共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of the gene encoding the major rat liver asialoglycoprotein receptor 总被引:7,自引:0,他引:7
A cloned cDNA encoding the major rat liver asialoglycoprotein receptor has been used to analyze the gene for this protein. Genomic Southern blot analysis reveals that the gene is contained on a single EcoRI restriction fragment and is unique. A clone containing the gene (isolated from a rat liver genomic library) has been characterized by sequence analysis. The mRNA for the receptor is encoded by nine exons separated by eight introns. The first exon is confined to the 5'-untranslated region of the mRNA, the second exon encodes most of the cytoplasmic NH2-terminal domain of the receptor polypeptide, the third exon corresponds to the hydrophobic transmembrane portion of the polypeptide, and the remaining exons encode the extracellular parts of the receptor. Some, but not all, of the divisions between exons correspond to boundaries between functional domains of the polypeptide. 相似文献
2.
3.
The major subunit of the rat asialoglycoprotein receptor can function alone as a receptor 总被引:5,自引:0,他引:5
L T Braiterman S C Chance W R Porter Y C Lee R R Townsend A L Hubbard 《The Journal of biological chemistry》1989,264(3):1682-1688
Mammalian hepatic asialoglycoprotein receptors (ASGP-R) are composed of two unique, but closely related polypeptides, which in the rat are designated rat hepatic lectins 1 and 2/3 (RHL 1, RHL 2/3). Despite numerous studies, the composition of a functional ASGP-R has remained unclear. We examined this question in rat hepatoma tissue culture (HTC) cells (which lack endogenous ASGP-R) that were co-transfected with cDNAs for both RHL 1 and RHL 2/3. The original population was cloned, but derivatives were unstable. We therefore used fluorescence-activated cell sorting to separate a subpopulation of cells (positive) that specifically endocytosed fluoresceinated asialoorosomucoid (ASOR) from one that did not (negative). We then used indirect immunofluorescence with polypeptide-specific ASGP-R antibodies, immunoanalysis, and binding and uptake studies with two Gal ligands (ASOR and NAc-galactosylated poly-L-lysine (Gal-Lys] to further define the ASGP-R status in these two populations. As reported by others, we found that expression of both RHL 1 and RHL 2/3 in the positive cells resulted in binding, uptake and degradation of ASOR, the most commonly used ASGP-R ligand. The negative cells expressed only RHL 1 and neither bound nor processed ASOR. However, the presence of RHL 1 was sufficient for specific high affinity binding and processing of the synthetic ligand, Gal-Lys, by negative cells. These results show that RHL 1 can function as an ASGP-R, given a highly galactosylated ligand, and that RHL 2/3 must play an important role in the organization of native ASGP-R in the membrane. 相似文献
4.
The hepatic asialoglycoprotein receptor 总被引:18,自引:0,他引:18
A L Schwartz 《CRC critical reviews in biochemistry》1984,16(3):207-233
Asialo- (i.e., galactose-terminal) glycoproteins are specifically and avidly recognized by a mammalian hepatic parenchymal cell receptor. This receptor, itself a glycoprotein, binds ligand molecules and directs their delivery to lysosomes for catabolism. The receptor is reutilized during this process of receptor-mediated endocytosis. Ligand specificity is conferred by galactose or N-acetyl-galactosamine at the nonreducing termini of the oligosaccharide chains. The receptor appears to be a transmembrane protein and is localized both to the cell surface as well as to several membranous intracellular compartments. 相似文献
5.
6.
