首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyphenol oxidase (PPO) activity is highly related to the undesirable browning of wheat-based end products, especially Asian noodles. Characterization of PPO genes and the development of their functional markers are of great importance for marker-assisted selection in wheat breeding. In the present study, complete genomic DNA sequences of two PPO genes, one each located on chromosomes 2A and 2D and their allelic variants were characterized by means of in silico cloning and experimental validation. Sequences were aligned at both DNA and protein levels. Two haplotypes on chromosome 2D showed 95.2% sequence identity at the DNA level, indicating much more sequence diversity than those on chromosome 2A with 99.6% sequence identity. Both of the PPO genes on chromosomes 2A and 2D contain an open reading frame (ORF) of 1,731 bp, encoding a PPO precursor peptide of 577 amino acids with a predicted molecular mass of ∼64 kD. Two complementary dominant STS markers, PPO16 and PPO29, were developed based on the PPO gene haplotypes located on chromosome 2D; they amplify a 713-bp fragment in cultivars with low PPO activity and a 490-bp fragment in those with high PPO activity, respectively. The two markers were mapped on chromosome 2DL using a doubled haploid population derived from the cross Zhongyou 9507/CA9632, and a set of nullisomic–tetrasomic lines and ditelosomic line 2DS of Chinese Spring. QTL analysis indicated that the PPO gene co-segregated with the two STS markers and was closely linked to SSR marker Xwmc41 on chromosome 2DL, explaining from 9.6 to 24.4% of the phenotypic variance for PPO activity across three environments. In order to simultaneously detect PPO loci on chromosomes 2A and 2D, a multiplexed marker combination PPO33/PPO16 was developed and yielded distinguishable DNA patterns in a number of cultivars. The STS marker PPO33 for the PPO gene on chromosome 2A was developed from the same gene sequences as PPO18 that we reported previously, and can amplify a 481-bp and a 290-bp fragment from cultivars with low and high PPO activity, respectively. A total of 217 Chinese wheat cultivars and advanced lines were used to validate the association between the polymorphic fragments and grain PPO activity. The results showed that the marker combination PPO33/PPO16 is efficient and reliable for evaluating PPO activity and can be used in wheat breeding programs aimed for noodle and other end product quality improvement.  相似文献   

2.
Gene markers for grain polyphenol oxidase activity in common wheat   总被引:1,自引:0,他引:1  
Polyphenol oxidase (PPO) in grain is regarded as a major factor resulting in time-dependent darkening of wheat end products, particularly for Asian noodles and steamed bread. Breeding wheat cultivars with low PPO activity using efficient and reliable markers is one of the best ways to reduce the undesirable darkening. In the present study, we developed a gene-specific marker (PPO05) for low PPO activity from the sequence AY515506. This marker detected double PCR fragments (<750 and >750 bp) in the cultivars with low PPO activity and a single PCR fragment (<750 bp) in the cultivars with high PPO activity. Screening of this marker on 235 Chinese wheat micro-core collections showed that the double fragments were present in 113 genotypes and the single fragments in the remaining 122 genotypes. Statistic analysis revealed that the cultivars with the double fragments had significantly lower mean PPO activity than those with single fragments. Through sequence analysis and blast search in NCBI, we found that the cultivars with the double fragments contained the PPO-2Ab allele, while the cultivars with the single fragments contained the PPO-2Aa allele. The PPO-2Ab and PPO-2Da alleles were associated with the low grain PPO activity and the PPO-2Aa and PPO-2Db alleles associated with the high PPO activity. The genotypes carrying both PPO-2Ab and PPO-2Da showed the lowest PPO activity, while the genotypes carrying both PPO-2Aa and PPO-2Db showed the highest PPO activity. Comparison of PPO05 and STS01 with the STS markers PPO18 and PPO29 showed that the larger and small fragments of PPO05 were equivalent to the 876- and 685-bp fragments of PPO18, respectively, and that STS01 was the complementary marker of PPO29. Thus, the STS markers PPO05 and STS01 along with PPO18 and PPO29 are the efficient and reliable markers for the evaluation of PPO activity and can be used in wheat breeding programs to improve the quality of noodles and other end products.  相似文献   

