首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resonance energy transfer (RET) between the tryptophan residues of lysozyme as donors and anthrylvinyl-labeled phosphatidylcholine (AV-PC) or phosphatidylglycerol (AV-PG) as acceptors has been examined to gain insight into molecular level details of the interactions of lysozyme with the lipid bilayers composed of PC with 10, 20, or 40 mol% PG. Energy transfer efficiency determined from the enhanced acceptor fluorescence was found to increase with content of the acidic lipid and surface coverage. The results of RET experiments performed with lipid vesicles containing 40 mol% PG were quantitatively analyzed in terms of the model of energy transfer in two-dimensional systems taking into account the distance dependence of orientation factor. Evidence for an interfacial location of the two predominant lysozyme fluorophores, Trp62 and Trp108, was obtained. The RET enhancement observed while employing AV-PG instead of AV-PC as an energy acceptor was interpreted as arising from the ability of lysozyme to bring about local demixing of the neutral and charged lipids in PC/PG model membranes.  相似文献   

2.
Neurosecretion is catalyzed by assembly of a soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE)-complex composed of SNAP-25, synaptobrevin and syntaxin. Munc 18-1 is known to bind to syntaxin in vitro. This interaction prevents assembly of the SNARE-complex, but might also affect intracellular targeting of the proteins. We have fused syntaxin and Munc 18 to the yellow- (YFP) or cyan-fluorescence-protein (CFP) and expressed the constructs in CHO- and MDCK-cells. We have studied their localization with confocal microscopy and a possible protein-protein interaction with fluorescence-resonance energy transfer (FRET). YFP-syntaxin localizes to intracellular membranes. CFP-Munc 18 is present in the cytoplasm as expected for a protein lacking membrane targeting domains. However, Munc 18 is redirected to internal membranes when syntaxin is coexpressed, but only limited transport of the proteins to the plasma membrane was observed. An interaction between Munc 18 and syntaxin could be demonstrated by FRET using two methods, sensitized acceptor fluorescence and acceptor photobleaching. A mutation in syntaxin (L165A, E166A), which is known to inhibit binding to Munc 18 in vitro, prevents colocalization of the proteins and also the FRET signal. Thus, a protein-protein interaction between Munc 18 and syntaxin occurs on intracellular membranes, which is required but not sufficient for quantitative transport of both proteins to the plasma membrane.  相似文献   

3.
Green fluorescent protein (GFP)-centered fluorescence resonance energy transfer (FRET) relies on a distance-dependent transfer of energy from a donor fluorophore to an acceptor fluorophore and can be used to examine protein interactions in living cells. Here we describe a method to monitor the association and disassociation of heterotrimeric GTP-binding (G-proteins) from one another before and after stimulation of coupled receptors in living Dictyostelium discoideum cells. The Galpha(2)and Gbetagamma proteins were tagged with cyan and yellow fluorescent proteins and used to observe the state of the G-protein heterotrimer. Data from emission spectra were used to detect the FRET fluorescence and to determine kinetics and dose-response curves of bound ligand and analogs. Extending G-protein FRET to mammalian G-proteins should enable direct in situ mechanistic studies and applications such as drug screening and identifying ligands of new G-protein-coupled receptors.  相似文献   

4.
Resonance energy transfer (RET) between anthrylvinyl-labeled phosphatidylcholine (AV-PC) or phosphatidylglycerol (AV-PG) as donors and the heme groups of cytochrome c (cyt c) as acceptors was examined in PC/PG model membranes containing 10, 20 or 40 mol% PG with an emphasis on evaluating lipid demixing caused by this protein. The differences between AV-PC and AV-PG RET profiles observed at PG content 10 mol% were attributed to cyt c ability to produce segregation of acidic lipids into lateral domains. The radius of lipid domains recovered using Monte-Carlo simulation approach was found not to exceed 4 nm pointing to the local character of cyt c-induced lipid demixing. Increase of the membrane PG content to 20 or 40 mol% resulted in domain dissipation as evidenced by the absence of any RET enhancement while recruiting AV-PG instead of AV-PC.  相似文献   