Hao-Wen Kao Chuan-Lin Chen Wen-Yi Chang Jenn-Tzong Chen Wuu-Jyh Lin Ren-Shyan Liu Hsin-Ell Wang 《Bioorganic & medicinal chemistry》2013,21(4):912-921
Quantification of the expression of asialoglycoprotein receptor (ASGPR), which is located on the hepatocyte membrane with high-affinity for galactose residues, can help assess ASGPR-related liver diseases. A hepatic fibrosis mouse model with lower asialoglycoprotein receptor expression was established by dimethylnitrosamine (DMN) administration. This study developed and demonstrated that 4-18F-fluoro-N-(6-((3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexyl)benzamide (18F-FBHGal), a new 18F-labeled monovalent galactose derivative, is an asialoglycoprotein receptor (ASGPR)-specific PET probe in a normal and a hepatic fibrosis mouse models. Immunoassay exhibited a linear correlation between the accumulation of GalH-FITC, a fluorescent surrogate of FBHGal, and the amount of ASGPR. A significant reduction in HepG2 cellular uptake (P <0.0001) was observed using confocal microscopy when co-incubated with 0.5 μM of asialofetuin, a well known ASGPR blocking agent. Animal studies showed the accumulation of 18F-FBHGal in fibrosis liver (14.84 ± 1.10 %ID/g) was appreciably decreased compared with that in normal liver (20.50 ± 1.51 %ID/g, P <0.01) at 30 min post-injection. The receptor indexes (liver/liver-plus-heart ratio at 30 min post-injection) of hepatic fibrosis mice derived from both microPET imaging and biodistribution study were significantly lower (P <0.01) than those of normal mice. The pharmacokinetic parameters (T1/2α, T1/2β, AUC and Cl) derived from microPET images revealed prolonged systemic circulation of 18F-FBHGal in hepatic fibrosis mice compared to that in normal mice. The findings in biological characterizations suggest that 18F-FBHGal is a feasible agent for PET imaging of hepatic fibrosis in mice and may provide new insights into ASGPR-related liver dysfunction. 相似文献
7.
The gene for the human macrophage mannose receptor (MRC1) has been characterized by isolation of clones covering the entire coding region. Sequence analysis reveals that the gene is divided into 30 exons. The first three exons encode the signal sequence, the NH2-terminal cysteine-rich domain, and the fibronectin type II repeat, while the final exon encodes the transmembrane anchor and the cytoplasmic tail. The intervening 26 exons encode the eight carbohydrate-recognition domains and intervening spacer elements. However, no simple correlation between intron boundaries and functional carbohydrate-recognition domains is apparent. The pattern of intron positions as well as comparison of the sequences of the carbohydrate-recognition domains suggests that the duplication of these domains was an evolutionarily ancient event. 相似文献
8.
The binding of d-glucosyl-neoglycoproteins to the hepatic asialoglycoprotein receptor 总被引:3,自引:0,他引:3
The binding of D-glucosyl-neoglycoproteins and D-galactose-terminated glycoproteins to the hepatic asialoglycoprotein receptor of rabbit liver membranes were characterized and compared. The binding of both types of glycoproteins showed the same dependence on calcium concentration, sensitivity to neuraminidase, and degree of inhibition by various carbohydrate derivatives. These results, along with the observation that the rabbit liver membranes bound both the D-glucosyl- and D-galactosyl-terminated glycoproteins to the same extent, indicated that both types of glycoproteins bound to the same receptor. To confirm this hypothesis, receptors were isolated from rabbit livers by affinity chromatography using D-galactosyl-bovine serum albumin or D-glucosyl-bovine serum albumin immobilized on Sepharose. These receptors were shown to be identical by several chemical and immunological criteria as well as in their ability to bind equal amounts of D-galactosyl- and D-glucosyl-terminated glycoproteins. The conclusion is that the rabbit hepatic asialoglycoprotein receptor cannot discriminate between D-galactosyl and D-glucosyl-terminated glycoproteins and binds both. 相似文献
9.
10.
