首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IL-2 receptor signaling through the Shb adapter protein in T and NK cells   总被引:5,自引:0,他引:5  
We have investigated the effect of hypoxia on the excitatory synaptic transmission in the substantia gelatinosa neurons using perforated-patch-clamp configuration. Brief periods of hypoxia induced a depression in the evoked excitatory postsynaptic current (eEPSC) amplitude. The hypoxia-induced depression of eEPSC was not observed in the presence of theophylline, a nonselective adenosine receptor antagonist, and DPCPX, a selective adenosine receptor A1 antagonist. Application of adenosine (100 microM) also depressed eEPSC in a similar way as with hypoxia. This adenosine-induced depression of eEPSC was inhibited by DPCPX. Hypoxia and exogenous adenosine decreased the frequency of the spontaneous excitatory postsynaptic current (sEPSC) but not the amplitude of sEPSC and increased the paired-pulse ratio. From these results, it is suggested that acute hypoxia depresses the excitatory synaptic transmission by activating the presynaptic adenosine A1 receptor.  相似文献   

2.
Several studies have shown that capsaicin could effectively regulate excitatory synaptic transmission in the central nervous system, but the assumption that this effect is mediated by TRPV1 vanilloid receptors (TRPV1Rs) has not been tested directly. To provide direct evidence, we compared the effect of capsaicin on excitatory synapses in wild type mice and TRPV1R knockouts. Using whole-cell patch-clamp techniques, excitatory postsynaptic currents (EPSCs) were recorded in granule cells of the dentate gyrus. First, we investigated the effect of capsaicin on EPSCs evoked by focal stimulation of fibers in the stratum moleculare. Bath application of 10 microM capsaicin reduced the amplitude of evoked EPSCs both in wild type and TRPV1R knockout animals to a similar extent. Treatment of the slices with the TRPV1R antagonist capsazepine (10 microM) alone, or together with the agonist capsaicin, also caused a decrease in the EPSC amplitude both in wild type and TRPV1R knockout animals. Both drugs appeared to affect the efficacy of excitatory synapses at presynaptic sites, since a significant increase was observed in paired-pulse ratio of EPSC amplitude after drug treatment. Next we examined the effect of capsaicin on spontaneously occurring EPSCs. This prototypic vanilloid ligand increased the frequency of events without changing their amplitude in wild type mice. Similar enhancement in the frequency without altering the amplitude of spontaneous EPSCs was observed in TRPV1R knockout mice. These data strongly argue against the hypothesis that capsaicin modulates excitatory synaptic transmission by activating TRPV1Rs, at least in the hippocampal network.  相似文献   

3.
ABSTRACT: BACKGROUND: 5-hydroxytryptamine (5-HT) is one of the major neurotransmitters widely distributed in the CNS. Several 5-HT receptor subtypes have been identified in the spinal dorsal horn which act on both pre- and postsynaptic sites of excitatory and inhibitory neurons. However, the receptor subtypes and sites of actions as well as underlying mechanism are not clarified rigorously. Several electrophysiological studies have been performed to investigate the effects of 5-HT on excitatory transmission in substantia gelatinosa (SG) of the spinal cord. In the present study, to understand the effects of 5-HT on the inhibitory synaptic transmission and to identify receptor subtypes, the blind whole cell recordings were performed from SG neurons of rat spinal cord slices. RESULTS: Bath applied 5-HT (50 microM) increased the frequency but not amplitudes of spontaneous inhibitory postsynaptic currents (sIPSCs) in 58% of neurons, and both amplitude and frequency in 23 % of neurons. The frequencies of GABAergic and glycinergic mIPSCs were both enhanced. TTX (0.5 microM) had no effect on the increasing frequency, while the enhancement of amplitude of IPSCs was eliminated. Evoked-IPSCs (eIPSCs) induced by focal stimulation near the recording neurons in the presence of CNQX and APV were enhanced in both amplitude by 5-HT. In the presence of Ba2+ (1 mM), a potassium channel blocker, 5-HT had no effect on both frequency and amplitude. A 5-HT2Areceptor agonist, TCB-2 mimicked the 5-HT effect, and ketanserin, an antagonist of 5-HT2A receptor, inhibited the effect of 5-HT partially and TCB-2 almost completely. A 5-HT2C receptor agonist WAY 161503 mimicked the 5-HT effect and this effect was blocked by a 5-HT2C receptor antagonist, N-desmethylclozapine. The amplitude of sIPSCs were unaffected by both agonists. A 5-HT3 receptor agonist mCPBG enhanced both amplitude and frequency of sIPSCs. This effect was blocked by a 5-HT3 receptor antagonist ICS-205,930. The perfusion of 5-HT2B receptor agonist had no effect on sIPSCs. CONCLUSIONS: Our results demonstrated that 5-HT modulated the inhibitory transmission in SG by the activation of 5-HT2A and 5-HT2C receptors subtypes located predominantly at inhibitory interneuron terminals, and 5-HT3 receptors located at inhibitory interneuron terminals and soma-dendrites, consequently enhanced both frequency and amplitude.  相似文献   

