首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanics of collagen gels, like that of many tissues, is governed by events occurring on a length scale much smaller than the functional scale of the material. To deal with the challenge of incorporating deterministic micromechanics into a continuous macroscopic model, we have developed an averaging-theory-based modeling framework for collagen gels. The averaging volume, which is constructed around each integration point in a macroscopic finite-element model, is assumed to experience boundary deformations homogeneous with the macroscopic deformation field, and a micromechanical problem is solved to determine the average stress at the integration point. A two-dimensional version was implemented with the microstructure modeled as a network of nonlinear springs, and 500 segments were found to be sufficient to achieve statistical homogeneity. The method was then used to simulate the experiments of Tower et al. (Ann. Biomed. Eng., 30, pp. 1221-1233) who performed uniaxial extension of prealigned collagen gels. The simulation captured many qualitative features of the experiments, including a toe region and the realignment of the fibril network during extension. Finally, the method was applied to an idealized wound model based on the characterization measurements of Bowes et al. (Wound Repair Regen., 7, pp. 179-186). The model consisted of a strongly aligned "wound" region surrounded by a less strongly aligned "healthy" region. The alignment of the fibrils in the wound region led to reduced axial strains, and the alignment of the fibrils in the healthy region, combined with the greater effective stiffness of the wound region, caused rotation of the wound region during uniaxial stretch. Although the microscopic model in this study was relatively crude, the multiscale framework is general and could be employed in conjunction with any microstructural model.  相似文献   

2.
The aim of this paper is to develop a multiscale hierarchical hybrid model based on finite element analysis and neural network computation to link mesoscopic scale (trabecular network level) and macroscopic (whole bone level) to simulate the process of bone remodelling. As whole bone simulation, including the 3D reconstruction of trabecular level bone, is time consuming, finite element calculation is only performed at the macroscopic level, whilst trained neural networks are employed as numerical substitutes for the finite element code needed for the mesoscale prediction. The bone mechanical properties are updated at the macroscopic scale depending on the morphological and mechanical adaptation at the mesoscopic scale computed by the trained neural network. The digital image-based modelling technique using μ-CT and voxel finite element analysis is used to capture volume elements representativeof 2 mm3 at the mesoscale level of the femoral head. The input data for the artificial neural network are a set of bone material parameters, boundary conditions and the applied stress. The output data are the updated bone properties and some trabecular bone factors. The current approach is the first model, to our knowledge, that incorporates both finite element analysis and neural network computation to rapidly simulate multilevel bone adaptation.  相似文献   

3.
The objective of this article is the derivation of a continuum model for mechanics of red blood cells via multiscale analysis. On the microscopic level, we consider realistic discrete models in terms of energy functionals defined on networks/lattices. Using concepts of Γ-convergence, convergence results as well as explicit homogenisation formulae are derived. Based on a characterisation via energy functionals, appropriate macroscopic stress–strain relationships (constitutive equations) can be determined. Further, mechanical moduli of the derived macroscopic continuum model are directly related to microscopic moduli. As a test case we consider optical tweezers experiments, one of the most common experiments to study mechanical properties of cells. Our simulations of the derived continuum model are based on finite element methods and account explicitly for membrane mechanics and its coupling with bulk mechanics. Since the discretisation of the continuum model can be chosen freely, rather than it is given by the topology of the microscopic cytoskeletal network, the approach allows a significant reduction of computational efforts. Our approach is highly flexible and can be generalised to many other cell models, also including biochemical control.  相似文献   

4.
5.
The microstructure of tissues and tissue equivalents (TEs) plays a critical role in determining the mechanical properties thereof. One of the key challenges in constitutive modeling of TEs is incorporating the kinematics at both the macroscopic and the microscopic scale. Models of fibrous microstructure commonly assume fibrils to move homogeneously, that is affine with the macroscopic deformation. While intuitive for situations of fibril-matrix load transfer, the relevance of the affine assumption is less clear when primary load transfer is from fibril to fibril. The microstructure of TEs is a hydrated network of collagen fibrils, making its microstructural kinematics an open question. Numerical simulation of uniaxial extensile behavior in planar TE networks was performed with fibril kinematics dictated by the network model and by the affine model. The average fibril orientation evolved similarly with strain for both models. The individual fibril kinematics, however, were markedly different. There was no correlation between fibril strain and orientation in the network model, and fibril strains were contained by extensive reorientation. As a result, the macroscopic stress given by the network model was roughly threefold lower than the affine model. Also, the network model showed a toe region, where fibril reorientation precluded the development of significant fibril strain. We conclude that network fibril kinematics are not governed by affine principles, an important consideration in the understanding of tissue and TE mechanics, especially when load bearing is primarily by an interconnected fibril network.  相似文献   