Renaturation and ligand blotting of the major subunit of the rat asialoglycoprotein receptor after denaturing polyacrylamide gel electrophoresis 总被引:1,自引:0,他引:1
Rat hepatic asialoglycoprotein receptors (ASGP-Rs) bind terminalclustered galactosyl or N-acetylgalactosaminyl residues withhigh affinity. The affinity-purified ASGP-R consists of threesubunits designated RHL1, RHL2, and RHL3. The ligand-bindingactivity of individual subunits was investigated by ligand blotting,after separation of subunits by SDS-PAGE under nonreducing conditions,electrotransfer to nitrocellulose, and incubation with 125I-asialo-orosomucoid(ASOR). No ligand-binding to any subunits could be detectedwhen proteins such as BSA, casein, gelatin, or fat-free drymilk were used as blocking agents. However, subsequent incubationof BSA-blocked nitrocellulose blots with some nonionic detergentsresulted in renaturation of RHL1. 125I-ASOR-binding to RHL2or RHL3 was weaker and could be detected only after longer exposure.Similarly, direct use of detergents such as Tween 20, NonidetP-40, or Triton X-100 as blocking agents also preserved theASOR-binding activity of RHL1. Ionic detergents tested did notshow any ability to renature the ligand-binding activity ofRHL subunits. Among nonionic detergents tested, Tween 20, Tween85, Lubrol PX, Nonidet P-40, and Triton X-100 were more effectivethan Tween 40, Tween 65, Tween 80, or Brij 35, whereas SPAN,digito-nin, or octyl-glucoside showed no effect. Weak 125I-ASORbinding to RHL2 or RHL3 could be detected only when the Tweenseries or Lubrol PX were used. Incubation of blots with dithiothreitolcaused a dose-dependent loss of binding activity. The carbohydraterecognition domain (CRD) of RHL1, isolated after subtilisindigestion of ASGP-R bound to ASOR-Sepharose, retained ligand-bindingactivity as assessed by its binding to ASOR-Sepharose and byligand blotting. 125I-ASOR binding to electroblotted CRD afterSDS-PAGE was also dependent on the presence of nonionic detergents.We conclude that restoration of ligand-binding activity of RHL1after SDS-PAGE by some nonionic detergents is not dependenton the presence of the cytoplasmic, transmembrane, or stalkdomains of this subunit. asialoglycoprotein receptor Ligand blotting detergent renaturation RHL1 相似文献
11.
12.
Crystal structure of the carbohydrate recognition domain of the H1 subunit of the asialoglycoprotein receptor 总被引:4,自引:0,他引:4
Meier M Bider MD Malashkevich VN Spiess M Burkhard P 《Journal of molecular biology》2000,300(4):857-865
The human asialoglycoprotein receptor (ASGPR), also called hepatic lectin, is an integral membrane protein and is responsible for the clearance of desialylated, galactose-terminal glycoproteins from the circulation by receptor-mediated endocytosis. It can be subdivided into four functional domains: the cytosolic domain, the transmembrane domain, the stalk and the carbohydrate recognition domain (CRD). The galactose-binding domains belong to the superfamily of C-type (calcium-dependent) lectins, in particular to the long-form subfamily with three conserved intramolecular disulphide bonds. It is able to bind terminal non-reducing galactose residues and N-acetyl-galactosamine residues of desialated tri or tetra-antennary N-linked glycans. The ASGPR is a potential liver-specific receptor for hepatitis B virus and Marburg virus and has been used to target exogenous molecules specifically to hepatocytes for diagnostic and therapeutic purposes.Here, we present the X-ray crystal structure of the carbohydrate recognition domain of the major subunit H1 at 2.3 A resolution. While the overall fold of this and other known C-type lectin structures are well conserved, the positions of the bound calcium ions are not, indicating that the fold is stabilised by alternative mechanisms in different branches of the C-type lectin family. It is the first CRD structure where three calcium ions form an intergral part of the structure. In addition, the structure provides direct confirmation for the conversion of the ligand-binding site of the mannose-binding protein to an asialoglycoprotein receptor-like specificity suggested by Drickamer and colleagues. In agreement with the prediction that the coiled-coil domain of the ASGPR is separated from the CRD and its N-terminal disulphide bridge by several residues, these residues are indeed not alpha-helical, while in tetranectin they form an alpha-helical coiled-coil. 相似文献
13.