4.
Serotonin (5-HT) is considered to play a significant role in anxiety-related behaviors in animals through actions on the amygdaloid complex. To evaluate this role from the point of neurotransmitter release regulation, nystatin-perforated patch recording was employed on mechanically dissociated basolateral amygdala neurons containing functional synaptic boutons. GABAAergic miniature inhibitory postsynaptic currents (mIPSCs) were pharmacologically separated. In subsets of neurons, 8-OH-DPAT (1 microM), a specific 5-HT1A agonist, continuously inhibited mIPSC frequency without effects on mIPSC amplitude. By comparison, mCPBG (1 microM), a specific 5-HT3 agonist, transiently facilitated mIPSC frequency without effects on mIPSC amplitude. Together these results suggest the presynaptic existence of both 5-HT receptor subtypes. In these neurons, application of 8-OH-DPAT and its subsequent removal still suppressed mCPBG-induced responses on mIPSCs. This suppression was not caused by a reduction of presynaptic 5-HT3 receptor affinities to mCPBG and was completely eliminated by pretreatment with N-ethylmaleimide, a pertussis toxin sensitive GTP-binding protein inhibitor. In the neurons exhibiting presynaptic modulation with mCPBG but not 8-OH-DPAT, such suppression by exposure to 8-OH-DPAT was not observed. In conclusion, activation of presynaptic 5-HT1A receptors inhibited mIPSC frequency and at the same time suppressed, via a G-protein-mediated mechanism, the transient facilitation of mIPSC frequency produced by activation of presynaptic 5-HT3 receptors.  相似文献   

5.
Adenosine has been implicated as a modulator of retinohypothalamic neurotransmission in the suprachiasmatic nucleus (SCN), the seat of the light-entrainable circadian clock in mammals. Intracellular recordings were made from SCN neurons in slices of hamster hypothalamus using the in situ whole-cell patch clamp method. A monosynaptic, glutamatergic, excitatory postsynaptic current (EPSC) was evoked by stimulation of the optic nerve. The EPSC was blocked by bath application of the adenosine A(1) receptor agonist cyclohexyladenosine (CHA) in a dose-dependent manner with a half-maximal concentration of 1.7 microM. The block of EPSC amplitude by CHA was antagonized by concurrent application of the adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). The adenosine A(2A) receptor agonist CGS21680 was ineffective in attenuating the EPSC at concentrations up to 50 microM. Trains of four consecutive stimuli at 25 ms intervals usually depressed the EPSC amplitude. However, after application of CHA, consecutive responses displayed facilitation of EPSC amplitude. The induction of facilitation by CHA suggested a presynaptic mechanism of action. After application of CHA, the frequency of spontaneous EPSCs declined substantially, while their amplitude distribution was unchanged or slightly reduced, again suggesting a mainly presynaptic site of action for CHA. Application of glutamate by brief pressure ejection evoked a long-lasting inward current that was unaffected by CHA at concentrations sufficient to reduce the evoked EPSC amplitude substantially (1 to 5 microM), suggesting that postsynaptic glutamate receptor-gated currents were unaffected by the drug. Taken together, these observations indicate that CHA inhibits optic nerve-evoked EPSCs in SCN neurons by a predominantly presynaptic mechanism.  相似文献   

