首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aripiprazole and the candidate antipsychotics, S33592, bifeprunox, N-desmethylclozapine (NDMC) and preclamol, are partial agonists at D(2) receptors. Herein, we examined their actions at D(2L) and D(3) receptors expressed separately or together in COS-7 cells. In D(2L) receptor-expressing cells co-transfected with (D(3) receptor-insensitive) chimeric adenylate cyclase-V/VI, drugs reduced forskolin-stimulated cAMP production by approximately 20% versus quinpirole (48%). Further, quinpirole-induced inhibition was blunted by aripiprazole and S33592, confirming partial agonist properties. In cells co-transfected with equal amounts of D(2L)and D(3) receptors (1 : 1), efficacies of aripiprazole and S33592 were attenuated. Further, in cells co-transfected with D(2L) and an excess of D(3) receptors (1 : 3), aripiprazole and S33592 were completely inactive, and they abolished the actions of quinpirole. Likewise, bifeprunox, NDMC and preclamol lost agonist properties in cells co-transfected with D(2L)and D(3) receptors. Accordingly, at split D(2trunk)/D(3tail) and D(3trunk)/D(2tail) chimeras, agonist actions of quinpirole were blocked by aripiprazole and S33592 that, like bifeprunox, NDMC and preclamol, were inactive alone. Conversely, when a 12 amino acid sequence in the third intracellular loop of D(3) receptors was replaced by the homologous sequence of D(2L) receptors, aripiprazole, S33592, bifeprunox, NDMC and preclamol inhibited cAMP formation by approximately 20% versus quinpirole (42%). Moreover, at D(2L) receptor-expressing cells co-transfected with modified D(3i3(D2)) receptors, drugs behaved as partial agonists. To summarize, low efficacy agonist actions of aripiprazole, S33592, bifeprunox, NDMC and preclamol at D(2L) receptors are abrogated upon co-expression of D(3) receptors, probably due to physical association and weakened coupling efficacy. These findings have implications for the functional profiles of antipsychotics.  相似文献   

2.
Evidence for heterodimerization has recently been provided for dopamine D(1) and adenosine A(1) receptors as well as for dopamine D(2) and somatostatin SSTR(5) receptors. In this paper, we have studied the possibility that D(2) and D(3) receptors interact functionally by forming receptor heterodimers. Initially, we split the two receptors at the level of the third cytoplasmic loop into two fragments. The first, containing transmembrane domains (TM) I to V and the N-terminal part of the third cytoplasmic loop, was named D(2trunk) or D(3trunk), and the second, containing the C-terminal part of the third cytoplasmic loop, TMVI and TMVII, and the C-terminal tail, was named D(2tail) or D(3tail). Then we defined the pharmacological profiles of the homologous (D(2trunk)/D(2tail) and D(3trunk)/D(3tail)) as well as of the heterologous (D(2trunk)/D(3tail) and D(3trunk)/D(2tail)) cotransfected receptor fragments. The pharmacological profile of the cross-cotransfected fragments was different from that of the native D(2) or D(3) receptors. In most cases, the D(3trunk)/D(2tail) was the one with the highest affinity for most agonists and antagonists. Moreover, we observed that all of these receptor fragments reduced the expression of the wild type dopamine D(2) and D(3) receptors, suggesting that D(2) and D(3) receptors can form complexes with these fragments and that these complexes bind [(3)H]nemonapride less efficiently or are not correctly targeted to the membrane. In a second set of experiments, we tested the ability of the split and the wild type receptors to inhibit adenylyl cyclase (AC) types V and VI. All of the native and split receptors inhibited AC-V and AC-VI, with the exception of D(3), which was unable to inhibit AC-VI. We therefore studied the ability of D(2) and D(3) to interact functionally with one another to inhibit AC-VI. We found that with D(2) alone, R-(+)-7-hydroxydypropylaminotetralin hydrobromide inhibited AC-VI with an IC(50) of 2.05 +/- 0.15 nm, while in the presence of D(2) and D(3) it inhibited AC-VI with an IC(50) of 0.083 +/- 0.011 nm. Similar results were obtained with a chimeric cyclase made from AC-V and AC-VI. Coimmunoprecipitation experiments indicate that D(2) and D(3) receptors are capable of physical interaction.  相似文献   