Acidification of organelles of the eukaryotic vacuolar system is important for multiple intracellular processes including receptormediated endocytosis, proteolytic activity in lysosomes, and prohormone sorting and processing in secretory granules. Responsible for the generation of a proton gradient across a membrane is vacuolar H + -ATPase (V-ATPase).How the activity of this multisubunit enzyme is regulated remains tobe established. Accessory subunits of the V-ATPase may be involved in the organelle-specific regulation, one candidate being the chromaffin granular V-ATPase-associated protein Ac45. To assess the function ofAc45, wedisrupted its gene by gene targeting in male mouse embryonic stem cells. We have successfully generated Ac45 null mutant (- /Y) embryonic stem cells and injected them into C57BL/6 recipient blastocysts. The blastocysts were replaced into pseudopregnant foster mothers, giving rise to 16 littermates. One of these appeared to be a low-chimeric female mouse that died 6 weeks after birth. No signs of late abortion were detected in the foster mothers. The results suggest that the injected Ac45 null mutant embryonic stem cells affectthe normal development of the blastocyst and are in line with knockout studies on other V-ATPase subunits that point to an essential role for the V-ATPase in early embryonic development. 相似文献
14.
Acidification of organelles of the eukaryotic vacuolar system is important for multiple intracellular processes including receptor-mediated endocytosis, proteolytic activity in lysosomes, and prohormone sorting and processing in secretory granules. Responsible for the generation of a proton gradient across a membrane is vacuolar H(+)-ATPase (V-ATPase). How the activity of this multisubunit enzyme is regulated remains to be established. Accessory subunits of the V-ATPase may be involved in the organelle-specific regulation, one candidate being the chromaffin granular V-ATPase-associated protein Ac45. To assess the function of Ac45, we disrupted its gene by gene targeting in male mouse embryonic stem cells. We have successfully generated Ac45 null mutant (-IY) embryonic stem cells and injected them into C57BL/6 recipient blastocysts. The blastocysts were replaced into pseudopregnant foster mothers, giving rise to 16 littermates. One of these appeared to be a low-chimeric female mouse that died 6 weeks after birth. No signs of late abortion were detected in the foster mothers. The results suggest that the injected Ac45 null mutant embryonic stem cells affect the normal development of the blastocyst and are in line with knockout studies on other V-ATPase subunits that point to an essential role for the V-ATPase in early embryonic development. 相似文献
15.
Paul R. Dragsten David B. Mitchell Gail Covert Theresa Baker 《Biochimica et Biophysica Acta (BBA)/General Subjects》1987,926(3):270-279
We assessed the utility of liver-targeted vesicles as a drug delivery system for the treatment of liver diseases. Small, unilamellar vesicles (mean diameter, 60–80 nm) composed of dipalmitoylphosphatidylcholine, cholesterol, dipalmitoylphosphatidylglycerol and digalactosyldiacylglycerol (mol ratios, 40:40:5:15) are rapidly cleared from the blood in rats after intravenous injection. In vivo organ distribution shows that the liver is the major site of vesicles accumulation, with roughly 60–80% of the vesicles contents delivered to the liver. Isolated, perfused rat liver experiments show that the uptake is due to the hepatic asialoglycoprotein receptor, and the uptake process occurs with minimal vesicle leakage. At low doses of the vesicles, the single pass extraction by the liver is around 50%, which means that this vesicle formulation operates close to optimal efficiency as a drug delivery system to the liver. Binding of vesicles to the liver was determined to saturate at 6.5 mg total lipid/kg body weight, with a maximum steady-state turnover rate of vesicles at 37° C of 79 μg lipid/min per kg body weight. This gives a receptor recycling time of around 80 min. We have incorporated this information into a pharmacokinetic model of vesicle distribution which quantitatively predicts the kinetics and dose dependence of vesicle uptake by the liver in vivo. This information can be used to optimize vesicle-mediated drug delivery to the liver. 相似文献
16.