5.
Fluorescence quenching and resonance energy transfer have been used to determine the localization of the local anesthetic tetracaine in vesicles composed of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) as a function of both temperature and ionic strength. The fluorescence behaviour of tetracaine in vesicles can be attributed to its different partition coefficients in acid and basic solution, in gel phase and fluid phase vesicles, respectively. Using both steady-state and time-resolved fluorescence measurements we show that a saturable binding rather than a partitioning model holds for the interaction of tetracaine with gel phase bilayers. The relative quenching efficiencies of the series of n-AS dyes depend on the phase state of the bilayer and suggest a deeper incorporation of tetracaine in fluid phase than in gel phase membranes. Resonance energy transfer measurements support the view that tetracaine is incorporated predominantly in the region of the 9-AS chromophore in DMPC-bilayers.  相似文献   

6.
Fluorescence quenching by a series of spin-labelled fatty acids is used to map the transverse disposition of tryptophan residues in bacteriorhodopsin (the sole protein in the purple membranes of Halobacterium halobium). A new method of data analysis is employed which takes into account differences in the uptake of the quenchers into the membrane. Energy transfer from tryptophan to a set of n-(9-anthroyloxy) fatty acids is used as a second technique to confirm the transverse map of tryptophan residues revealed by the quenching experiments. The relative efficiencies of quenching and energy transfer obtained experimentally are compared with those predicted on the basis of current models of bacteriorhodopsin structure. Most of the tryptophan fluorescence is located near the surface of the purple membrane. When the retinal chromophore of bacteriorhodopsin is removed, tryptophan residues deep in the membrane become fluorescent. These results indicate that the deeper residues transfer their energy to retinal in the native membrane. The retinal moiety is therefore located deep within the membrane rather than at the membrane surface.  相似文献   

7.
Cyt1A is a cytolytic toxin from Bacillus thuringiensis var. israelensis. A computer model of the toxin in solution was generated and validated by resonance energy transfer (RET). The average distance between the two tryptophans (residues 158 and 161) and the fluorescently labeled cysteine 190 was 2.16 nm, which closely matched the distance predicted in computer simulations, 2.2 nm. The simulation results were able to explain two previous experimental observations: (i) amino-acid sequences of all Cyt toxins contain four blocks of highly conserved residues; and (ii) several single-point mutations drastically abrogated Cyt1A's toxicity. Selective randomization of atomic coordinates in the computer model revealed that the conserved blocks are important for proper folding and stability of the toxin molecule. Replacing lysine 225 with alanine, a mutation that renders the toxin inactive, was shown to result in breaking the hydrogen bonds between K225 and V126, L123, and Y189. Calculated Helmholtz free energy difference of the inactive mutation K225A was higher by 12 kcal/mol and 5 kcal/mol than the values for the benign mutations K118A and K198A, respectively, which indicates that the K225A mutant is significantly destabilized. The normal-mode and principal-component analyses revealed that in the wild-type Cyt1A the region around the residue K225 is quite stationary, due to the hydrogen-bond network around K225. In contrast, pronounced twisting and stretching were observed in the mutant K225A, and the region around the residue K225 becomes unstable. Our results indicate that conformational differences in this mutant spread far away from the site of the mutation, suggesting that the mutant is inactivated due to an overall change in conformation and diminished stability rather than due to a localized alteration of a “binding” or “active” site.  相似文献   