3.
Though dopaminergic mechanisms modulate cholinergic transmission and cognitive function, the significance of specific receptor subtypes remains uncertain. Here, we examined the roles of dopamine D(3) versus D(2) receptors. By analogy with tacrine (0.16-2.5 mg/kg, s.c.), the selective D(3) receptor antagonists, S33084 (0.01-0.63) and SB277,011 (0.63-40.0), elicited dose-dependent, pronounced and sustained elevations in dialysis levels of acetylcholine (ACh) in the frontal cortex, but not the hippocampus, of freely-moving rats. The actions of these antagonists were stereospecifically mimicked by (+)S14297 (1.25), whereas its inactive distomer, (-)S17777, was ineffective. The preferential D(2) receptor antagonist, L741,626 (10.0), failed to modify levels of ACh. S33084 (0.01-0.63) and SB277,011 (0.16-2.5) also mimicked tacrine (0.04-0.63) by dose-dependently attenuating the deleterious influence of scopolamine (1.25) upon social memory (recognition by an adult rat of a juvenile conspecific). Further, (+)S14297 (1.25) versus (-)S17777 stereospecifically blocked the action of scopolamine. Using an intersession interval of 120 min (spontaneous loss of recognition), S33084 (0.04-0.63), SB277,011 (0.16-10.0) and (+)S14297 (0.63-10.0) likewise mimicked tacrine (0.16-2.5) in enhancing social memory. In contrast, L741,626 (0.16-10.0) displayed amnesic properties. In conclusion, selective blockade of D(3) receptors facilitates frontocortical cholinergic transmission and improves social memory in rats. These data support the pertinence of D(3) receptors as a target for treatment of disorders in which cognitive function is compromised.  相似文献   

4.
The short and long isoforms of the dopamine D2 receptor (D2S and D2L respectively) are highly expressed in the striatum. Functional D2 receptors activate an intracellular signalling pathway that includes a cAMP-independent route involving Akt/GSK3 (glycogen synthase kinase 3). To investigate the Akt/GSK3 response to the seldom-studied D2S receptor, we established a rat D2S receptor-expressing cell line [HEK (human embryonic kidney)-293/rD2S]. We found that in HEK-293/rD2S cells, the D2/D3 agonists bromocriptine and quinpirole significantly induced Akt and GSK3 phosphorylation, as well as ERK1/2 (extracellular-signal-regulated kinase 1/2) activation. The D2S receptor-induced Akt signals were profoundly inhibited by the internalization blockers monodansyl cadaverine and concanavalin A. Activation of the D2S receptor in HEK-293/rD2S cells appeared to trigger Akt/phospho-Akt translocation to the cell membrane. In addition to our cell culture experiments, we studied D2 receptor-dependent Akt in vivo by systemic administration of the D2/D3 agonist quinpirole. The results show that quinpirole evoked Akt-Ser473 phosphorylation in the ventral striatum. Furthermore, intra-accumbens administration of wortmannin, a PI3K (phosphoinositide 3-kinase) inhibitor, significantly suppressed the quinpirole-evoked behavioural activation. Overall, we demonstrate that activation of the dopamine D2S receptor stimulates Akt/GSK3 signalling. In addition, in vivo Akt activity in the ventral striatum appears to play an important role in systemic D2/D3 agonist-induced behavioural activation.  相似文献   

