首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nature of intracellular type A botulinum neurotoxin.   总被引:2,自引:0,他引:2       下载免费PDF全文
The neurotoxin in cells of young Clostridium botulinum type A culture was extracted with lysozyme. Highly purified neurotoxin preparation, obtained by processing the extract in two chromatographic steps had only unnicked (single-chain) molecules of molecular weight comparable to that of the dichains isolated from type A crystals. Trypsinization converted the unnicked molecules into dichains whose component subunits were of sizes indistinguishable from those of the neurotoxin from crystals. The enzymatic treatment increased toxicity of crude extract 30-fold but did not activate the purified intracellular neurotoxin preparation. The results indicated that intracellular type A botulinum neurotoxin is unnicked, is not fully activated, and is activated in the time between its extraction and purification. Since trypsinization nicked all of the single chains without increasing toxicity, nicking was not causally related to toxicity activation.  相似文献   

2.
3.
Application of antibodies in most therapeutic area is limited to extracellular or membranous targets because of their impermeability of membrane. For the purpose of biotechnological and therapeutic application, developing intracellular localizing antibody is the invaluable research field. A new recombinant single-chain variable fragment of an anti-dsDNA monoclonal antibody G2-6, IgG of which has been previously shown to have a cell-penetrating activity, was engineered and produced for the use as a delivery vehicle of biomolecule(s). The penetrating capacity of single-chain variable fragment in three mammalian cell lines, L929, NIH/3T3, and COS-7 was analyzed using flow cytometry and confocal microscopy. The results demonstrated that the single-chain variable fragment can effectively internalize all three cell lines, although the internalization level varied. It was also shown that the internalization was time- and concentration-dependent. Moreover, the single-chain variable fragment was located in nuclei as well as cytoplasm of L929 cells. Overall, the G2-6 single-chain variable fragment might be a candidate vehicle which could be used to deliver specific genes or biomolecules for therapy or diagnosis into the cytoplasm or cell nucleus.  相似文献   

4.
Botulinum neurotoxins (BoNT) are the most potent of all toxins that cause flaccid muscle paralysis leading to death. They are also potential biothreat agents. A systematic investigation of various short peptide inhibitors of the BoNT protease domain with a 17-residue peptide substrate led to arginine-arginine-glycine-cysteine having a basic tetrapeptide structure as the most potent inhibitor. When assayed in the presence of dithiothreitol (DTT), the inhibitory effect was drastically reduced. Replacing the terminal cysteine with one hydrophobic residue eliminated the DTT effect but with two hydrophobic residues made the pentapeptide a poor inhibitor. Replacing the first arginine with cysteine or adding an additional cysteine at the N terminus did not improve inhibition. When assessed using mouse brain lysates, the tetrapeptides also inhibited BoNT/A cleavage of the endogenous SNAP-25. The peptides penetrated the neuronal cell lines, N2A and BE(2)-M17, without adversely affecting metabolic functions as measured by ATP production and P-38 phosphorylation. Biological activity of the peptides persisted within cultured chick motor neurons and rat and mouse cerebellar neurons for more than 40 h and inhibited BoNT/A protease action inside the neurons in a dose- and time-dependent fashion. Our results define a tetrapeptide as the smallest peptide inhibitor in the backdrop of a large substrate protein of 200+ amino acids having multiple interaction regions with its cognate enzyme. The inhibitors should also be valuable candidates for drug development.  相似文献   

5.
Development of a nonviral gene delivery vehicle for systemic application   总被引:5,自引:0,他引:5  
Polycation vehicles used for in vitro gene delivery require alteration for successful application in vivo. Modification of polycations by direct grafting of additional components, e.g., poly(ethylene glycol) (PEG), either before or after DNA complexation, tend to interfere with polymer/DNA binding interactions; this is a particular problem for short polycations such as linear, beta-cyclodextrin-containing polycations (betaCDPs). Here, a new method of betaCDP polyplex (polycation/DNA composite structures) modification is presented that exploits the ability to form inclusion complexes between cyclodextrins and adamantane. Surface-PEGylated betaCDP polyplexes are formed by self-assembly of the polyplexes with adamantane-PEG conjugates. While unmodified polyplexes rapidly aggregate and precipitate in salt solutions, the PEGylated betaCDP polyplexes are stable at conditions of physiological salt concentration. Addition of targeting ligands to the adamantane-PEG conjugates allows for receptor-mediated delivery; galactosylated betaCDP-based particles reveal selective targeting to hepatocytes via the asialoglycoprotein receptor. Galactosylated particles transfect hepatoma cells with 10-fold higher efficiency than glucosylated particles (control), but show no preferential transfection in a cell line lacking the asialoglycoprotein receptor. Thus, surface modification of betaCDP-based polyplexes through the use of cyclodextrin/adamantane host/guest interactions endows the particles with properties appropriate for systemic application.  相似文献   