6.
This study used whole cell patch clamp recordings in rat hypothalamic slice preparations to evaluate the effects of GABA(B) receptor activation on GABA(A)-mediated inhibitory postsynaptic currents (IPSCs) in paraventricular nucleus magnocellular neurons evoked by electrical stimulation in the suprachiasmatic nucleus (SCN). Baclofen induced a dose-dependent (1-10 microM) and reversible reduction in SCN-evoked IPSC amplitude (11/11 cells), blockable with 2-hydroxysaclofen (300 microM; 3/3 cells). IPSCs displayed paired-pulse depression (PPD), attenuated by both baclofen and 2-hydroxysaclofen, but neither altered resting membrane conductances or IPSC time constants of decay. Baclofen induced a significant dose-dependent (1-100 microM) reduction in frequency, but not amplitude, of spontaneous IPSCs and miniature IPSCs, reversible with 2-hydroxysaclofen pretreatment. Baclofen effects and PPD persisted in slices pretreated with pertussis toxin (PTX) and N-ethylmaleimide, implying that these GABA(B) receptors are coupled to PTX-insensitive G proteins. Responses were unaltered by barium (2 mM) or nimodipine, ruling out involvement of K(+) channels and L-type Ca(2+) channels. Thus pre- and postsynaptic GABA(B) and GABA(A) receptors participate in SCN entrainment of paraventricular neurosecretory neurons.  相似文献   

7.
We have measured parameters of identified excitatory postsynaptic potentials from flight interneurons in immature and mature adult locusts (Locusta migratoria) to determine whether parameters change during imaginal maturation. The presynaptic cell was the forewing stretch receptor. The postsynaptic cells were flight interneurons that were filled with Lucifer Yellow and identified by their morphology. Excitatory postsynaptic potentials from different postsynaptic cells had characteristic amplitudes. The amplitude, time to peak, duration at half amplitude and the area above the baseline of excitatory postsynaptic potentials did not change with maturation. The latency from action potentials in the forewing stretch receptor to onset of excitatory postsynaptic potentials decreased significantly with maturation. We suggest this was due to an increase in conduction velocity of the forewing stretch receptor. We also measured morphological parameters of the postsynaptic cells and found that they increased in size with maturation. Growth of the postsynaptic cell should cause excitatory postsynaptic potential amplitude to decrease as a result of a decrease in input resistance, however, this was not the case. Excitatory postsynaptic potentials in immature locusts depress more than in mature locusts at high frequencies of presynaptic action potentials. This difference in frequency sensitivity of the immature excitatory postsynaptic potentials may account in part for maturation of the locust flight rhythm generator.Abbreviations EPSP excitatory postsynaptic potential - fSR forewing stretch receptor - IPSP inhibitory postsynaptic potential - SR stretch receptor  相似文献   

8.
Brain stem preparations from adult turtles were used to determine how bath-applied serotonin (5-HT) alters respiration-related hypoglossal activity in a mature vertebrate. 5-HT (5-20 microM) reversibly decreased integrated burst amplitude by approximately 45% (P < 0.05); burst frequency decreased in a dose-dependent manner with 20 microM abolishing bursts in 9 of 13 preparations (P < 0.05). These 5-HT-dependent effects were mimicked by application of a 5-HT(1A) agonist, but not a 5-HT(1B) agonist, and were abolished by the broad-spectrum 5-HT antagonist, methiothepin. During 5-HT (20 microM) washout, frequency rebounded to levels above the original baseline for 40 min (P < 0.05) and remained above baseline for 2 h. A 5-HT(3) antagonist (tropesitron) blocked the post-5-HT rebound and persistent frequency increase. A 5-HT(3) agonist (phenylbiguanide) increased frequency during and after bath application (P < 0.05). When phenylbiguanide was applied to the brain stem of brain stem/spinal cord preparations, there was a persistent frequency increase (P < 0.05), but neither spinal-expiratory nor -inspiratory burst amplitude were altered. The 5-HT(3) receptor-dependent persistent frequency increase represents a unique model of plasticity in vertebrate rhythm generation.  相似文献   