5.
On the basis of affinity differences for spiperone, two binding sites for [3H](+/-)-2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene ([3H]ADTN) in the rat brain could be distinguished: "D3" with a low and "D4" with a high affinity for spiperone. Evidence is provided that D3 and D4 sites are related to high agonist affinity states of the D1 and D2 dopamine receptors, respectively. Various well-known selective D1 and D2 agonists and antagonists showed potencies at these sites in agreement with this hypothesis. A comparison of the Bmax values for [3H]ADTN binding to D3 and D4 sites with the numbers of D1 receptors (labelled by [3H]SCH 23390) and of D2 receptors (labelled by [3H]spiperone), both in the striatum and in the mesolimbic system, indicated that under the conditions used for 3H-agonist binding experiments, both populations of D1 and D2 receptors were converted to their high agonist affinity states to a considerable, although different extent. In fact, when competition experiments with [3H]spiperone were performed under the conditions otherwise used for [3H]ADTN binding experiments (instead of the conditions usually used for antagonist binding), substantial shifts of the displacement curves of 3,4-dihydroxyphenylethylamine (dopamine) and ADTN toward higher affinities were observed. A comparison of the effects of various agonists and antagonists in the [3H]ADTN binding experiments and in functional tests revealed a significant correlation between their potencies at D4 binding sites and at D2 receptors modulating the release of [3H]acetylcholine from striatal slices. However, in the situation of the D1/D3 pair, when the measurement of adenylate cyclase activity was taken as a functional test for D1 receptors, agonists were more active in the binding than in the functional test, whereas for many antagonists the opposite was found. The results are discussed with regard to the classification and functional aspects of brain dopamine receptors.  相似文献   

6.
Dopamine D2LR-serotonin 5-HT2AR heteromers were demonstrated in HEK293 cells after cotransfection of the two receptors and shown to have bidirectional receptor–receptor interactions. In the current study the existence of D2L-5-HT2A heteroreceptor complexes was demonstrated also in discrete regions of the ventral and dorsal striatum with in situ proximity ligation assays (PLA). The hallucinogenic 5-HT2AR agonists LSD and DOI but not the standard 5-HT2AR agonist TCB2 and 5-HT significantly increased the density of D2like antagonist 3H-raclopride binding sites and significantly reduced the pKiH values of the high affinity D2R agonist binding sites in 3H-raclopride/DA competition experiments. Similar results were obtained in HEK293 cells and in ventral striatum. The effects of the hallucinogenic 5-HT2AR agonists on D2R density and affinity were blocked by the 5-HT2A antagonist ketanserin. In a forskolin-induced CRE-luciferase reporter gene assay using cotransfected but not D2R singly transfected HEK293 cells DOI and LSD but not TCB2 significantly enhanced the D2LR agonist quinpirole induced inhibition of CRE-luciferase activity. Haloperidol blocked the effects of both quinpirole alone and the enhancing actions of DOI and LSD while ketanserin only blocked the enhancing actions of DOI and LSD. The mechanism for the allosteric enhancement of the D2R protomer recognition and signalling observed is likely mediated by a biased agonist action of the hallucinogenic 5-HT2AR agonists at the orthosteric site of the 5-HT2AR protomer. This mechanism may contribute to the psychotic actions of LSD and DOI and the D2-5-HT2A heteroreceptor complex may thus be a target for the psychotic actions of hallunicogenic 5-HT2A agonists.  相似文献   

7.
D2/D3 dopamine receptors (D2R/D3R) agonists regulate Akt, but their effects display a complex time‐course. In addition, the respective roles of D2R and D3R are not defined and downstream targets remain poorly characterized, especially in vivo. These issues were addressed here for D3R. Systemic administration of quinelorane, a D2R/D3R agonist, transiently increased phosphorylation of Akt and GSK‐3β in rat nucleus accumbens and dorsal striatum with maximal effects 10 min after injection. Akt activation was associated with phosphorylation of several effectors of the mammalian target of rapamycin complex 1 (mTORC1): p70S6 kinase, ribosomal protein‐S6 (Ser240/244), and eukaryotic initiation factor‐4E binding protein‐1. The action of quinelorane was antagonized by a D2/D3R antagonist, raclopride, and the selective D3R antagonist S33084, inactive by themselves. Furthermore, no effect of quinerolane was seen in knock‐out mice lacking D3R. In drd1a‐EGFP transgenic mice, quinelorane activated Akt/GSK‐3β in both neurons expressing and lacking D1 receptor. Thus, the stimulation of D3R transiently activates the Akt/GSK‐3β pathway in the two populations of medium‐size spiny neurons of the nucleus accumbens and dorsal striatum. This effect may contribute to the influence of D3R ligands on reward, cognition, and processes disrupted in schizophrenia, drug abuse, and Parkinson's disease.  相似文献   