3.
Phytoene synthase (Psy), a critical enzyme in the carotenoid biosynthetic pathway, demonstrated high association with the yellow pigment (YP) content in wheat grain. Characterization of Psy genes and the development of functional markers for them are of importance for marker-assisted selection in wheat breeding. In this study, the full-length genomic DNA sequence of a Psy gene (Psy-A1) located on chromosome 7A, was characterized by in silico cloning and experimental validation. The cloned Psy-A1 comprises six exons and five introns, 4,175 bp in total, and an ORF of 1,284 bp. A co-dominant marker, YP7A, was developed based on polymorphisms of two haplotypes of Psy-A1, yielding 194 and 231-bp fragments in cultivars with high and low YP content, respectively. The marker YP7A was mapped on chromosome 7AL using an RIL population from cross PH82-2/Neixing 188, and a set of Chinese Spring nullisomic–tetrasomic lines and ditelosomic line 7AS. Psy-A1, co-segregating with the STS marker YP7A, was linked to SSR marker Xwmc809 on chromosome 7AL with a genetic distance of 5.8 cM, and explained 20–28% of the phenotypic variance for YP content across three environments. A total of 217 Chinese wheat cultivars and advanced lines were used to validate the association between the polymorphic band pattern and grain YP content. The results showed that the functional marker YP7A was closely related to grain YP content and, therefore, could be used in wheat breeding programs targeting of YP content for various wheat-based products. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Polyphenol oxidase (PPO) is a major cause of time-dependent darkening and discoloration in Asian noodles and other wheat-based products. One of the best ways to reduce this undesirable darkening is to breed new wheat cultivars with low PPO activity using efficient and reliable markers. Based on the sequence of a PPO gene SSPPO-B1 (GenBank accession no. AB254804) located on chromosome 2B of common wheat, 26 pairs of primers were designed to detect polymorphisms between wheat cultivars with low and high PPO activity. F-8, one of these primer pairs, amplified double fragments (band ??a?? of approximately 400?bp and band ??b?? of approximately 600?bp) in the cultivars with low PPO activity, and a single fragment (only band a) in the cultivars with high PPO activity. The differences between the fragments a and b include five indels and several single nucleotide polymorphisms, which occurred in intron II of the PPO gene. F-8 can be used as a sequence-tagged site marker to discriminate between two alleles Ppo-B1a (GQ303713) and Ppo-B1b (AB254804). The screening of 284 accessions of the core collection of Chinese wheat germplasms using the marker F-8 showed that the double fragments were present in 188 accessions, and the single fragments were present in the remaining 96 accessions. Statistical analysis revealed that the cultivars with the double fragments had significantly lower mean PPO activity than those with the single fragments. We also screened the 284 accessions using two additional markers, PPO18 for Ppo-A1 on chromosome 2A and STS01 for Ppo-D1 on chromosome 2D. Results showed that the combination of markers F-8, PPO18, and STS01 could reliably predict PPO activity. These markers can be used in wheat breeding programs for low PPO activity selection to improve the quality of wheat-based products.  相似文献   

5.
Higher polyphenol oxidase (PPO) activity in wheat kernels and flour has been implicated in the time dependent darkening of various end-products. Previous study conducted on a bread wheat (Triticum aestivum L.) doubled haploid (DH) mapping population derived from Chara (medium-high PPO) and WW2449 (low PPO) identified a major QTL for PPO activity located on the long arm of chromosome 2A. Physical mapping of SSR markers accounting for up to 84% of phenotypic variation for PPO activities suggests that the candidate PPO locus is localised in the deletion bin delimited by 2AL 0.77–0.85. In order to develop functional gene markers, nine wheat ESTs mapped to this deletion bin and partial PPO reference genes were explored for their sequence identities and linkage with PPO locus in a mapping population. In the present study, two markers: one SNP and one CAPS based upon BQ161439 sequence variation between the parents were identified which exhibited a tight linkage (0–0.6 cM) with the PPO loci designated as XTc1 and XPPO- LDOPA. We also mapped the reference PPO gene (GenBank AY526268) characterised from developing kernels of wheat, on the long arm of chromosome 2A which exhibited a complete linkage with XPPO- L DOPA locus. Results suggest that PPO variation displayed in the DH population from Chara/WW2449 is due to the same reference PPO gene. Allelic homoplasy of tightly linked markers, indicated that these markers are ‘diagnostic’ for the selection of low PPO gene in a range of germplasm being used in different Australian breeding programs. Identification and validation of ‘functional gene markers’ would facilitate in enhancing the selection efficiency for low PPO activity in wheat breeding programs.  相似文献   