6.
Neurotoxin cluster gene sequences and arrangements were elucidated for strains of Clostridium botulinum encoding botulinum neurotoxin (BoNT) subtypes A3, A4, and a unique A1-producing strain (HA(-) Orfx(+) A1). These sequences were compared to the known neurotoxin cluster sequences of C. botulinum strains that produce BoNT/A1 and BoNT/A2 and possess either a hemagglutinin (HA) or an Orfx cluster, respectively. The A3 and HA(-) Orfx(+) A1 strains demonstrated a neurotoxin cluster arrangement similar to that found in A2. The A4 strain analyzed possessed two sets of neurotoxin clusters that were similar to what has been found in the A(B) strains: an HA cluster associated with the BoNT/B gene and an Orfx cluster associated with the BoNT/A4 gene. The nucleotide and amino acid sequences of the neurotoxin cluster-specific genes were determined for each neurotoxin cluster and compared among strains. Additionally, the ntnh gene of each strain was compared on both the nucleotide and amino acid levels. The degree of similarity of the sequences of the ntnh genes and corresponding amino acid sequences correlated with the neurotoxin cluster type to which the ntnh gene was assigned.  相似文献   

7.
A novel mechanism for Clostridium botulinum neurotoxin inhibition   总被引:1,自引:0,他引:1  
Clostridium botulinum neurotoxins are zinc endopeptidase proteins responsible for cleaving specific peptide bonds of proteins of neuroexocytosis apparatus. The ability of drugs to interfere with toxin's catalytic activity is being evaluated with zinc chelators and metalloprotease inhibitors. It is important to develop effective pharmacological treatment for the intact holotoxin before the catalytic domain separates and enters the cytosol. We present here evidence for a novel mechanism of an inhibitor binding to the holotoxin and for the chelation of zinc from our structural studies on Clostridium botulinum neurotoxin type B in complex with a potential metalloprotease inhibitor, bis(5-amidino-2-benzimidazolyl)methane, and provide snapshots of the reaction as it progresses. The binding and inhibition mechanism of this inhibitor to the neurotoxin seems to be unique for intact botulinum neurotoxins. The environment of the active site rearranges in the presence of the inhibitor, and the zinc ion is gradually removed from the active site and transported to a different site in the protein, probably causing loss of catalytic activity.  相似文献   

8.
Botulinum neurotoxins (BoNTs) cause botulism by cleaving proteins necessary for nerve transmission. There are seven serotypes of BoNT, A-G, characterized by their response to antisera. Many serotypes are further distinguished into differing subtypes based on amino acid sequence, some of which result in functional differences. Our laboratory previously reported that all tested subtypes within each serotype have the same site of enzymatic activity. Recently, three new subtypes of BoNT/F; /F3, /F4, and /F5, were reported. Here, we report that BoNT/F5 cleaves substrate synaptobrevin-2 in a different location than the other BoNT/F subtypes, between (54)L and (55)E. This is the first report of cleavage of synaptobrevin-2 in this location.  相似文献   

9.
Targeted drug delivery into the cell compartment that is the most vulnerable to effects of the corresponding drug is a challenging problem, and its successful solution can significantly increase the efficiency and reduce side effects of the delivered therapeutic agents. To accomplish this one can utilize natural mechanisms of cellular specific uptake of macromolecules by receptor-mediated endocytosis and intracellular transport between cellular compartments. A transporting construction combining the components responsible for different steps of intracellular transport is promising for creating multifunctional modular constructions capable of delivering the necessary therapeutic agent into a given compartment of type-specified cells. This review focuses on intracellular transport peculiarities along with approaches for designing such transporting constructions for new, more effective, and safer strategies for treatment of various diseases.  相似文献   