8.
Dopamine (DA) receptors generate many cellular signals and play various roles in locomotion, motivation, hormone production, and drug abuse. According to the location and expression types of the receptors in the brain, DA signals act in either stimulatory or inhibitory manners. Although DA autoreceptors in the substantia nigra pars compacta are known to regulate firing activity, the exact expression patterns and roles of DA autoreceptor types on the firing activity are highly debated. Therefore, we performed individual correlation studies between firing activity and receptor expression patterns using acutely isolated rat substantia nigra pars compacta DA neurons. When we performed single-cell RT-PCR experiments, D(1), D(2)S, D(2)L, D(3), and D(5) receptor mRNA were heterogeneously expressed in the order of D(2)L > D(2)S > D(3) > D(5) > D(1). Stimulation of D(2) receptors with quinpirole suppressed spontaneous firing similarly among all neurons expressing mRNA solely for D(2)S, D(2)L, or D(3) receptors. However, quinpirole most strongly suppressed spontaneous firing in the neurons expressing mRNA for both D(2) and D(3) receptors. These data suggest that D(2) S, D(2)L, and D(3) receptors are able to equally suppress firing activity, but that D(2) and D(3) receptors synergistically suppress firing. This diversity in DA autoreceptors could explain the various actions of DA in the brain.  相似文献   

9.
LS‐3‐134 is a substituted N‐phenylpiperazine derivative that has been reported to exhibit: (i) high‐affinity binding (Ki value 0.2 nM) at human D3 dopamine receptors, (ii) > 100‐fold D3 versus D2 dopamine receptor subtype binding selectivity, and (iii) low‐affinity binding (Ki > 5000 nM) at sigma 1 and sigma 2 receptors. Based upon a forskolin‐dependent activation of the adenylyl cyclase inhibition assay, LS‐3‐134 is a weak partial agonist at both D2 and D3 dopamine receptor subtypes (29% and 35% of full agonist activity, respectively). In this study, [3H]‐labeled LS‐3‐134 was prepared and evaluated to further characterize its use as a D3 dopamine receptor selective radioligand. Kinetic and equilibrium radioligand binding studies were performed. This radioligand rapidly reaches equilibrium (10–15 min at 37°C) and binds with high affinity to both human (Kd = 0.06 ± 0.01 nM) and rat (Kd = 0.2 ± 0.02 nM) D3 receptors expressed in HEK293 cells. Direct and competitive radioligand binding studies using rat caudate and nucleus accumbens tissue indicate that [3H]LS‐3‐134 selectively binds a homogeneous population of binding sites with a dopamine D3 receptor pharmacological profile. Based upon these studies, we propose that [3H]LS‐3‐134 represents a novel D3 dopamine receptor selective radioligand that can be used for studying the expression and regulation of the D3 dopamine receptor subtype.  相似文献   

10.
Association of alleles at the Taql A, Taql B, intron 6, Taql D, exon 7, exon 8, and promoter-141C sites of the D2 dopamine receptor gene with D2 dopamine receptor binding characteristics in the caudate nucleus of Caucasian alcoholic and nonalcoholic subjects was determined. For the Taql D, exon 7, exon 8, and promoter-141C sites there were no significant allelic differences in Bmax (number of binding sites) or Kd (binding affinity) of the D2 dopamine receptors. However, subjects having the minor alleles at the Taql A, Taql B, and intron 6 sites had significantly lower Bmax than subjects not having them. None of these three polymorphisms had any significant effect on Kd. Highly significant linkage disequilibria were observed among the Taql A, Taql B, and intron 6 polymorphic sites, but linkage disequilibria between these three sites and each of the Taql D, exon 7, exon 8, and promoter-141C sites were of lesser or of no significance. Taken together, these findings suggest that the Taql A, Taql B, and intron 6 polymorphisms, but not the Taql D, exon 7, exon 8, and promoter-141C polymorphisms, are in linkage disequilibrium with a functional allelic variant that affects D2 dopamine receptor expression.  相似文献   