6.
Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this ‘in silico’ actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model''s predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation.  相似文献   

7.
8.
Cortical bone is a heterogeneous material with a complex hierarchical microstructure. In this work, unit cell finite element models were developed to investigate the effect of microstructural morphology on the macroscopic properties of cortical bone. The effect of lacunar and vascular porosities, percentage of osteonal bone and orientation of the Haversian system on the macroscopic elastic moduli and Poisson's ratios was investigated. The results presented provide relationships for applying more locally accurate material properties to larger scale and whole bone models of varying porosity. Analysis of the effect of the orientation of the Haversian system showed that its effects should not be neglected in larger scale models. This study also provides insight into how microstructural features effect local distributions and cause a strain magnification effect. Limitations in applying the unit cell methodology approach to bone are also discussed.  相似文献   

9.
10.
The biomechanical model of glaucoma considers intraocular pressure-related stress and resultant strain on load bearing connective tissues of the optic nerve and surrounding peripapillary sclera as one major causative influence that effects cellular, vascular, and axonal components of the optic nerve. By this reasoning, the quantification of variations in the microstructural architecture and macromechanical response of scleral shells in glaucomatous compared to healthy populations provides an insight into any variations that exist between patient populations. While scleral shells have been tested mechanically in planar and pressure-inflation scenarios the link between the macroscopic biomechanical response and the underlying microstructure has not been determined to date. A potential roadblock to determining how the microstructure changes based on pressure is the ability to mount the spherical scleral shells in a method that does not induce unwanted stresses to the samples (for instance, in the flattening of the spherical specimens), and then capturing macroscopic and microscopic changes under pressure. Often what is done is a macroscopic test followed by sample fixation and then imaging to determine microstructural organization. We introduce a novel device and method, which allows spherical samples to be pressurized and macroscopic and microstructural behavior quantified on fully hydrated ocular specimens. The samples are pressurized and a series of markers on the surface of the sclera imaged from several different perspectives and reconstructed between pressure points to allow for mapping of nonhomogenous strain. Pictures are taken from different perspectives through the use of mounting the pressurization scheme in a gimbal that allows for positioning the sample in several different spherical coordinate system configurations. This ability to move the sclera in space about the center of the globe, coupled with an upright multiphoton microscope, allows for collecting collagen, and elastin signal in a rapid automated fashion so the entire globe can be imaged.  相似文献   

11.
A discrete model provides a useful framework for experimentalists to understand the interactions between growing tissues and other biological mechanisms. A cellular automata (CA) model with domain growth, cell motility and cell proliferation, based on cellular exclusion processes, is developed here. Average densities can be defined from the CA model and a continuum representation can be determined. The domain growth mechanism in the CA model gives rise to a Fokker-Planck equation in the corresponding continuum model, with a diffusive and a convective term. Deterministic continuum models derived from conservation laws do not include this diffusive term. The new diffusive term arises because of the stochasticity inherited from the CA mechanism for domain growth. We extend the models to multiple species and investigate the influence of the flux terms arising from the exclusion processes. The averaged CA agent densities are well approximated by the solution of nonlinear advection-diffusion equations, provided that the relative size of the proliferation processes to the diffusion processes is sufficiently small. This dual approach provides an understanding of the microscopic and macroscopic scales in a developmental process.  相似文献   

12.
In this paper, a novel multiscale hierarchical model based on finite element analysis and neural network computation was developed to link mesoscopic and macroscopic scales to simulate the bone remodeling process. The finite element calculation is performed at the macroscopic level, and trained neural networks are employed as numerical devices for substituting the finite element computation needed for the mesoscale prediction. Based on a set of mesoscale simulations of representative volume elements of bones taken from different bone sites, a neural network is trained to approximate the responses at the meso level and transferred at the macro level.  相似文献   