10.
《MABS-AUSTIN》2013,5(2):446-459
Botulinum toxins (BoNTs) are among the most toxic substances on earth, with serotype A toxin being the most toxic substance known. They are responsible for human botulism, a disease characterized by flaccid muscle paralysis that occurs naturally through food poisoning or the colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNT has been classified as a category A agent by the Centers for Disease Control, and it is one of six agents with the highest potential risk of use as bioweapons. Human or human-like neutralizing antibodies are thus required for the development of anti-botulinum toxin drugs to deal with this possibility. In this study, Macaca fascicularis was hyperimmunized with a recombinant light chain of BoNT/A. An immune phage display library was constructed and, after multistep panning, several scFv with nanomolar affinities that inhibited the endopeptidase activity of BoNT/A1 in vitro as scFv-Fc, with a molar ratio (ab binding site:toxin) of up to 1:1, were isolated. The neutralization of BoNT/A-induced paralysis by the SEM120-IID5, SEM120-IIIC1 and SEM120-IIIC4 antibodies was demonstrated in mouse phrenic nerve-hemidiaphragm preparations with the holotoxin. The neutralization observed is the strongest ever measured in the phrenic nerve-hemidiaphragm assay for BoNT/A1 for a monoclonal antibody. Several scFv-Fc inhibiting the endopeptidase activity of botulinum neurotoxin A were isolated. For SEM120-IID5, SEM120-IIIC1, and SEM120-IIIC4, inhibitory effects in vitro and protection against the toxin ex vivo were observed. The human-like nature of these antibodies makes them promising lead candidates for further development of immunotherapeutics for this disease.  相似文献   

11.
Botulinum toxins (BoNTs) are among the most toxic substances on earth, with serotype A toxin being the most toxic substance known. They are responsible for human botulism, a disease characterized by flaccid muscle paralysis that occurs naturally through food poisoning or the colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNT has been classified as a category A agent by the Centers for Disease Control, and it is one of six agents with the highest potential risk of use as bioweapons. Human or human-like neutralizing antibodies are thus required for the development of anti-botulinum toxin drugs to deal with this possibility. In this study, Macaca fascicularis was hyperimmunized with a recombinant light chain of BoNT/A. An immune phage display library was constructed and, after multistep panning, several scFv with nanomolar affinities that inhibited the endopeptidase activity of BoNT/A1 in vitro as scFv-Fc, with a molar ratio (ab binding site:toxin) of up to 1:1, were isolated. The neutralization of BoNT/A-induced paralysis by the SEM120-IID5, SEM120-IIIC1 and SEM120-IIIC4 antibodies was demonstrated in mouse phrenic nerve-hemidiaphragm preparations with the holotoxin. The neutralization observed is the strongest ever measured in the phrenic nerve-hemidiaphragm assay for BoNT/A1 for a monoclonal antibody. Several scFv-Fc inhibiting the endopeptidase activity of botulinum neurotoxin A were isolated. For SEM120-IID5, SEM120-IIIC1, and SEM120-IIIC4, inhibitory effects in vitro and protection against the toxin ex vivo were observed. The human-like nature of these antibodies makes them promising lead candidates for further development of immunotherapeutics for this disease.  相似文献   

12.
The method for obtaining the neurotoxin, or alpha-fraction of the toxin, of Cl. botulinum, type B, is described. In accordance with this method, the toxin was precipitated three times with hydrochloric acid in the isoelectric zone with subsequent extraction with phosphate (pH 6.8) and citrate-phosphate (pH 5.6) buffers, then fractionated in columns with DEAE cellulose (pH 5.6), DEAE Sephadex A-50 (pH 7.2) and Sephadex G-200 (pH 7.2). The homogeneous neurotoxin preparations with molecular weights ranging from 145,000 to 160,000 and having the isoelectric point at pH 5.5 and toxicity 5.0--10.0 x 10(7) Dlm per 1 mg protein were obtained.  相似文献   

13.
Botulinum neurotoxins (BoNTs) produced by Clostridium botulinum are of considerable importance due to their being the cause of human and animal botulism, their potential as bioterrorism agents, and their utility as important pharmaceuticals. Type A is prominent due to its high toxicity and long duration of action. Five subtypes of type A BoNT are currently recognized; BoNT/A1, -/A2, and -/A5 have been purified, and their properties have been studied. BoNT/A3 is intriguing because it is not effectively neutralized by polyclonal anti-BoNT/A1 antibodies, and thus, it may potentially replace BoNT/A1 for patients who have become refractive to treatment with BoNT/A1 due to antibody formation or other modes of resistance. Purification of BoNT/A3 has been challenging because of its low levels of production in culture and the need for innovative purification procedures. In this study, modified Mueller-Miller medium was used in place of traditional toxin production medium (TPM) to culture C. botulinum A3 (CDC strain) and boost toxin production. BoNT/A3 titers were at least 10-fold higher than those produced in TPM. A purification method was developed to obtain greater than 95% pure BoNT/A3. The specific toxicity of BoNT/A3 as determined by mouse bioassay was 5.8 × 10(7) 50% lethal doses (LD(50))/mg. Neutralization of BoNT/A3 toxicity by a polyclonal anti-BoNT/A1 antibody was approximately 10-fold less than the neutralization of BoNT/A1 toxicity. In addition, differences in symptoms were observed between mice that were injected with BoNT/A3 and those that were injected with BoNT/A1. These results indicate that BoNT/A3 has novel biochemical and pharmacological properties compared to those of other subtype A toxins.  相似文献   