6.
Pre-harvest sprouting (PHS) is a complex trait controlled by multiple genes with strong interaction between environment and genotype that makes it difficult to select breeding materials by phenotypic assessment. One of the most important genes for pre-harvest sprouting resistance is consistently identified on the long arm of chromosome 4A. The 4AL PHS tolerance gene has therefore been targeted by Australian white-grained wheat breeders. A new robust PCR marker for the PHS QTL on wheat chromosome 4AL based on candidate genes search was developed in this study. The new marker was mapped on 4AL deletion bin 13-0.59-0.66 using 4AL deletion lines derived from Chinese Spring. This marker is located on 4AL between molecular markers Xbarc170 and Xwg622 in the doubled-haploid wheat population Cranbrook × Halberd. It was mapped between molecular markers Xbarc170 and Xgwm269 that have been previously shown to be closely linked to grain dormancy in the doubled haploid wheat population SW95-50213 × Cunningham and was co-located with Xgwm269 in population Janz × AUS1408. This marker offers an additional efficient tool for marker-assisted selection of dormancy for white-grained wheat breeding. Comparative analysis indicated that the wheat chromosome 4AL QTL for seed dormancy and PHS resistance is homologous with the barley QTL on chromosome 5HL controlling seed dormancy and PHS resistance. This marker will facilitate identification of the gene associated with the 4A QTL that controls a major component of grain dormancy and PHS resistance.  相似文献   

7.
Lipoxygenase (LOX) activity is an important factor determining the color of flour and end-use products of wheat. In the present study, quantitative trait loci (QTL) for LOX activity in common wheat were mapped using 71 doubled haploid (DH) lines derived from a Zhongyou 9507 × CA9632 cross, and SSR markers. Two QTL, QLpx.caas.1AL and QLpx.caas-4B, were identified on chromosomes 1AL and 4B, closely associated with LOX activity. The SSR loci Xwmc312 and Xgwm251 proved to be diagnostic and explained 13.4–25.2% of the phenotypic variance for the 1AL locus and 14.3–27.0% for the 4B locus across four environments. The SSR markers Xgwm251 and Xwmc312 were validated across 198 Chinese wheat cultivars and advanced lines and showed highly significant (P < 0.01) association with LOX activity. We further established a multiplexed PCR with SSR marker combination Xwmc312/Xgwm251 to test these wheat cultivars and advanced lines. The results suggested that the marker combination Xwmc312/Xgwm251 is efficient and reliable for evaluating LOX activity and can be used in marker-assisted selection (MAS) for targeting flour color attributes to noodle and other wheat-based products.  相似文献   

8.
Powdery mildew is one of the most destructive foliar diseases of wheat. A set of differential Blumeria graminis f.sp. tritici (Bgt) isolates was used to test the powdery mildew response of a Triticum monococcum-derived resistant hexaploid line, Tm27d2. Segregation analysis of 95 F2:3 lines from a Chinese Spring/Tm27d2 cross revealed that the resistance of Tm27d2 is controlled by a single dominant gene. Using monosomic analysis and a molecular mapping approach, the resistance gene was localized to the terminal end of chromosome 2AL. The linkage map of chromosome 2AL consisted of nine simple sequence repeat markers and one sequence-tagged site (STS) marker (ResPm4) indicative for the Pm4 locus. According to the differential reactions of 19 wheat cultivars/lines with known powdery mildew resistance genes to 13 Bgt isolates, Tm27d2 carried a new resistance specificity. The complete association of the resistance allele with STS marker ResPm4 indicated that it represented a new allele at the Pm4 locus. This new allele was designated Pm4d. The two flanking markers Xgwm526 and Xbarc122 closely linked to Pm4d at genetic distances of 3.4 and 1.0 cM, respectively, are present in chromosome bin 2AL1-0.85-1.00.  相似文献   

