首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of calcium in exocytosis and endocytosis in plant cells   总被引:6,自引:0,他引:6  
The role of calcium in the individual cellular events leading to exocytosis is considered. Both vesicle movement processes and vesicle fusion at the cell surface require calcium for completion of specific events in this pathway. Our knowledge of these events is incomplete. In particular the movement of secretory vesicles by the cytoskeleton in response to added calcium is a key event that is beyond our comprehension at present. At the whole cell level, it is shown that external calcium, at the appropriate concentration, is required to elicit secretion at optimal rates. In both plant and animal cells secretion appears to be dependent on, or is triggered by, a rise in the level of internal free calcium ions from about 10-7 to 10-6M or even higher. In these eukaryotes internal organelles take up calcium and maintain a low level of calcium in the cell, offsetting the inflow of calcium from the plasma membrane. In some systems the inflow is restricted to a certain part of the plasma membrane, which then acts as a focus for exocytosis and, thereby, establishes a cellular polarity. In plant tissues there appears to be a requirement for some circulation of calcium within the apoplast, to sustain secretion. Recent papers on endocytosis have confirmed its occurrence in plant cells and made significant advances in isolating and characterising the clathrin coats of the coated vesicles involved in the uptake. There is no evidence, at present, for a direct role for calcium in these events. Indirectly, calcium stimulates exocytosis, and hence the delivery of excess membrane to the cell surface, which may be retrieved by an increase in the rate of endocytosis. Quantitative comparisons of the membrane flow occurring in these pathways are not available. Several plant cellular systems have been employed to study secretion and some of these may prove to be superior model systems for the investigation of certain aspects of the control of exocytosis and endocytosis by calcium ions.  相似文献   

2.
3.
The patch-clamp technique has been used to measure changes in membrane capacitance (Cm) of bovine lactotrophs in order to monitor fluctuations in cell surface area associated with exo- and endocytosis. Cells were prepared by an enrichment procedure and cultured for up to 14 d before use. Under whole-cell recording, cell cytoplasm was dialyzed with various Ca2(+)-containing solutions. The resting Cm of 6.05 +/- 1.68 pF was found to correlate well with squared cell radius, suggesting a specific Cm of 0.8 microF/cm2. Discrete Cm steps of 2-10 fF were recorded, which most likely reflect single fusion and retrieval events of prolactin-containing granules (0.2-0.6 microns in diameter). High Ca2+ resulted in a Cm increase of 20-50% from the resting value, demonstrating a role for [Ca2+]i in stimulus-secretion coupling. Spontaneous Cm changes have also been recorded, which presumably reflect prolactin secretion supported by a tonic influx of Ca2+ through the membrane. This is supported by the following findings: addition of Co2+ diminished or reversed the spontaneous Cm changes and decreased resting [Ca2+]i; and membrane depolarization increased Cm, indicating the role of voltage-activated channels in stimulus-secretion coupling. As bovine lactotrophs have been found to be largely devoid of spontaneous electrical activity, a mechanism involving modulation of a tonic Ca2+ influx is proposed; this is shown to provide adequate control of basal and triggered secretion monitored by Cm.  相似文献   

4.
Thapsigargin (TG), a plant-derived sesquiterpene lactone, inhibits several isoforms of both the sarcoplasmic and endoplasmic reticulum Ca2+-ATPases. Thus, intracellular Ca2+ stores found in the endoplasmic reticulum can be released by this compound. The mammalian sperm acrosome reaction (AR) depends on influx of extracellular Ca2+. However, few reports have presented evidence for the involvement of putative Ca2+ stores and intracellular Ca2+ mobilization in the AR. Thus, we designed experiments to evaluate the effect of TG on the hamster sperm AR. Thapsigargin stimulated—in a dose-dependent manner—the AR of spermatozoa previously capacitated for at least 3 hr, not affecting sperm motility. A maximal stimulatory effect was apparent 3 min after addition of TG to spermatozoa previously capacitated for 4 hr and was dependent on external Ca2+ since ethyleneglycol-bis-(b-amino-ethyl ether) N,N′-tetra-acetic acid added 1 min before TG completely inhibited AR stimulation. The Ca2+ channel blockers diltiazem and nifedipine also abolished the TG-stimulatory effect when added to capacitated spermatozoa 10 min before the inhibitor. In addition, the trypsin inhibitors p-nitrophenyl-p′-guanidine-benzoate hydrochloride and benzamidine added to the sperm suspensions 10 min before TG inhibited by 70–80% the TG-induced AR. These results indicate that putative Ca2+ stores release may be involved in stimulation of extracellular Ca2+ influx required for the occurrence of the AR. In addition, a sperm trypsin-like protease may be part of the mechanism by which TG induces the hamster sperm AR. Mol. Reprod. Dev. 51:84–91, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
During exocytosis, secretory vesicles of mast cells generate a current transient that marks the opening of the fusion pore, the first aqueous connection that forms between the vesicle lumen and the cell exterior. By recording and analyzing such current transients, we have tracked the conductance of the fusion pore over the first millisecond of its existence. The first opening of the pore occurs rapidly, generally within 100 microseconds at 23 degrees C. The electric conductance of the pore is a few hundred picosiemens at first, but gradually increases over the subsequent milliseconds. Evidently the pore opens abruptly and then dilates. The initial conductance of the pore suggests a diameter comparable to that of a large ion channel. From an analysis of "capacitance flicker" we infer that a pore can increase its diameter severalfold and still close again completely. This suggests that several early events in membrane fusion are reversible.  相似文献   