14.
15.
16.
Structure and biological activity of botulinum neurotoxin   总被引:6,自引:0,他引:6  
Botulinum neurotoxin appears to undergo structural alterations after synthesis and also before it inhibits neurotransmitter release. Discussions and conjectures are presented in this context: 1. At what sites on the 150 kDa neurotoxin does posttranslational proteolytic processing occur? 2. Does neurotransmitter inhibition depend on separation of a segment of the neurotoxin from the rest of the molecule? 3. At what step in the intoxication pathway does activation of neurotoxin (enhanced lethality following limited proteolysis) manifest? 4. Can the receptor binding parameters (based on bovine brain synaptosome and lipid membrane), channel forming property (lipid bilayer membrane) and intracellular inhibitory activity (based on permeabilized chromaffin and PC 12 cells) provide clues to differences in the lethal potency between the neurotoxin serotypes? In addition, the following issues are considered: 5. The spontaneous fragmentation of isolated 50 kDa light chain, after its separation from 100 kDa heavy chain, 6. Effect of specific chemical modification of Arg, His, Lys, Trp, Tyr and Asp/Glu residues of types A, B and E neurotoxins on lethality and antigenicity, and 7. Development of second generation toxoids.  相似文献   

17.
Uptake of botulinum neurotoxin into cultured neurons   总被引:10,自引:0,他引:10  
Keller JE  Cai F  Neale EA 《Biochemistry》2004,43(2):526-532
Botulinum neurotoxins (BoNTs) act within the synaptic terminal to block neurotransmitter release. The toxin enters the neuron by binding to neuronal membrane receptor(s), being taken up into an endosome-like compartment, and penetrating the endosome membrane via a pH-dependent translocation process. Once within the synaptic cytoplasm, BoNT serotypes A and E cleave separate sites on the C-terminus of the neuronal protein SNAP-25, one of the SNARE proteins required for synaptic vesicle fusion. In this study, we measured the effect of brief toxin exposure on SNAP-25 proteolysis in neuronal cell cultures as an indicator of toxin translocation. The results indicate that (1) uptake of both BoNT-A and -E is enhanced with synaptic activity induced by K+ depolarization in the presence of Ca2+ and (2) translocation of BoNT-A from the acidic endosomal compartment is slow relative to that of BoNT-E. Polyclonal antisera against each toxin protect cells when applied with the toxin during stimulation but has no effect when added immediately after toxin exposure, indicating that toxin endocytosis occurs with synaptic activity. Both serotypes cleave SNAP-25 at concentrations between 50 pM and 4 nM. IC50 values for SNAP-25 cleavage are approximately 0.5 nM for both serotypes. Inhibition of the pH-dependent translocation process by pretreating cultures with concanamycin A (Con A) prevents cleavage of SNAP-25 with IC50 values of approximately 25 nM. Addition of Con A at times up to 15 min after toxin exposure abrogated BoNT-A action; however, addition of Con A after 40 min was no longer protective. In contrast, Con A inhibited, but did not prevent, translocation of BoNT-E even when added immediately after toxin exposure, indicating that pH-dependent translocation of BoNT-E is rapid relative to that of BoNT-A. This study demonstrates that uptake of both BoNT-A and -E is enhanced with synaptic activity and that translocation of the toxin catalytic moiety into the cytosol occurs at different rates for these two serotypes.  相似文献   