9.
We report the fine mapping of the previously described quantitative trait loci (QTL) for grain weight QTgw.ipk-7D associated with microsatellite marker Xgwm1002-7D by using introgression lines (ILs) carrying introgressions of the synthetic wheat W-7984 in the genetic background of the German winter wheat variety ‘Prinz’. The BC4F3 ILs had a 10% increased thousand grain weight compared to the control group and the recurrent parent ‘Prinz’, and 84.7% of the phenotypic variance could be explained by the segregation of marker Xgwm1002-7D, suggesting the presence of a gene modulating grain weight, which was preliminarily designated gw1. It was possible to delimit the QTL QTgw.ipk-7D to the interval Xgwm295–Xgwm1002, which is located in the most telomeric bin 7DS4-0.61-1.00 in the physical map of wheat chromosome arm 7DS. Furthermore, our data suggest the presence of a novel plant height-reducing locus Rht on chromosome arm 7DS of ‘Prinz’. Larger grain and increased plant height may reflect the pleiotropic action of one gene or may be caused by two linked genes. In general, our data support the concept of using nearly isogenic ILs for validating and dissecting QTLs into single Mendelian genes and open the gateway for map-based cloning of a grain-weight QTL in wheat.  相似文献   

10.
The stem rust resistance gene Sr2 has provided durable broad-spectrum, adult-plant resistance to the fungal pathogen Puccinia graminis Pers. f. sp. tritici throughout wheat-growing regions of the world for more than 50 years. The ability to select for Sr2 in wheat breeding programs was recently improved by the identification of a tightly linked microsatellite marker gwm533. This marker typically amplifies a 120-bp polymerase chain reaction fragment from wheat lines carrying Sr2. In instances where the 120-bp fragment is not associated with the presence of Sr2, DNA sequence analysis has shown that a second allele was amplified, differing in the structure of the microsatellite repeat. To discriminate this allelic homoplasy (alleles identical in size, but not identical by descent), sequence-tagged microsatellites (STM) markers were developed for the Xgwm533 locus. These markers were shown to be diagnostic for the presence of Sr2 in a wide range of germplasm, representative of all major wheat varieties historically grown in Australia. The STMs will be particularly useful for marker-assisted selection in Southern Australian breeding programs, where the use of the marker gwm533 is often precluded by the presence of the non-Sr2-associated 120-bp allele in the pedigree of current breeding germplasm. The STMs also revealed a high incidence of previously undetected allelic homoplasy at the Xgwm533 locus and may have broader utility in genetic research and breeding, as this locus is also reported to be strongly associated with a major gene conferring resistance to Fusarium head blight.  相似文献   

11.
Polyphenol oxidase (PPO) activity is a major cause of undesirable brown color of semolina. In tetraploid wheat, the Ppo-A1 gene is significantly involved in the phenotypic expression of PPO activity. The main goal of this study was to develop and validate a more efficient marker for Ppo-A1 to facilitate marker-assisted selection for low PPO activity in tetraploid wheat breeding programs. A large tetraploid wheat collection, including durum cultivars, domesticated and wild accessions, was used to evaluate the PPO activity. The heritability values indicated that the phenotypic expression of PPO activity was mainly due to genotypic effect. PPO18, and a new marker named MG18, were used to study the Ppo-A1 allelic variation in a tetraploid wheat collection. PPO18 analysis detected four alleles (Ppo-A1b, Ppo-A1e, Ppo-A1f and Ppo-A1g). The high frequency of Ppo-A1g (no PCR product) detected in the tetraploid wheat collection, led to the development of a new genome-specific Ppo-A1 marker (MG18). MG18 analysis identified the same alleles as PPO18 which were associated with low or high PPO activity. The new MG18 marker was more efficient than PPO18 in detecting the four different alleles of Ppo-A1 in the tetraploid wheat collection. Indeed, the accessions assigned to the Ppo-A1g group, according to PPO18, when tested with MG18, were better classified in the four alleles of the Ppo-A1 gene. The MG18 analysis proved that the PPO18 marker overestimated the number of accessions with Ppo-A1g. Therefore, MG18 can be applied to large-scale marker-assisted selection for PPO activity in durum breeding programs.  相似文献   

