin LF221 B exhibited some homology to lactacin F and was virtually identical to gassericin X. The peptides encoded by orfA1 and orfB3 showed characteristics of class II bacteriocins and are suspected to be the complementary peptides of acidocin A and B, respectively. orfA3 and orfB5 are proposed to encode putative immunity proteins for the acidocins. Acidocin LF221 A and acidocin LF221 B are predicted to be members of the two-component class II bacteriocins, where acidocin LF221 A appears to be a novel bacteriocin. L. gasseri LF221 is being developed as a potential probiotic strain and a food/feed preservative. Detailed characterization of its acidocins is an important piece of background information useful in applying the strain into human or animal consumption. The genetic information on both acidocins also enables tracking of the LF221 strain in mixed populations and complex environments.  相似文献   

17.
Lactobacillus plantarum 24, isolated from marula fruit grows at pH 4.0 and tolerates acid levels and bile concentrations normally present in the human gastro-intestinal tract. Wistar rats that have been administered L. plantarum 24 showed no signs of discomfort or abnormal behavior. Tissue samples from the liver, spleen and intestine appeared normal. Furthermore, strain 24 harbors the genes encoding plantaricins A, F, and NC8α, a gene encoding immunity to plantaricin, and an ABC transporter similar in sequence to that reported for plantaricin G. At least one antimicrobial peptide within the size range of plantaricins A, F, and NC8α has been detected on a tricine-SDS–PAGE gel. Little is known about the microbial population in marula. This is the first report of a L. plantarum strain from marula fruit with bacteriocin genes and probiotic properties.  相似文献   

18.
Plantaricins are small bioactive peptides produced by Lactobacillus plantarum strains that exhibit significant antimicrobial activity against closely-related Gram-positive bacteria, including food spoilage organisms. In comparison, bacteriocins including plantaricins, are usually less effective against Gram-negative organisms. In this study, we demonstrate that heterologously expressed and purified plantaricins, Pln E, -F, -J, and -K when tested against Gram negative model organism Escherichia coli K-12 were highly effective under certain conditions. The apparent tolerance of Gram-negative members to these peptides has been explained on the basis of the presence of the outer membrane (OM) that acts as a protective barrier. We have shown that agents and/or conditions that destabilize OM of E. coli K-12, make it susceptible to plantaricin peptides. In order to further strengthen this conclusion, an OM lipoprotein-defective lpp mutant strain of E. coli K-12 was also studied and compared. A significant loss of cell viability both in terms of CFU/ml as well as with live–dead dual staining combined with flow cytometry, could be demonstrated with the lpp mutant in comparison to the wild type strain. The results indicate that plantaricins can inhibit Gram-negative bacteria if the outer-membrane is weakened and it can be used in preservation of food with the help of some food-grade chelating agents.  相似文献   

19.
Rekhif  N.  Atrih  A.  Lefebvre  G. 《Current microbiology》1994,28(4):237-241
The frequency of spontaneous mutants ofListeria monocytogenes ATTC 15313 resistant to the inhibitory action of three bacteriocins of lactic acid bacteria previously discovered in our laboratory (mesenterocin 52, curvaticin 13, and plantaricin C19) was estimated to be in the range of 10–3 to 10–4. The phenotypic character of resistance was stable during several generations in the absence of contact with bacteriocins. The resistance was not due to the inactivation of bacteriocins nor to a modification of their adsorption on the target cells. The selected mutants resistant to one of the bacteriocin cited above showed a cross-resistance to the two other bacteriocins, but not to nisin.  相似文献   

20.
Bacteriocin production was tested in 36Klebsiella and 3Enterobacter aerogenes strains. Bacteriocins produced byK. pneumoniae were found to be active on most strains ofK. edwardsi, K. aerogenes, K. rhinoscleromatis andE. aerogenes. The bacteriocin produced byE. aerogenes 37 is also active onK. pneumoniae andK. ozaenae. The bacteriocins produced byK. rhinoscleromatis, K. edwardsi andK. aerogenes are active on only a few strains. The activity spectra of the bacteriocins of a number of strains were similar. The method of classification used for colicins could not be applied to these bacteriocins as mutants resistant to one bacteriocin were nearly always resistant to all other bacteriocins. One mutant, though resistant, still adsorbed the bacteriocin to which it was resistant and it is very likely that the same applies for all other resistant mutants. The hypothesis is made that allKlebsiella bacteriocins have the same biochemical target, or more likely, possess a common transmission mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号