8.
A rapid, simple, inexpensive and highly sensitive spectrofluorimetric method was developed for the determination of trace amounts of some tetracyclines (TCs), namely tetracycline hydrochloride (TCH), oxytetracycline hydrochloride (OTCH) and minocycline hydrochloride (MCH). Binding rhodamine B (RhB) to gold nanoparticles (Au NPs) resulted in quenching of the fluorescence of RhB by a resonance energy transfer (FRET) mechanism, with Au NPs as the energy acceptors. The presence of TCs caused the release of RhB molecules and recovered their fluorescence, and this was used as a basis for the quantitative determination of TCs. The reaction was monitored spectrofluorimetrically by measuring the increase in fluorescence of RhB at 572 nm starting 5 min after mixing the reagents in Tris buffer solution (pH 6.5). The effect of various experimental factors such as buffer type, pH, concentrations of the involved reagents and reaction time were studied to optimize the reaction conditions. Under optimum conditions, the calibration graphs were linear within the ranges 2.08 × 10?9–1.04 × 10?6 mol/L, 2.01 × 10?9–1.00 × 10?6 mol/L and 2.02 × 10?9–1.01 × 10?6 mol/L and detection limits (LODs) of 0.61 × 10?9, 0.32 × 10?9 and 0.66 × 10?9 mol/L were calculated for TCH, OTCH and MCH, respectively, with corresponding percent relative standard deviations (%RSDs) of 1.18, 1.21 and 1.54 (n = 5). The method was successfully applied to the determination of TCs in drinking water, human urine, bovine milk and breast milk samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Fluorescence resonance energy transfer (FRET) experiments were carried out in the absence of nucleotide (rigor) or in the presence of MgADP between fluorescent donor probes (IAEDANS (5((((2-iodoacetyl)amino)ethyl)amino)-naphthalene-1-sulfonic acid) at Cys-374 or DANSYL (5-dimethylamino naphthalene-1-(N-(5-aminopentyl))sulfonamide) at Gln-41 of actin and acceptor molecules (FHS (6-[fluorescein-5(and 6)-carboxamido] hexanoic acid succinimidyl ester) at Lys-553 of skeletal muscle myosin subfragment 1. The critical F?rster distance (R(0)) was determined to be 44 and 38 A for the IAEDANS-FHS and DANSYL-FHS donor-acceptor pairs, respectively. The efficiency of energy transfer between the acceptor molecules at Lys-553 of myosin and donor probes at Cys-374 or Gln-41 of actin was calculated to be 0.78 +/- 0.01 or 0.94 +/- 0.01, respectively, corresponding to distances of 35.6 +/- 0.4 A and 24.0 +/- 1.6 A, respectively. MgADP had no significant effect on the distances observed in rigor. Thus, rearrangements in the acto-myosin interface are likely to occur elsewhere than in the lower 50-kDa subdomain of myosin as its affinity for actin is weakened by MgADP binding.  相似文献   

11.
Alginate production by Azotobacter vinelandii growing in chemostat cultures was evaluated under different O2 transfer rates (OTR). As a result of modifying the culture’s agitation rate from 300 to 500 rpm, the OTR increased from 9 to 15.1 mmol l−1 h−1 and a slight variation in the alginate production (1.7–2.2 g l−1) was observed. At a constant growth rate (0.1 h−1), the mean molecular mass of the alginate was strongly influenced by changes in the OTR, varying from 860 to 1,690 kDa. These results support a possible relationship between alginate polymerization-depolymerization process and the O2 uptake rate.  相似文献   

12.
A series of five progressively saturated C35 isoprenoids has been identified in cell-free extracts of the deep-sea methanogen Methanococcus jannaschii. Production and relative abundance of the isoprenoids were dependent on culture conditions; significant production occurred in a 16-l fermentor (12-l working volume) and a 2.5-l fermentor (2-l working volume) but could not be duplicated in serum bottles. Several factors were investigated and shown not to account for the different production levels, including medium composition, pH, and temperature. However, the interphase mass transfer rate was shown to significantly affect the production of C35 isoprenoids in a fermentor. The structures of the novel isoprenoids were confirmed by hydrogenation reactions and mass spectra of the isoprenoids. Indirect evidence based on genomics and mass spectrometry data implicates head-to-head condensation of farnesyl pyrophosphate (C15) with geranylgeranyl pyrophosphate (C20) as the mechanism for C35 synthesis.Communicated by J. WiegelB.P. Manquin and J.A. Morgan contributed equally to this work.  相似文献   

13.
In the photosynthetic bacterium, Rhodobacter sphaeroides, the mobile electron carrier, cytochrome c2 (cyt c2) transfers an electron from reduced heme to the photooxidized bacteriochlorophyll dimer in the membrane bound reaction center (RC) as part of the light induced cyclic electron transfer chain. A complex between these two proteins that is active in electron transfer has been crystallized and its structure determined by X-ray diffraction. The structure of the cyt:RC complex shows the cyt c2 (cyt c2) positioned at the center of the periplasmic surface of the RC. The exposed heme edge from cyt c2 is in close tunneling contact with the electron acceptor through an intervening bridging residue, Tyr L162 located on the RC surface directly above the bacteriochlorophyll dimer. The binding interface between the two proteins can be divided into two regions: a short-range interaction domain and a long-range interaction domain. The short-range domain includes residues immediately surrounding the tunneling contact region around the heme and Tyr L162 that display close intermolecular contacts optimized for electron transfer. These include a small number of hydrophobic interactions, hydrogen bonds and a pi-cation interaction. The long-range interaction domain consists of solvated complementary charged residues; positively charged residues from the cyt and negatively charged residues from the RC that provide long range electrostatic interactions that can steer the two proteins into position for rapid association.  相似文献   