12.
The yellow pigment (YP) of durum wheat (Triticum turgidum L. var durum) semolina is due in part to the presence of carotenoid pigments found in the endosperm and is an important end-use quality trait. Phytoene synthase (Psy) is considered a rate-limiting enzyme in the carotenoid biosynthetic pathway and in this study, three alleles of Psy1-A1 were sequenced from four durum wheat cultivars and a co-dominant marker was developed for genetic mapping. Psy1-A1 mapped to chromosome 7AL near Xwmc809 in three durum mapping populations and was significantly associated with a pigment quantitative trait loci (QTL) identified on that chromosome. A second QTL localized 25 cM proximal to Psy1-A1 in two populations, and the interaction between the two QTL was not significant. Consistent with QTL mapping data, the Psy1-A1o allele was associated with elevated pigment in a validation population comprising 93 diverse cultivars and breeding lines. These results confirm an earlier hypothesis that Psy1, and at least one additional gene in the distal region of 7AL, are associated with grain YP differences in durum wheat. The functional co-dominant marker developed in this study differentiates the Psy1-A1 alleles reported here and could be used as a target to enhance YP selection in durum wheat breeding programs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Leaf rust resistance gene Lr28 has been transferred form Aegilops speltoides into bread wheat on chromosome 4AL. To identify the molecular markers linked to Lr28 the available microsatellite markers for wheat chromosome arm 4AL were surveyed on near isogenic lines (NILs) of Triticum aestivum cultivars having Lr28 gene, other Lrgenes and susceptible cultivars. A null allele of Xgwm 160 marker was found to be associated with Lr28. Linkage between the marker and the Lr28 resistance gene was confirmed using F2 mapping population of cross PBW343 and HD2329 + Lr28.  相似文献   

14.
Septoria tritici blotch, caused by Mycosphaerella graminicola, is a serious foliar disease of wheat worldwide. Qualitative, race-specific resistance sources have been identified and utilized for resistant cultivar development. However, septoria tritici blotch resistant varieties have succumbed to changes in virulence of M. graminicola on at least three continents. The use of resistance gene pyramids may slow or prevent the breakdown of resistance. A clear understanding of the genetics of resistance and the identification of linked PCR-based markers will facilitate the recovery of wheat lines carrying multiple septoria tritici blotch resistance genes. The resistance gene in ST6 to isolate MG2 of M. graminicola was mapped with microsatellite markers in two populations, ST6/Erik and ST6/Katepwa. Bulk segregant analysis identified a marker on chromosome 4AL putatively linked to the resistance gene. A large linkage group was identified in each population using additional microsatellite markers mapping to chromosome 4AL. The resistance gene in ST6 mapped to the distal end of chromosome 4AL in each mapping population and was designated Stb7. Three of the microsatellite loci, Xwmc313, Xwmc219 and Xgwm160, mapped within 3.5 cM of Stb7; however, none flanked Stb7. Xwmc313 was the closest and mapped 0.3 and 0.5 cM from Stb7 in the crosses ST6/Katepwa and ST6/Erik, respectively. WMC313 will be very useful for marker-assisted selection of Stb7 in Canadian breeding programs because the ST6 allele of Xwmc313 was not identified in any of the Canadian common wheat cultivars tested.Communicated by P. Langridge  相似文献   

15.
Low-molecular-weight glutenin subunits (LMW-GS) have great effect on wheat processing quality, but were numerous and difficult to dissect by SDS-PAGE. The development of functional markers may be the most effective way for a clear discrimination of different LMW-GS genes. In the present study, three different approaches were used to identify SNPs of different genes at Glu-D3 and Glu-B3 loci in bread wheat for the development of six STS markers (3 for Glu-D3 and 3 for Glu-B3 genes) that were validated with distinguished wheat cultivars. Firstly, seven LMW-GS gene sequences ( AY585350, AY585354, AY585355, AY585356, AY585349, AY585351 and AY585353 ) from Aegilops tauschii, the diploid donor of the D-genome of bread wheat, were chosen to design seven pairs of AS-PCR primers for Glu-D3 genes. By amplifying the corresponding genes from five bread wheat cultivars with different Glu-D3 alleles (a, b, c, d and e) and Ae. tauschii, a primer set, S13F2/S13R1, specific to the gene AY585356, was found to be positive to cultivars with alleles Glu-D3c and d. Nevertheless, the other five pairs of primers designed from AY585350, AY585349, AY585353, AY585354 and AY585355, respectively, did not produce specific PCR products to the cultivars tested. Secondly, all the PCR products from the five primer sets without specific characteristics were sequenced and an SNP from the gene AY585350 was detected in the cultivar Hartog, which resulted in the second STS marker S1F1/S1R3 specific to the allelic variant of AY585350. Thirdly, three Glu-D3 sequences (AB062851, AB062865 and AB062872) and three Glu-B3 sequences (AB062852, AB062853 and AB062860) defined by Ikeda et al. (2002) were chosen to query wheat EST and NR databases, and DNA markers were developed based on the putative SNPs among the sequences. Using this approach, four STS markers were developed and validated with 16-19 bread wheat cultivars. The primer set T1F4/T1R1 was also a Glu-D3 gene-specific marker for AB062872, while T2F2/T2R2, T5F3/T5R1 and T13F4/T13R3 were all Glu-B3 gene specific markers for AB062852, BF293671 and AY831800, respectively. The chromosomal locations of the six markers were verified by amplifying the genomic DNA of Ae. tauschii (DD), T. monococcum (AA) and T. turgidum (AABB) entries, as well as Chinese Spring and its group 1 chromosome nulli-tetrasomic lines. The results are useful to discriminate the corresponding Glu-D3 and Glu-B3 genes in wheat breeding programs.  相似文献   