The hepatic asialoglycoprotein receptor (ASGP-R) is an endocytic receptor that mediates the internalization of desialylated glycoproteins and their delivery to lysosomes. The human ASGP-R is a hetero-oligomeric complex composed of H1 and H2 subunits. There are three naturally occurring H2 splice variants, designated H2a, H2b, and H2c, although the expression of the H2c protein had not been reported. Following deglycosylation of purified ASGP-R, we detected the H2b and H2c proteins in HepG2 and HuH-7 hepatoma cells, using an antibody directed against a COOH-terminal peptide common to all H2 isoforms (anti-H2-COOH) and another antibody against a 19-amino acid cytoplasmic insert found only in H2b (anti-H2-Cyto19). H1 and both H2b and H2c were co-purified by affinity chromatography, using asialo-orosomucoid (ASOR)-, anti-H1-, or anti-H2-COOH-Sepharose, whereas only H1 and H2b were immunoprecipitated with anti-H2-Cyto19. These results indicate that H2b and H2c are not present in the same ASGP-R complexes with H1. Similar to the H2b isoform, H2c was also palmitoylated, indicating that the 19-residue cytoplasmic insert does not regulate palmitoylation. Stably transfected SK-Hep-1 cell lines expressing ASGP-R complexes containing H1 and either H2b or H2c had similar binding affinities for ASOR and endocytosed and degraded ASOR at similar rates. The pH dissociation profiles of ASOR.ASGP-R complexes were also identical for complexes containing either H2b or H2c. We conclude that the H2b and H2c isoforms are both functional but are not present with H1 in the same hetero-oligomeric ASGP-R complexes. This structural difference between two functional subpopulations of ASGP-Rs may provide a molecular basis for the existence of two different pathways, designated State 1 and State 2, by which several types of recycling receptors mediate endocytosis. 相似文献
17.
We assessed the utility of liver-targeted vesicles as a drug delivery system for the treatment of liver diseases. Small, unilamellar vesicles (mean diameter, 60-80 nm) composed of dipalmitoylphosphatidylcholine, cholesterol, dipalmitoylphosphatidylglycerol and digalactosyldiacylglycerol (mol ratios, 40:40:5:15) are rapidly cleared from the blood in rats after intravenous injection. In vivo organ distribution shows that the liver is the major site of vesicle accumulation, with roughly 60-80% of the vesicle contents delivered to the liver. Isolated, perfused rat liver experiments show that the uptake is due to the hepatic asialoglycoprotein receptor, and the uptake process occurs with minimal vesicle leakage. At low doses of the vesicles, the single pass extraction by the liver is around 50%, which means that this vesicle formulation operates close to optimal efficiency as a drug delivery system to the liver. Binding of vesicles to the liver was determined to saturate at 6.5 mg total lipid/kg body weight, with a maximum steady-state turnover rate of vesicles at 37 degrees C of 79 micrograms lipid/min per kg body weight. This gives a receptor recycling time of around 80 min. We have incorporated this information into a pharmacokinetic model of vesicle distribution which quantitatively predicts the kinetics and dose dependence of vesicle uptake by the liver in vivo. This information can be used to optimize vesicle-mediated drug delivery to the liver. 相似文献
18.
A Krebs A Fannon T J Racey P Rochon W T Depew M A Singer 《Biochimie et biologie cellulaire》1987,65(1):56-61
The hepatocyte membrane asialoglycoprotein receptor (ASGP-R) was extracted from rabbit liver, purified, and then incubated with preformed vesicles of dimyristoyl phosphatidylcholine. The association of protein with lipid was dependent on vesicle size and the best results were achieved with small vesicles of about 20 nm diameter. The ligand binding capacity of ASGP-R-vesicle complexes was also measured and found to be approximately sevenfold greater than free receptor in aqueous buffer and twofold greater than receptor solubilized in Triton X-100. Most likely, the reconstitution procedure used in these experiments does not result in transmembrane insertion of the receptor. ASGP-R probably resides on the surface of the vesicle, held there primarily by weak hydrophobic forces. 相似文献
19.