18.
A peptide-based immunoassay for antibodies against botulinum neurotoxin A   总被引:1,自引:0,他引:1  
Cervical dystonia (CD) is due to neck-muscle spasms that cause pain and involuntary contractions resulting in abnormal neck movements and posture. Symptoms can be relieved by injecting the affected muscle with a botulinum neurotoxin (BoNT, usually type A or type B). The therapeutic benefits are impermanent and toxin injections need to be repeated every 3-6 months. In a very small percentage of patients (less with BoNT/A than with BoNT/B) the treatment elicits blocking anti-toxin antibodies (Abs), which reduce or terminate the patient's responsiveness to further treatment. We have recently mapped (Dolimbek et al., 2006) the CD sera Ab-binding profile using a panel of 60, 19-residue peptides that encompassed the entire H chain sequence 449-1296 and overlapped consecutively by 5 residues. Abs in CD sera bound to one or more of the peptides N25, C10, C15, C20, and C31. This suggested the possibility that binding to these peptides could be used for assay of Abs in CD sera. Data analysis reported here found that Ab binding to these regions showed very significant deviations from the control responses. Of these four peptides, C10 showed the most significant level of separation between patient and control groups (p = 5 x 10(-7)) and the theoretical resolution (i.e., ability to distinguish CD patients from control, see full definition under 'Statistical analysis' in Methods), 84%, was about 4% higher than the least resolved response, C31 (p = 6 x 10(-6), resolution 80%). Since the amounts of Abs bound to a given peptide varied with the patient and not all the patients necessarily recognized all four peptides, there was the possibility that binding to combinations of two or more peptides might give a better discriminatory capability. Using two peptides, C10 plus C31, the resolution improved to 87% (p = 4 x 10(-8)). These two peptides appeared to compliment each other and negate the lower resolution of C31. Combination of three peptides gave resolutions that ranged from 85 (N25 + C15 + C31; p = 2 x 10(-7)) to 88% (C10 + C15 + C31; p = 1 x 10(-8)). Finally, using the data of all four peptides, N25 + C10 + C15 + C31, gave a resolution of 86% (p = 1 x 10(-7)). Although these levels of resolution are somewhat lower than that obtained with whole BoNT/A (resolution 97%; p = 6 x 10(-12)), it may be concluded that the two-peptide combination C10 + C31, or the three-peptide combination C10 + C15 + C31 (affording resolutions of 87 and 88%, respectively) provide a good diagnostic, toxin-free procedure for assay of total specific anti-toxin Abs in BoNT/A-treated CD patients.  相似文献   

19.
Binding of Clostridium botulinum neurotoxin to gangliosides   总被引:3,自引:0,他引:3  
The binding characteristics of Clostridium botulinum neurotoxins of types B, C1, and F to gangliosides was studied by thin layer chromatography plate and microtiter plate methods at low (10 mM NaCl in 10 mM Tris-HCl buffer, pH 7.2) or high (150 mM NaCl in 10 mM Tris-HCl buffer, pH 7.2) ionic strengths and at 0 or 37 degrees C. The three types of toxins bound exclusively to three kinds of gangliosides, GD1a, GD1b, and GT1b, in both the thin layer chromatography plate and the microtiter plate methods. Type C1 toxin bound to the three gangliosides under all the conditions, while type B and F toxins bound only at low ionic strength and 37 degrees C. At low ionic strength, the binding kinetics for the three toxins was monophasic in Scatchard plots, and the association constants obtained in the microtiter plate system were 2-4 X 10(8) M-1. In contrast, the binding kinetics of type C1 toxin in high ionic strength was biphasic in the Scatchard plot, and two association constants were obtained in the microtiter plate system. The heavy chain facilitated the binding of the toxin to the gangliosides. These results indicate that different types of botulinum toxins bind to the gangliosides under different optimal conditions and that gangliosides may not be the common receptor for all types of botulinum toxins. The gangliosides may bind to type C1 toxin together with other potential receptor(s) on synaptosomal membranes.  相似文献   

20.
Botulinum neurotoxin (BoNT; serotypes A-G) and tetanus neurotoxin elicit flaccid and spastic paralysis, respectively. These neurotoxins are zinc proteases that cleave SNARE proteins to inhibit synaptic vesicle fusion to the plasma membrane. Although BoNT/B and tetanus neurotoxin (TeNT) cleave VAMP-2 at the same scissile bond, their mechanism(s) of VAMP-2 recognition is not clear. Mapping experiments showed that residues 60-87 of VAMP-2 were sufficient for efficient cleavage by BoNT/B and that residues 40-87 of VAMP-2 were sufficient for efficient TeNT cleavage. Alanine-scanning mutagenesis and kinetic analysis identified three regions within VAMP-2 that were recognized by BoNT/B and TeNT: residues adjacent to the site of scissile bond cleavage (cleavage region) and residues located within N-terminal and C-terminal regions relative to the cleavage region. Analysis of residues within the cleavage region showed that mutations at the P7, P4, P2, and P1' residues of VAMP-2 had the greatest inhibition of LC/B cleavage (> or =32-fold), whereas mutations at P7, P4, P1', and P2' residues of VAMP-2 had the greatest inhibition of LC/TeNT cleavage (> or =64-fold). Residues within the cleavage region influenced catalysis, whereas residues N-terminal and C-terminal to the cleavage region influenced binding affinity. Thus, BoNT/B and TeNT possess similar organization but have unique residues to recognize and cleave VAMP-2. These studies provide new insights into how the clostridial neurotoxins recognize their substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号