11.
12.
We have previously reported that ropinirole, a non-ergot dopamine agonist, has neuroprotective effects against 6-hydroxydopamine in mice based on in vivo antioxidant properties such as the glutathione (GSH)-activating effect. In the present study, we determined that the effects of ropinirole on the level of expression of GSH-related enzyme mRNA, these enzymes were shown to regulate GSH contents in the brain. This study focused on the mechanism of GSH enhancement by ropinirole. Striatal GSH contents were significantly increased by 7-day daily administration of ropinirole. Furthermore, the expression levels of -glutamylcysteine synthetase (-GCS), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST) mRNA increased following daily injections of ropinirole for 7 days. In addition, ropinirole treatment for 7 days suppressed auto-oxidation in mouse striatal homogenates, in contrast to the vehicle treatment. In conclusion, ropinirole was able to suppress auto-oxidation, most probably by increasing GSH levels due to an increase of GSH synthesis. In addition, it is likely that auto-oxidation was also suppressed by the activation of GSH-regulating enzymes such as GPx, GR, and GST in the mouse striatum. Thus, our results indicate that the GSH-activating effect of ropinirole may render this dopamine agonist beneficial as a neuroprotective drug.  相似文献   

13.
Abstract: The 7315c pituitary tumor cell expresses a homogeneous population of dopamine receptors that are functionally similar to brain dopamine D2 receptors. [3H]-Sulpiride binding to 7315c cell homogenates was specific and saturable, and K i values for compounds to compete for these sites were highly correlated with values for the same compounds at D2 receptors in brain. Dopamine maximally inhibited ∼65% of forskolin-stimulated cyclase activity in cell membranes. Some D2 agonists had lower efficacies, suggesting that some compounds are partial agonists at this receptor. Removal of GTP from the assay buffer or pretreatment of the tissue with pertussis toxin abolished the inhibition of adenylyl cyclase by dopamine. Immunodetection of most of the known Gα subunits revealed that Gi1, Gi2, Gi3, Go, Gq, and Gs are present in the 7315c membrane. Pretreatment with the AS antibody (which recognizes the C-terminal regions of Gαi1 and Gαi2) significantly attenuated the inhibition of adenylyl cyclase activity by dopamine, whereas antibodies to C-terminal regions of the other Gα subunits had no effect. These findings suggest that the dopamine D2 receptor regulates cyclase inhibition predominantly via Gi1 and/or Gi2 and that the 7315c tumor cells provide a useful model for studying naturally expressed dopamine D2 receptors in the absence of other dopamine receptor subtypes.  相似文献   

14.
Yuan TT  Qiao H  Dong SP  An SC 《生理学报》2011,63(4):333-341
本文旨在探讨在慢性应激性抑郁发生过程中多巴胺D1受体对谷氨酸及其离子型受体的影响。实验通过建立慢性不可预见性温和应激(chronic unpredictable mild stress,CUMS)抑郁模型,结合海马微量注射多巴胺D1受体激动剂SKF38393、非竞争性N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid,NMDA)受体拮抗剂MK-801和α-氨基羟甲基异恶唑丙酸(α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid,AMPA)受体的拮抗剂NBQX,运用糖水偏爱测试、旷场实验和悬尾实验等方法检测动物的行为表现,采用高效液相色谱法(high-performance liquid chromatography,HPLC)和Western blot实验来检测海马内谷氨酸含量及其离子型受体关键亚基的表达。结果显示,与对照组相比,CUMS组大鼠表现出明显的抑郁样行为变化,且海马谷氨酸含量升高,其NMDA受体的NR1亚基与AMPA受体的GluR2/3亚基也明显下调;注射SKF38393后可明显改善应激引起的抑郁样行为,且海马谷氨酸含量显...  相似文献   