6.
Secretory vesicles of sympathetic neurons and chromaffin granules maintain a pH gradient toward the cytosol (pH 5.5 versus 7.2) promoted by the V-ATPase activity. This gradient of pH is also responsible for the accumulation of amines and Ca2+ because their transporters use H+ as the counter ion. We have recently shown that alkalinization of secretory vesicles slowed down exocytosis, whereas acidification caused the opposite effect. In this paper, we measure the alkalinization of vesicular pH, caused by the V-ATPase inhibitor bafilomycin A1, by total internal reflection fluorescence microscopy in cells overexpressing the enhanced green fluorescent protein-labeled synaptobrevin (VAMP2-EGFP) protein. The disruption of the vesicular gradient of pH caused the leak of Ca2+, measured with fura-2. Fluorimetric measurements, using the dye Oregon green BAPTA-2, showed that bafilomycin directly released Ca2+ from freshly isolated vesicles. The Ca2+ released from vesicles to the cytosol dramatically increased the granule motion of chromaffin- or PC12-derived granules and triggered exocytosis (measured by amperometry). We conclude that the gradient of pH of secretory vesicles might be involved in the homeostatic regulation of cytosolic Ca2+ and in two of the major functions of secretory cells, vesicle motion and exocytosis.  相似文献   

7.
Ca2+ is an important structural and functional component of plant cells. During the last decade, Ca2+ attracted attention as a secondary messenger in signaling processes in plants to mediate the action of abiotic and biotic signals including light. The structural basis for Ca2+ signaling in plants, the generation of Ca2+ signatures and the nature of Ca2+ sensors are considered in relation to the functioning of plant photo-receptors phytochromes, cryptochromes, and phototropins. Special attention is focused upon genetic factors controlling the expression of light-inducible genes being closely related to above photoreceptors. The analysis of the achievements in the field of plant photoreceptor signal transduction and suggestions of some prospects for the future research were done.  相似文献   

8.
9.
Although cytosolic Ca2+ transients are known to influence the magnitude and duration of hormone and neurotransmitter release, the processes regulating the decay of such transients after cell stimulation are not well understood. Na(+)-dependent Ca2+ efflux across the secretory vesicle membrane, following its incorporation into the plasma membrane, may play a significant role in Ca2+ efflux after stimulation of secretion. We have measured an enhanced 45Ca2+ efflux from cultured bovine adrenal chromaffin cells following cell stimulation with depolarizing medium (75 mM K+) or nicotine (10 microM). Such stimulation also causes Ca2+ uptake via voltage-gated Ca2+ channels and secretion of catecholamines. Na+ replacement with any of several substitutes (N-methyl-glucamine, Li+, choline, or sucrose) during cell stimulation inhibited the enhanced 45Ca2+ efflux, indicating and Na(+)-dependent Ca2+ efflux process. Na+ deprivation did not inhibit 45Ca2+ uptake or catecholamine secretion evoked by elevated K+. Suppression of exocytotic incorporation of secretory vesicle membranes into the plasma membrane with hypertonic medium (620 mOsm) or by lowering temperature to 12 degrees C inhibited K(+)-stimulated 45Ca2+ efflux in Na(+)-containing medium but did not inhibit the stimulated 45Ca2+ uptake. Enhancement of exocytotic secretion with pertussis toxin resulted in an enhanced 45Ca2+ efflux without affecting calcium uptake. The combined results suggest that Na(+)-dependent Ca2+ efflux across secretory vesicle membranes, following their incorporation into the plasma membrane during exocytosis, plays a significant role in regulating calcium efflux and the decay of cytosolic Ca2+ in adrenal chromaffin cells and possibly in related secretory cells.  相似文献   