9.
The role of group III metabotropic glutamate receptors (mGluRs) in photoreceptor-H1 horizontal cell (HC) synaptic transmission was investigated by analyzing the rate of occurrence and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) in H1 HCs uncoupled by dopamine in carp retinal slices. Red light steps or the application of 100 microM cobalt reduced the sEPSC rate without affecting their peak amplitude, which is consistent with hyperpolarization or the suppression of Ca(2+) entry into cone synaptic terminals reducing vesicular transmitter release. Conversely, postsynaptic blockade of H1 HC AMPA receptors by 500 nM CNQX reduced the amplitude of sEPSCs without affecting their rate. This analysis of sEPSCs represents a novel methodology for distinguishing between presynaptic and postsynaptic sites of action. The selective agonist for group III mGluRs, l-2-amino-4-phosphonobutyrate (L-APB or L-AP4; 20 microM), reduced the sEPSC rate with a slight reduction in amplitude, which is consistent with a presynaptic action on cone synaptic terminals to reduce transmitter release. During L-APB application, recovery of sEPSC rate occurred with 500 microM (s)-2-methyl-2-amino-4-phosphonobutyrate (MAP4), a selective antagonist of group III mGluR, and with 200 microM 4-aminopyridine (4-AP), a blocker of voltage-dependent potassium channels. Whole-cell recordings from cones in the retinal slice showed no effect of L-APB on voltage-activated Ca(2+) conductance. These results suggest that the activation of group III mGluRs suppresses transmitter release from cone presynaptic terminals via a 4-AP-sensitive pathway. Negative feedback, operating via mGluR autoreceptors, may limit excessive glutamate release from cone synaptic terminals.  相似文献   

10.
The present study examined the actions of a GABA(B)-receptor agonist, baclofen, on synaptic transmission in rat ventrolateral periaqueductal gray (PAG) neurons of brainstem slices by using whole-cell voltage-clamp recordings. Baclofen (10 microM) induced a slow outward current (peak amplitude: 30.1+/-3.1pA, n=13) at -70mV, which persisted in the presence of tetrodotoxin (0.5 microM) and was diminished in the presence of postsynaptic intracellular K(+)-channel blockers (Cs(+) and TEA) and GDP-beta-S, indicating a direct postsynaptic depression mediated by K(+) channels and G proteins. Baclofen (10 microM) also decreased the frequency of both glutamatergic spontaneous EPSC (by 36+/-7%, n=11) and GABAergic spontaneous IPSC (by 37+/-12%, n=6) without changes in their amplitudes, indicating its presynaptic inhibitions. Taken together, the activation of postsynaptic GABA(B) receptors inhibits ventrolateral PAG neurons directly. At the same time, activating presynaptic GABA(B) receptors on glutamatergic and GABAergic nerve terminals inhibits glutamate and GABA release, respectively. The overall effects might influence an output of ventrolateral PAG neurons that build up the descending pain control system to the spinal dorsal horn.  相似文献   