15.
Abstract: Ligand-induced up-regulation of recombinant dopamine D2 receptors was assessed using C6 glioma cells stably expressing the short (415-amino-acid; D2S) and long (444-amino-acid; D2L) forms of the receptor. Overnight treatment of C6-D2L cells with N-propylnorapomorphine (NPA) caused a time- and concentration-dependent increase in the density of receptors, as assessed by the binding of radioligand to membranes prepared from the cells, with no change in the affinity of the receptors for the radioligand. The effect of 10 µM NPA was maximal after 10 h, at which time the density of D2L receptors was more than doubled. The agonists dopamine and quinpirole also increased the density of D2L receptors. The receptor up-regulation was not specific for agonists, because the antagonists epidepride, sulpiride, and domperidone caused smaller (30–60%) increases in receptor density. Prolonged treatment with 10 µM NPA desensitized D2L receptors, as evidenced by a reduced ability of dopamine to inhibit adenylyl cyclase, whereas treatment with sulpiride was associated with an enhanced responsiveness to dopamine. The magnitude of NPA-induced receptor up-regulation in each of four clonal lines of C6-D2L cells (mean increase, 80%) was greater than in all four lines of C6-D2S cells (33%). Inactivation of pertussis toxin-sensitive G proteins had no effect on the basal density of D2L receptors or on the NPA-induced receptor up-regulation. Treatment with 5 µg/ml of cycloheximide, on the other hand, decreased the basal density of receptors and attenuated, but did not prevent, the NPA-induced increase. Chimeric D1/D2 receptors were used to identify structural determinants of dopamine receptor regulation. Treatment with the D1/D2 agonist NPA decreased the density of D1 and chimeric CH4 and CH3 receptors. The latter two receptors have D1 sequence from the amino-terminus to the amino-terminal end of transmembrane region (TM) VII and VI, respectively. CH2, with D1 sequence up to the amino-terminal end of TM V, and thus the third cytoplasmic loop of the D2 receptor, was up-regulated by NPA or the D2-selective agonist quinpirole. Quinpirole treatment decreased the density of CH3 and had no effect on CH4 or D1 receptors. The different responses of CH2 and CH3 to agonist treatment suggest a role for TM V and the third cytoplasmic loop in the direction of receptor regulation.  相似文献   

16.
Dopamine receptor D(2) (DRD2) has two splicing isoforms, a long form (D2L) and short form (D2S), which have distinct functions in the dopaminergic system. However, the regulatory mechanism of the alternative splicing of DRD2 is unknown. In this study, we examined which splicing factors regulate the expression of D2L and D2S by over-expressing several RNA-binding proteins in HEK293 cells. In a cellular splicing assay, the over-expression of polypyrimidine tract-binding protein 1 (PTBP1) reduced the expression of D2S, whereas the knockdown of PTBP1 increased the expression of D2S. We also identified the regions of DRD2 that are responsive to PTBP1 using heterologous minigenes and deletion mutants. Our results indicate that PTBP1 regulates the alternative splicing of DRD2. Considering that DRD2 inhibits cAMP-dependent protein kinase A, which modulates the intracellular localization of PTBP1, PTBP1 may contribute to the autoregulation of DRD2 by regulating the expression of its isoforms.  相似文献   