10.
Glutamate has been implicated as an intracellular messenger in the regulation of insulin secretion in response to glucose. Here we demonstrate by measurements of cell capacitance in rat pancreatic beta-cells that glutamate (1 mM) enhanced Ca2+-dependent exocytosis. Glutamate (1 mM) also stimulated insulin secretion from permeabilized rat beta-cells. The effect was dose-dependent (half-maximum at 5.1 mM) and maximal at 10 mM glutamate. Glutamate-induced exocytosis was stronger in rat beta-cells and clonal INS-1E cells compared to beta-cells isolated from mice and in parental INS-1 cells, which correlated with the expressed levels of glutamate dehydrogenase. Glutamate-induced exocytosis was inhibited by the protonophores FCCP and SF6847, by the vacuolar-type H+-ATPase inhibitor bafilomycin A(1) and by the glutamate transport inhibitor Evans Blue. Our data provide evidence that exocytosis in beta-cells can be modulated by physiological increases in cellular glutamate levels. The results suggest that stimulation of exocytosis is associated with accumulation of glutamate in the secretory granules, a process that is dependent on the transgranular proton gradient.  相似文献   

11.
Cytoplasmic calcium oscillations: a two pool model   总被引:6,自引:0,他引:6  
M J Berridge 《Cell calcium》1991,12(2-3):63-72
Cytosolic calcium oscillations induced by a wide range of agonists, particularly those which stimulate phosphoinositide metabolism, are the result of a periodic release of stored calcium. The formation of inositol 1,4,5 trisphosphate (Ins(1,4,5)P3) seems to play an important role because it can initiate this periodic behaviour when injected or perfused into a variety of cells. A two pool model has been developed to explain how Ins(1,4, 5)P3 sets up these calcium oscillations. It is proposed that Ins(1,4,5)P3 acts through its specific receptor to create a constant influx of primer calcium (Ca2+p) made up of calcium released from the Ins(1,4,5)P3-sensitive pool (ISCS) together with an influx of external calcium. This Ca2+p fails to significantly elevate cytosolic calcium because it is rapidly sequestered by the Ins(1,4,5)P3-insensitive (IICS) stores of calcium distributed throughout the cytosol. Once the latter have filled, they are triggered to release their stored calcium through a process of calcium-induced calcium release to give a typical calcium spike (Ca2+s). In many cells, each Ca2+s begins at a discrete initiation site from which it then spreads through the cell as a wave. The two pool model can account for such waves if it is assumed that calcium released from one IICS diffused across to excite its neighbours thereby setting up a self-propagating wave based on calcium-induced calcium release.  相似文献   

12.
The dihydropyridine calcium agonist Bay K 8644 acts in a dose-dependent manner to increase prolactin secretion from the GH4C1 pituitary cell line. Enhanced secretion was observed at agonist concentrations as low as 10 nM. In the continued presence of Bay K 8644 secretion remained elevated for at least 30 min. The effect of the agonist was Ca2+-dependent and competitively antagonized by dihydropyridine antagonists. Apparently Bay K 8644 acts at the dihydropyridine binding site associated with GH4C1 Ca2+ channels to enhance Ca2+ influx and stimulate secretion from these cells. This is the first report demonstrating that the newly discovered Ca2+ agonist can, by itself, stimulate secretion from a cell.  相似文献   

13.
14.
Many signals that modify plant cell growth and development initiate changes in cytoplasmic Ca2+. The subsequent movement of Ca2+ in the cytoplasm is thought to take place via waves of free Ca2+. These waves may be initiated at defined regions of the cell and movement requires release from a reticulated endoplasmic reticulum and the vacuole. The mechanism of wave propagation is outlined and the possible basis of repetitive reticulum wave formation, Ca2+ oscillations and capacitative Ca2+ signalling is discussed. Evidence for the presence of Ca2+ waves in plant cells is outlined, and from studies on raphides it is suggested that the capabilities for capacitative Ca2+ signalling are also present. The paper finishes with an outline of the possible interrelation between Ca2+ waves and organelles and describes the intercellular movement of Ca2+ waves and the relevance of such information communication to plant development.  相似文献   

15.
Application of the laser-based technique of photon correlation spectroscopy to anin vitro study of the ionic stability and interaction kinetics of zymogen granules isolated from rat exocrine pancreas is described here. In addition the separation from pancreatic acinar cell cytosol of a factor which stabilizes isolated zymogen granules and inhibits cation-induced granule aggregation is outlined. The basis of this action and the significance of the cytosolic inhibitory factor in the regulation of granule mobility and exocytosisin vivo is discussed.  相似文献   