16.
小麦PPO活性基因等位变异的区域分布研究   总被引:1,自引:0,他引:1  
为了解中国不同生态区小麦种质资源籽粒多酚氧化酶(PPO)活性基因的等位变异的差异与分布,利用小麦PPO活性基因的功能标记PPO16、PPO29与PPO18,检测了来自中国7个不同生态麦区的379份小麦种质资源的等位变异和分布差异。结果表明:(1)在2AL染色体该基因位点有2种等位变异类型:Ppo-A1a(高PPO)和Ppo-A1b(低PPO),其频率分别为51.5%和48.5%。(2)在2DL染色体该基因位点有3种等位变异类型:Ppo-D1a(低PPO)、Ppo-D1b(高PPO)和Ppo-D1ab(中间型),其频率分别为57.8%、32.5%和9.8%。(3)该基因在2AL和2DL染色体上的位点变异有6种不同类型的组合:Ppo-A1a/D1a(中间型)、Ppo-A1a/D1b(高PPO)、Ppo-A1a/Ppo-D1ab(中间型)、Ppo-A1b/D1a(低PPO)、Ppo-A1b/D1b(中间型)和Ppo-A1b/Ppo-D1ab(中间型),其中,与低PPO活性相关的基因型组合Ppo-A1b/D1a的频率为25.6%。(4)小麦PPO活性基因不同变异类型在各生态区的分布存在明显差异,基因型Ppo-A1b在北部冬麦区和西南冬麦区的比例较大,基因型Ppo-D1a在黄淮冬麦区和北部冬麦区的比例较大,基因型组合Ppo-A1b/D1a在北部冬麦区的比例较大。研究认为,结合采用分子标记辅助选择(MAS),有利于小麦籽粒外观品质的遗传改良和新品种选育。  相似文献   

17.
New DNA markers for high molecular weight glutenin subunits in wheat   总被引:2,自引:0,他引:2  
End-use quality is one of the priorities of modern wheat (Triticum aestivum L.) breeding. Even though quality is a complex trait, high molecular weight (HMW) glutenins play a major role in determining the bread making quality of wheat. DNA markers developed from the sequences of HMW glutenin genes were reported in several previous studies to facilitate marker-assisted selection (MAS). However, most of the previously available markers are dominant and amplify large DNA fragments, and thus are not ideal for high throughput genotyping using modern equipment. The objective of this study was to develop and validate co-dominant markers suitable for high throughput MAS for HMW glutenin subunits encoded at the Glu-A1 and Glu-D1 loci. Indels were identified by sequence alignment of allelic HMW glutenin genes, and were targeted to develop locus-specific co-dominant markers. Marker UMN19 was developed by targeting an 18-bp deletion in the coding sequence of subunit Ax2* of Glu-A1. A single DNA fragment was amplified by marker UMN19, and was placed onto chromosome 1AL. Sixteen wheat cultivars with known HMW glutenin subunits were used to validate marker UMN19. The cultivars with subunit Ax2* amplified the 362-bp fragment as expected, and a 344-bp fragment was observed for cultivars with subunit Ax1 or the Ax-null allele. Two co-dominant markers, UMN25 and UMN26, were developed for Glu-D1 by targeting the fragment size polymorphic sites between subunits Dx2 and Dx5, and between Dy10 and Dy12, respectively. The 16 wheat cultivars with known HMW glutenin subunit composition were genotyped with markers UMN25 and UMN26, and the genotypes perfectly matched their subunit types. Using an Applied Biosystems 3130xl Genetic Analyzer, four F2 populations segregating for the Glu-A1 or Glu-D1 locus were successfully genotyped with primers UMN19, UMN25 and UMN26 labeled with fluorescent dyes.  相似文献   