17.
The human dopamine D2 receptor long isoform (D2L) has significant implications in neurological and neuropsychiatric disorders such as Parkinson's disease and schizophrenia. Detailed structural knowledge of this receptor is limited owing to its highly hydrophobic nature, which leads to protein aggregation and host toxicity when expressed in cellular systems. The newly emerging field of cell‐free protein expression presents numerous advantages to overcome these challenges. This system utilizes protein synthesis machinery and exogenous DNA to synthesize functional proteins outside of intact cells. This study utilizes two different cell‐free systems for the synthesis of human dopamine D2L receptor. These include the Escherichia coli lysate‐based system and the wheat‐germ lysate‐based system. The bacterial cell‐free method used pET 100/D‐TOPO vector to synthesize hexa‐histidine‐tagged D2L receptor using a dialysis bag system; the resulting protein was purified using nickel‐nitrilotriacetic acid affinity resin. The wheat germ system used pEU–glutathione‐S‐transferase (GST) vector to synthesize GST‐tagged D2L receptor using a bilayer translation method; the resulting protein was purified using a GST affinity resin. The presence and binding capacity of the synthesized D2L receptor was confirmed by immunoblotting and radioligand competition assays, respectively. Additionally, in‐gel protein sequencing via Nano LC‐MS/MS was used to confirm protein synthesis via the wheat germ system. The results showed both systems to synthesize microgram quantities of the receptor. Improved expression of this highly challenging protein can improve research and understanding of the human dopamine D2L receptor. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:601–608, 2013  相似文献   

18.
The purpose of this study was to determine the binding sites of pramipexole in extrastriatal dopaminergic regions because its antidepressive effects have been speculated to occur by activating the dopamine D(2) receptor subfamily in extrastriatal areas. Dynamic positron emission tomography (PET) scanning using (11)C-FLB 457 for quantification of D(2)/D(3) receptor subtype was performed on 15 healthy volunteers. Each subject underwent two PET scans before and after receiving a single dose of pramipexole (0, 0.125, or 0.25 mg). The study demonstrated that pramipexole significantly binds to D(2)/D(3) receptors in the prefrontal cortex, amygdala, and medial and lateral thalamus at a dose of 0.25 mg. These regions have been indicated to have some relation to depression and may be part of the target sites where pramipexole exerts its antidepressive effects.  相似文献   

19.
We have cloned two novel Caenorhabditis elegans dopamine receptors, DOP-3 and DOP-4. DOP-3 shows high sequence homology with other D2-like dopamine receptors. As a result of alternative splicing, a truncated splice variant of DOP-3, DOP-3nf, was produced. Because of the in-frame insertion of a stop codon in the third intracellular loop, DOP-3nf lacks the sixth and seventh transmembrane domains that are found in the full-length DOP-3 receptor. Reporter gene assay showed that DOP-3 attenuates forskolin-stimulated cAMP formation in response to dopamine stimulation, whereas DOP-3nf does not. When DOP-3 was coexpressed with DOP-3nf, the ability to inhibit forskolin-stimulated cAMP formation was reduced. DOP-4 shows high sequence homology with D1-like dopamine receptors unique to invertebrates, which are distinct from mammalian D1-like dopamine receptors. Reporter gene assay showed that DOP-4 stimulates cAMP accumulation in response to dopamine stimulation. These two receptors provide new opportunities to understand dopaminergic signaling at the molecular level.  相似文献   

20.
The antipsychotic drugs have been shown to be inverse agonists at the D(2) dopamine receptor. We have examined the mechanism of this inverse agonism by making mutations in residue T343 in the base of the sixth transmembrane spanning region of the receptor. T343R, T343S and T343K mutant D(2) dopamine receptors were made and the T343R mutant characterized in detail. The T343R mutant D(2) dopamine receptor exhibits properties of a receptor that resides more in the activated state, namely increased agonist binding affinity (independent of G-protein coupling and dependent on agonist efficacy), increased agonist potency in functional tests (adenylyl cyclase inhibition) and increased inverse agonist effects. The binding of agonists to the mutant receptor also shows sensitivity to sodium ions, unlike the native receptor, so that isomerization of the receptor to its inactive state may be driven by sodium ions. The binding of inverse agonists to the receptor is, however, unaffected by the mutation. We conclude that inverse agonism at this receptor is not achieved by the inverse agonist binding preferentially to the non-activated state of the receptor over the activated state. Rather the inverse agonist appears to bind to all forms of the receptor but then renders the receptor inactive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号