Wenjiang Yang Tiantian Mou Cheng Peng Zhanhong Wu Xianzhong Zhang Fang Li Yunchuan Ma 《Bioorganic & medicinal chemistry》2009,17(21):7510-7516
Asialoglycoprotein receptors (ASGP-R) are well known to exist on the mammalian liver, situate on the surface of hepatocyte membrane. Quantitative imaging of asialoglycoprotein receptors could estimate the function of the liver. 99mTc labeled galactosyl-neoglycoalbumin (NGA) and diethylenetriaminepentaacetic acid galactosyl human serum albumin (GSA) have been developed for SPECT imaging and clinical used in Japan. In this study, we labeled the NGA with 18F to get a novel PET tracer [18F]FNGA and evaluated its hepatic-targeting efficacy and pharmacokinetics. Methods: NGA was labeled with 18F by conjugation with N-succinimidyl-4-18F-fluorobenzoate ([18F]SFB) under a slightly basic condition. The in vivo metabolic stability of [18F]FNGA was determined. Ex vivo biodistribution of [18F]FNGA and blocking experiment was investigated in normal mice. MicroPET images were acquired in rat with and without block at 5 min and 15 min after injection of the radiotracer (3.7 MBq/rat), respectively. Results: Starting with 18F− Kryptofix 2.2.2./K2CO3 solution, the total reaction time for [18F]FNGA is about 150 min. Typical decay-corrected radiochemical yield is about 8–10%. After rapid purified with HiTrap desalting column, the radiochemical purity of [18F]FNGA was more than 99% determined by radio-HPLC. [18F]FNGA was metabolized to produce [18F]FB-Lys in urine at 30 min. Ex vivo biodistribution in mice showed that the liver accumulated 79.18 ± 7.17% and 13.85 ± 3.10% of the injected dose per gram at 5 and 30 min after injection, respectively. In addition, the hepatic uptake of [18F]FNGA was blocked by pre-injecting free NGA as blocking agent (18.55 ± 2.63%ID/g at 5 min pi), indicating the specific binding to ASGP receptor. MicroPET study obtained quality images of rat at 5 and 15 min post-injection. Conclusion: The novel ASGP receptor tracer [18F]FNGA was synthesized with high radiochemical yield. The promising biological properties of [18F]FNGA afford potential applications for assessment of hepatocyte function in the future. It may provide quantitative information and better resolution which particularly help to the liver surgery. 相似文献
20.
The mammalian hepatic asialoglycoprotein receptor (ASGP-R) is an endocytic recycling receptor that mediates the internalization of desialylated glycoproteins and their delivery to lysosomes where they are degraded. The human ASGP-R is a hetero-oligomeric complex composed of two subunits designated H1 and H2. Both subunits are palmitoylated at the cytoplasmic Cys residues near their transmembrane domains (TMD). The cytoplasmic Cys(36) in H1 is located at a position that is five amino acids from the transmembrane junction. Because the sequences of subunits in all mammalian ASGP-R species are highly conserved especially at the region near the palmitoylated Cys, we sought to identify a recognition signal for the palmitoylation of H1. Various types of H1 mutants were created by site-directed or deletion mutagenesis including alteration of the amino acids surrounding Cys(36), replacing portions of the TMD with that of a different protein and partial deletion of the cytoplasmic domain as well as transposing the palmitoylated Cys to positions further away from the TMD. Mutant H1 cDNAs were transiently expressed in COS-7 cells, and the H1 proteins were analyzed after metabolic labeling with [(3)H]palmitate. The results indicate that neither the native amino acid sequence surrounding Cys(36) nor the majority of the cytoplasmic domain sequence is critical for palmitoylation. Palmitoylation was also not dependent on the native TMD of H1. In contrast, the attachment of palmitate was abolished if the Cys residue was transposed to a position that was 30 amino acids away from the transmembrane border. We conclude that the spacing of a Cys residue relative to the TMD in the primary protein sequence of H1 is the major determinant for successful palmitoylation. 相似文献