11.
The role of group II metabotropic glutamate receptors (mGluRs) in modulation of inhibitory synaptic activity was studied by intracellular recording of motoneuron miniature inhibitory spontaneous postsynaptic potentials (mIPSPs) in isolated lumbar segments of the turtle spinal cord in the medium containing TTX, CNQX, AP-5. The ratio of mIPSPs with fast and slow kinetics (83% vs 17%) is in accordance with the ratio shown for glycine- and GABA-mediated IPSP or IPSCs (Jones et al., 1988; Gao et al., 2001). In the majority of investigated motoneurons, the selective group II mGluRs antagonist EGLU (100-250 microM) increased the frequency of mIPSPs by 106.6 +/- 74.4% (n = 9) without affecting average amplitude, suggesting a presynaptic site of mGluRs action providing for the transmitter release reduction. The analysis of EGLU action on mIPSPs with different time courses (selection by half-width) showed that the frequency of inhancement of miniature inhibitory activity is caused by predominantly short-duration mIPSPs (ba 84.0 +/- 18.2%; n = 9), which are probably glycineergic. However, EGLU did not influence the mIPSPs frequency under condition of GABA-receptor blockade by bicuculline (20 microM). This fact suggest that group II mGluRs could modulate glycinergic transmission to the turtle spinal motoneurons on the necessary condition that GABergic system is active.  相似文献   

12.
We examined the effects of TRPV1 agonists olvanil and piperine on glutamatergic spontaneous excitatory transmission in the substantia gelatinosa (SG) neurons of adult rat spinal cord slices with the whole-cell patch-clamp technique. Bath-applied olvanil did not affect the frequency and amplitude of spontaneous excitatory postsynaptic current (sEPSC), and unchanged holding currents at −70 mV. On the other hand, superfusing piperine reversibly and concentration-dependently increased sEPSC frequency (half-maximal effective concentration: 52.3 μM) with a minimal increase in its amplitude. This sEPSC frequency increase was almost repetitive at an interval of more than 20 min. Piperine at a high concentration produced an inward current in some neurons. The facilitatory effect of piperine was blocked by TRPV1 antagonist capsazepine. It is concluded that piperine but not olvanil activates TRPV1 channels in the central terminals of primary-afferent neurons, resulting in an increase in the spontaneous release of l-glutamate onto SG neurons.  相似文献   

13.
The electrophysiological effects of phencyclidine (PCP) were measured intracellularly in guinea pig hippocampal CA1 neurons in vitro. At all doses tested (0.2 microM - 10 mM), PCP increased the width of action potentials (APs). Doses of 10 microM and higher were associated with decreased action potential amplitude. PCP decreased inhibitory postsynaptic potentials and excitatory postsynaptic potentials but did not alter responses to focally applied GABA. At the lowest dose (0.2 microM), PCP decreased the input resistance (Rin), while at all other doses Rin was increased. PCP decreased post-spike train afterhyperpolarizations at low and medium doses. PCP effects persisted in low calcium medium and also in medium containing 10(-6) M tetrodotoxin. It is concluded that in these central neurons, PCP primarily blocks potassium conductances at all doses and, at anesthetic doses, depresses sodium-dependent spikes.  相似文献   

14.
The effects of nicardipine, a dihydropyridine Ca2(+)-channel antagonist, on neuromuscular transmission and impulse-evoked release of acetylcholine were compared with those of nifedipine. In the isolated mouse phrenic nerve diaphragm, nicardipine (50 microM), but not nifedipine (100 microM), induced neuromuscular block, fade of tetanic contraction, and dropout or all-or-none block of end-plate potentials. Nicardipine had no significant effect on the resting membrane potential and the amplitude of miniature end-plate potentials but increased the frequency and caused the appearance of large size miniature potentials. The quantal contents of evoked end-plate potentials were increased. In the presence of tubocurarine, however, nicardipine depressed the amplitude of end-plate potentials. The compound nerve action potential was also decreased. It is concluded that nicardipine blocks neuromuscular transmission by acting on Na+ channels and inhibits axonal conduction. Nicardipine appeared to affect the evoked release of acetylcholine by dual mechanisms, i.e., an enhancement presumably by an agonist action on Ca2+ channels, like Bay K 8644 and nifedipine, and inhibition by an effect on Na+ channels, like verapamil and diltiazem. In contrast with its inactivity on the amplitude of miniature end-plate potentials, depolarization of the end plate in response to succinylcholine was greatly depressed. The contractile response of baby chick biventer cervicis muscle to exogenous acetylcholine was noncompetitively antagonized by nicardipine (10 microM), but was unaffected by nifedipine (30 microM). These results may implicate that nicardipine blocks the postsynaptic acetylcholine receptor channel by enhancing receptor desensitization or by a use-dependent effect.  相似文献   