18.
The objective of this work was to develop a marker for the adult plant leaf rust resistance gene Lr35. The Lr35 gene was originally introgressed into chromosome 2B from Triticum speltoides, a diploid relative of wheat. A segregating population of 96 F 2 plants derived from a cross between the resistant line ThatcherLr35 and the susceptible variety Frisal was analysed. Out of 80 RFLP probes previously mapped on wheat chromosome 2B, 51 detected a polymorphism between the parents of the cross. Three of them were completely linked with the resistance gene Lr35. The co-segregating probe BCD260 was converted into a PCR-based sequence-tagged-site (STS) marker. A set of 48 different breeding lines derived from several European breeding programs was tested with the STS marker. None of these lines has a donor for Lr35 in its pedigree and all of them reacted negatively with the STS marker. As no leaf rust races virulent on Lr35 have been found in different areas of the world, the STS marker for the Lr35 resistance gene is of great value to support the introgression of this gene in combination with other leaf rust (Lr) genes into breeding material by marker-assisted selection. Received: 14 December 1998 / Accepted: 30 January 1999  相似文献   

19.
Kernel hardness is one of the most important factors determining the milling and processing quality of bread wheat (Triticum aestivum L.). In the present study, 267 wheat cultivars and advanced lines from the Yellow and Huai Valley of China, CIMMYT, Russia and Ukraine were used for identification of SKCS (Single Kernel Characterization System) hardness and puroindoline alleles. Results indicated that Pinb-D1b is the most popular genotype in wheat cultivars from the Yellow and Huai Valley, Russia and Ukraine, whereas PINA null is a predominant genotype in wheat cultivars and advanced lines from CIMMYT. Molecular characterization of PINA-null alleles indicated that one Chinese landrace Chiyacao had the allele Pina-D1l with a single nucleotide C deletion at position 265 in Pina coding region based on sequencing results, and 35 of 39 PINA-null alleles belonged to Pina-D1b according to PCR amplification with the sequence-tagged site (STS) marker Pina-N developed previously. The remaining three cultivars (Jiangdongmen, Heshangtou and Hongquanmang from China) with PINA-null alleles were characterized at the DNA level by a primer walking strategy, and the results showed that all three cultivars with PINA-null alleles possessed a uniform 10,415-bp deletion from −5,117 bp to +5,298 bp (ATG codon references zero), designated as Pina-D1r. Correspondingly, an STS marker Pina-N2 with an expected fragment size of 436-bp spanning the 10,415-bp deletion was developed for detection of the Pina-D1r allele. This study provided a useful molecular marker for straightforward detection of one of the PINA-null alleles and would also be helpful to further understand the molecular and genetic basis of kernel hardness in bread wheat.  相似文献   

20.
The gene-pool of wild emmer wheat, Triticum turgidum ssp. dicoccoides, harbors a rich allelic repertoire for disease resistance. In the current study, we made use of tetraploid wheat mapping populations derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16) to identify and map a new powdery mildew resistance gene derived from wild emmer wheat. Initially, the two parental lines were screened with a collection of 42 isolates of Blumeria graminis f. sp. tritici (Bgt) from Israel and 5 isolates from Switzerland. While G18-16 was resistant to 34 isolates, Langdon was resistant only to 5 isolates and susceptible to 42 isolates. Isolate Bgt#15 was selected to differentiate between the disease reactions of the two genotypes. Segregation ratio of F2-3 and recombinant inbreed line (F7) populations to inoculation with isolate Bgt#15 indicated the role of a single dominant gene in conferring resistance to Bgt#15. This gene, temporarily designated PmG16, was located on the distal region of chromosome arm 7AL. Genetic map of PmG16 region was assembled with 32 simple sequence repeat (SSR), sequence tag site (STS), Diversity array technology (DArT) and cleaved amplified polymorphic sequence (CAPS) markers and assigned to the 7AL physical bin map (7AL-16). Using four DNA markers we established colinearity between the genomic region spanning the PmG16 locus within the distal region of chromosome arm 7AL and the genomic regions on rice chromosome 6 and Brachypodium Bd1. A comparative analysis was carried out between PmG16 and other known Pm genes located on chromosome arm 7AL. The identified PmG16 may facilitate the use of wild alleles for improvement of powdery mildew resistance in elite wheat cultivars via marker-assisted selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号