16.
The relationship between Ca(2+) influx through voltage-activated Ca(2+) channels, resting intracellular Ca(2+) level (Ca(i)) and Ca(2+)-dependent exocytosis was studied in bovine adrenal chromaffin cells by using patch-clamp, capacitance, and fluorescent measurements. It was established that depolarization-induced exocytosis passed over two steps, both of which linearly depend on Ca(i). At Ca(i) lying below critical point (200-300 nM) the slope of the relationship was 4.43 and at Ca(i) exceeding the critical point the slope was equal to 31.63. The vesicular mechanism describing experimental two-step dependence of exocytosis on intracellular Ca(2+) (Ca(i)) is proposed. According to the model at Ca(i) below critical point only small-sized vesicles fuse with plasma membrane, whereas at higher Ca(i), larger vesicles started to fuse.  相似文献   

17.
Protein secretion from acinar cells of the pancreas and parotid glands is controlled by G-protein coupled receptor activation and generation of the cellular messengers Ca2+, diacylglycerol and cAMP. Secretory granule (SG) exocytosis shares some common characteristics with nerve, neuroendocrine and endocrine cells which are regulated mainly by elevated cell Ca2+. However, in addition to diverse signaling pathways, acinar cells have large ∼1 μm diameter SGs (∼30 fold larger diameter than synaptic vesicles), respond to stimulation at slower rates (seconds versus milliseconds), demonstrate significant constitutive secretion, and in isolated acini, undergo sequential compound SG–SG exocytosis at the apical membrane. Exocytosis proceeds as an initial rapid phase that peaks and declines over 3 min followed by a prolonged phase that decays to near basal levels over 20–30 min. Studies indicate the early phase is triggered by Ca2+ and involves the SG proteins VAMP2 (vesicle associated membrane protein2), Ca2+-sensing protein synatotagmin 1 (syt1) and the accessory protein complexin 2. The molecular details for regulation of VAMP8-mediated SG exocytosis and the prolonged phase of secretion are still emerging. Here we review the known regulatory molecules that impact the sequential exocytic process of SG tethering, docking, priming and fusion in acinar cells.  相似文献   

18.
To identify guanine nucleotide binding proteins (G-proteins) in sea urchin eggs and to investigate their role in signal transduction at fertilization, we used cholera toxin (CTX) and pertussis toxin (PTX), which catalyze the specific ADP-ribosylation of G-proteins. Cell surface complex, consisting of plasma membranes and adhering cortical vesicles, was prepared from eggs of Lytechinus variegatus and incubated with 32P-labeled NAD in the presence of CTX or PTX. CTX catalyzed the ADP-ribosylation of a 47-kDa polypeptide, whereas PTX catalyzed the ADP-ribosylation of a 40-kDa polypeptide. Microinjection of approximately 30 micrograms/ml whole CTX or approximately 20 micrograms/ml CTX subunit A into intact eggs caused exocytosis of cortical vesicles. However, if the eggs were first injected with EGTA (0.6-1.4 mM), injection of CTX did not cause exocytosis. Eggs injected with 0.8-2.8 mM cAMP or 1.0-4.0 mM adenosine 3':5'-monophosphotioate cyclic Sp-isomer (cAMP-S), a hydrolysis-resistant analog of cAMP, did not undergo exocytosis. These results suggest that a CTX-sensitive G-protein is involved in regulating Ca2+ release and exocytosis of cortical vesicles in sea urchin eggs.  相似文献   

19.
The control of exocytosis in plant cells   总被引:11,自引:2,他引:9  
  相似文献   

20.
The intraacrosomal calcium pool plays a direct role in acrosomal exocytosis   总被引:9,自引:0,他引:9  
The acrosome reaction is a unique type of regulated exocytosis. The single secretory granule of the sperm fuses at multiple points with the overlying plasma membrane. In the past few years we have characterized several aspects of this process using streptolysin O-permeabilized human spermatozoa. Here we show that Rab3A triggers acrosomal exocytosis in the virtual absence of calcium in the cytosolic compartment. Interestingly, exocytosis is blocked when calcium is depleted from intracellular stores. By using a membrane-permeant fluorescent calcium probe, we observed that the acrosome actually behaves as a calcium store. Depleting calcium from this compartment by using a light-sensitive chelator prevents secretion promoted by Rab3A. UV inactivation of the chelator restores exocytosis. Rab3A-triggered exocytosis is blocked by calcium pump and inositol 1,4,5-trisphosphate (IP(3))-sensitive calcium channel inhibitors. Calcium measurements inside and outside the acrosome showed that Rab3A promotes a calcium efflux from the granule. Interestingly, release of calcium through IP(3)-sensitive calcium channels was necessary even when exocytosis was initiated by increasing free calcium in the extraacrosomal compartment in both permeabilized and intact spermatozoa. Our results show that a calcium efflux from the acrosome through IP(3)-sensitive channels is necessary downstream Rab3A activation during the membrane fusion process leading to acrosomal exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号