15.
Spontaneous phasic contractions recorded from isolated body strips of Fasciola hepatica were increased in frequency and amplitude by GYIRFamide, an FMRFamide-related peptide (FaRP). Superfusion with guanosine 5'-O-(2-thiodiphosphate) (100 microM, n = 5) reduced the effects of GYIRFamide on both frequency (by 82%) and amplitude (by 75%). The adenylate cyclase inhibitor MDL-12330A (25 microM) increased spontaneous activity. MDL-12330A completely inhibited the frequency response to GYIRFamide and reduced the amplitude response by 66% as measured relative to this elevated basal activity (n = 6). Inhibition of phospholipase C (PLC) with neomycin sulfate (1 mM) had no direct effect on activity but reduced the frequency response to GYIRFamide by 64% and the amplitude increase by 95% (n = 9). The protein kinase C (PKC) inhibitor chelerythrine chloride (10 microM) also reduced frequency and amplitude responses by 98 and 99%, respectively, without affecting basal contractility (n = 5). Phorbol 12-myristate 13-acetate, an activator of PKC, increased contraction frequency and amplitude (n = 6). It was concluded that GYIRFamide stimulates mechanical activity in F. hepatica through a G protein, via a PLC- and PKC-dependent second messenger pathway.  相似文献   

16.
Vyleta NP  Smith SM 《PloS one》2008,3(9):e3155

Background

Caffeine stimulates calcium-induced calcium release (CICR) in many cell types. In neurons, caffeine stimulates CICR presynaptically and thus modulates neurotransmitter release.

Methodology/Principal Findings

Using the whole-cell patch-clamp technique we found that caffeine (20 mM) reversibly increased the frequency and decreased the amplitude of miniature excitatory postsynaptic currents (mEPSCs) in neocortical neurons. The increase in mEPSC frequency is consistent with a presynaptic mechanism. Caffeine also reduced exogenously applied glutamate-activated currents, confirming a separate postsynaptic action. This inhibition developed in tens of milliseconds, consistent with block of channel currents. Caffeine (20 mM) did not reduce currents activated by exogenous NMDA, indicating that caffeine block is specific to non-NMDA type glutamate receptors.

Conclusions/Significance

Caffeine-induced inhibition of mEPSC amplitude occurs through postsynaptic block of non-NMDA type ionotropic glutamate receptors. Caffeine thus has both pre and postsynaptic sites of action at excitatory synapses.  相似文献   

17.
Effects of metabotropic glutamate receptors of the duration of posttetanic changes in monosynaptic excitatory postsynaptic potentials (mEPSP), evoked by afferent and reticulospinal input stimulation, were investigated in lumbar motoneurons of the frog isolated spinal cord. It was found that application of MAP4 (25 microM), a selective antagonist of group III of these receptors, prolonged posttetanic potentiation and depression of synaptic transmission, whereas activation of this group of metabotropic glutamate receptors by L-AP4 (1 mM), a selective agonist of these receptors, suppressed the amplitude of synaptic responses, but did not affect the dynamics of development of posttetanic changes. The NMDA receptor antagonist AP5 (50 microM), added to the perfusing solution, blocked completely the effects produced by MAP4. Neither selective antagonist MCCG (400 microM), nor agonist tACPD (50 microM) of group II metabotropic glutamate receptors affected the terms of mEPSP posttetanic potentiation and depression, although the latter, in contrast to the antagonist, in most cases increased the synaptic potential amplitude. The data obtained permit to suggest that group III metabotropic receptors may control the duration of posttetanic changes of synaptic transmission in the frog spinal motoneurons. The long-term changes in the investigated synapses seem to be mediated by activation of postsynaptic metabotropic glutamate receptors (most likely, of group I receptors), which is normally masked with activation of group III presynaptic autoreceptors. The mechanism of such an induction essentially depends on activation of NMDA type of inotropic glutamate receptors.  相似文献   