13.
In this paper mesoscopic (individual based) and macroscopic (population based) models for mesenchymal motion of cells in fibre networks are developed. Mesenchymal motion is a form of cellular movement that occurs in three-dimensions through tissues formed from fibre networks, for example the invasion of tumor metastases through collagen networks. The movement of cells is guided by the directionality of the network and in addition, the network is degraded by proteases. The main results of this paper are derivations of mesoscopic and macroscopic models for mesenchymal motion in a timely varying network tissue. The mesoscopic model is based on a transport equation for correlated random walk and the macroscopic model has the form of a drift-diffusion equation where the mean drift velocity is given by the mean orientation of the tissue and the diffusion tensor is given by the variance-covariance matrix of the tissue orientations. The transport equation as well as the drift-diffusion limit are coupled to a differential equation that describes the tissue changes explicitly, where we distinguish the cases of directed and undirected tissues. As a result the drift velocity and the diffusion tensor are timely varying. We discuss relations to existing models and possible applications.Dedicated to K.P. Hadeler, a great scientist, teacher, and friend.  相似文献   

14.
15.
A number of successful results have been reported in bone tissue engineering, although the routine clinical practice has not been reached so far. One of the reasons is the poor understanding of the role of each scaffold design parameter in its functional performance, which yields an uncertain outcome of each clinical application. Specifically, the role of internal scaffold microarchitectural shape on the regeneration rate and distribution of newly formed bone is still unknown. This work is focused on the in-silico determination of the role of scaffold microstructural anisotropy in bone tissue regeneration. A multiscale approach of the problem is established distinguishing between macroscopic region domain (bone organ and scaffold) and microscopic domain (scaffold microstructure). Results show that, once the scaffold microstructure is properly interconnected and the porosity is sufficiently high, similar rates of bone regeneration are found. However, the main conclusion of the work is that initial scaffold microstructural anisotropy has important consequences since it determines the spatial distribution of the newly formed tissue.  相似文献   

16.
17.
This paper presents for the first time numerical predictions of mechanical blood hemolysis obtained by solving a hyperbolic partial differential equation (PDE) modelling the hemolysis in a Eulerian frame of reference. This provides hemolysis predictions over the entire computational domain as an alternative to the Lagrangian approach consisting in evaluating cell hemolysis along their trajectories. The solution of a PDE over a computational domain, such as in the approach presented herein, yields a unique solution. This is a clear advantage over the Lagrangian approach, which requires the human-made choice of a limited number of trajectories for integration and inevitably results in the incomplete coverage of the computational domain. The hyperbolic hemolysis model is solved with a Discontinuous Galerkin finite element method. The solution algorithm also includes adaptive remeshing to provide high accuracy simulations. Predictions of the modified index of hemolysis (MIH) are presented for flows in dialysis cannulae and sudden contractions. MIH predictions for cannulae differ significantly from those obtained by other authors using the Lagrangian approach. The predictions for flows in sudden contractions are used, along with our own experimental measurements, to assess the value of the threshold shear stress required for hemolysis that is included in the hemolysis model.  相似文献   

18.
19.
State of the art research and treatment of biological tissues require accurate and efficient methods for describing their mechanical properties. Indeed, micromechanics-motivated approaches provide a systematic method for elevating relevant data from the microscopic level to the macroscopic one. In this work, the mechanical responses of hyperelastic tissues with one and two families of collagen fibers are analyzed by application of a new variational estimate accounting for their histology and the behaviors of their constituents. The resulting close-form expressions are used to determine the overall response of the wall of a healthy human coronary artery. To demonstrate the accuracy of the proposed method, these predictions are compared with corresponding 3D finite element simulations of a periodic unit cell of the tissue with two families of fibers. Throughout, the analytical predictions for the highly nonlinear and anisotropic tissue are in agreement with the numerical simulations.  相似文献   

20.
A multilevel finite element approach is applied to predict local cell deformations in engineered tissue constructs. Cell deformations are predicted from detailed nonlinear FE analysis of the microstructure, consisting of an arrangement of cells embedded in matrix material. Effective macroscopic tissue behavior is derived by a computational homogenization procedure. To illustrate this approach, we simulated the compression of a skeletal muscle tissue construct and studied the influence of microstructural heterogeneity on local cell deformations. Results show that heterogeneity has a profound impact on local cell deformations, which highly exceed macroscopic deformations. Moreover, microstructural heterogeneity and the presence of neighboring cells leads to complex cell shapes and causes non-uniform deformations within a cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号