18.
G Hess  U Kuhnt 《Folia biologica》1989,37(3-4):195-202
A minimal intensity of the stimulation necessary for the induction of long-term potentiation of synaptic transmission (LTP) was investigated by intracellular recording in guinea pig in vitro hippocampal slices. High frequency stimulation of afferent fibres at intensities evoking in CA 1 neurons control excitatory postsynaptic potentials (EPSPs) of amplitudes 1-5 mV, resulted usually in a long-lasting increase in response amplitude. LTP was not observed at lower stimulus strength. The coactivation of a certain, though small number of synaptic contacts is thus necessary for the production of LTP.  相似文献   

19.
The adenosinergic modulation of GABAergic spontaneous miniature inhibitory postsynaptic currents (mIPSCs) was investigated in mechanically dissociated rat tuberomammillary nucleus (TMN) neurons using a conventional whole-cell patch clamp technique. Adenosine (100 microM) reversibly decreased mIPSC frequency without affecting the current amplitude, indicating that adenosine acts presynaptically to decrease the probability of spontaneous GABA release. The adenosine action on GABAergic mIPSC frequency was completely blocked by 1 microM DPCPX, a selective A(1) receptor antagonist, and mimicked by 1 microM CPA, a selective A(1) receptor agonist. This suggests that presynaptic A(1) receptors were responsible for the adenosine-mediated inhibition of GABAergic mIPSC frequency. CPA still decreased GABAergic mIPSC frequency even either in the presence of 200 microM Cd(2+), a general voltage-dependent Ca(2+) channel blocker, or in the Ca(2+)-free external solution. However, the inhibitory effect of CPA on GABAergic mIPSC frequency was completely occluded by 1 mM Ba(2+), a G-protein coupled inwardly rectifying K(+) (GIRK) channel blocker. In addition, the CPA-induced decrease in mIPSC frequency was completely occluded by either 100 microM SQ22536, an adenylyl cyclase (AC) inhibitor, or 1 muM KT5720, a specific protein kinase A (PKA) inhibitor. The results suggest that the activation of presynaptic A(1) receptors decreases spontaneous GABAergic transmission onto TMN neurons via the modulation of GIRK channels as well as the AC/cAMP/PKA signal transduction pathway. This adenosine A(1) receptor-mediated modulation of GABAergic transmission onto TMN neurons may play an important role in the fine modulation of the excitability of TMN histaminergic neurons as well as the regulation of sleep-wakefulness.  相似文献   

20.
《Steroids》1996,61(6):354-366
We have previously shown that both epidural administration and microinjection of methylprednisolone (MP) produces neuronal hyperexcitability in the murine spinal cord in vivo. In this study, the whole-cell patch-clamp technique was used to describe and characterize MP-induced neuronal hyperexcitability. Exposure of 10- to 18-day old dissociated spinal cord cultures to 65 μM-8 mM MP caused a concentration-dependent increase in the firing rate. MP (1 mM) increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and spontaneous inhibitory postsynaptic currents (sIPSCs). The amplitude of the sEPSCs was also increased in response to 1 mM MP, whereas sIPSCs became smaller in size in the presence of MP. MP (1 mM) reduced the amplitude of the γ-aminobutyric acid (GABA)-induced currents, whereas it increased the amplitude of the glutamate-induced currents. And finally, MP (1 mM), by itself, did not change the overall postsynaptic membrane conductance. These observations suggest that (1) MP can act as an excitatory agent in vitro, (2) it can act at the presynaptic as well as the postsynaptic level, and (3) it affects spinal cord neurons by influencing the ligand-gated (GABA and glutamate) channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号