14.
The role of glycolysis and antioxidant enzymes in amyloid beta peptide Aβ25–35 toxicity to human and rat erythrocytes was studied. The erythrotoxicity of Aβ25–35 was shown to increase two-to fourfold both in the absence of glucose in the incubation medium and upon the addition of sodium fluoride, an enolase inhibitor. Potassium cyanide, a Cu,Zn-superoxide dismutase inhibitor, abolishes the toxic effect of Aβ25–35 to erythrocytes, whereas mercaptosuccinate, a glutathione peroxidase inhibitor, and ouabain, a Na+,K+-ATPase inhibitor, promote it. Sodium azide, a catalase inhibitor, did not affect the cell lysis under the action of Aβ25–35. The results support the hypothesis that H2O2, Cu,Zn superoxide dismutase, and glutathione peroxidase are involved in the toxicity mechanism rather than superoxide radical. Glycolysis and Na+,K+-ATPase play a substantial protective role. Fullerene C60 nanoparticles are toxic to erythrocytes of both types; their toxicity is not related to enhanced oxidative stress and the mechanism of toxicity differs from that of Aβ25–35.  相似文献   

15.
Sulfur deprivation of algal cultures selectively and partially inactivates photosystem II (PSII)-catalyzed O2 evolution, induces anaerobiosis and hydrogenase expression, and results in sustained H2 photoproduction for several days. We show that re-addition of limiting amounts of sulfate (1–10 μM final concentration) to the cultures during the H2-production phase temporarily reactivates PSII photochemical and O2-evolution activity and re-establishes higher rates of electron transport through the photosynthetic electron transport chain. The reactivation of PSII occurs by de novo D1 protein synthesis, but does not result in the re-establishment of aerobic conditions in the reactor, detectable by dissolved-O2 sensors. However, concomitant H2 photoproduction is inhibited, possibly due to excessive intra-cellular levels of photosynthetically-evolved O2. The partial recovery of electron transport rates correlates with the re-oxidation of the plastoquinone (PQ) pool, as observed by pulse-amplitude modulated (PAM) and fluorescence-induction measurements. These results show that the presence of a more oxidized PQ pool releases some of the down-regulation of electron transport caused by the anaerobic conditions.  相似文献   

16.
17.
18.
Li IT  Pham E  Truong K 《Biotechnology letters》2006,28(24):1971-1982
Genetically-coded, fluorescence resonance energy transfer (FRET) biosensors are widely used to study molecular events from single cells to whole organisms. They are unique among biosensors because of their spontaneous fluorescence and targeting specificity to both organelles and tissues. In this review, we discuss the theoretical basis of FRET with a focus on key parameters responsible for designing FRET biosensors that have the highest sensitivity. Next, we discuss recent applications that are grouped into four common biosensor design patterns—intermolecular FRET, intramolecular FRET, FRET from substrate cleavage and FRET using multiple colour fluorescent proteins. Lastly, we discuss recent progress in creating fluorescent proteins suitable for FRET purposes. Together these advances in the development of FRET biosensors are beginning to unravel the interconnected and intricate signalling processes as they are occurring in living cells and organisms.  相似文献   

19.
The VerifyNow assay is based upon the ability of activated platelets to cross-link beads coated with fibrinogen. However, fibrinogen is an abundant protein of blood, and therefore it may affect test results by competing with fibrinogen of beads for binding to platelets. To test this assumption, we assessed the influence of artificial alteration of fibrinogen level in blood samples obtained from donors (n = 9) and patients on clopidogrel therapy (n = 8) on the results of the VerifyNow P2Y12 assay. Fibrinogen level was altered by adding to blood samples 1/10 volume of fibrinogen solution (10.56 g/liter) or corresponding buffer. Relative to baseline, addition of buffer significantly increased platelet reactivity, whereas addition of fibrinogen decreased it. Analysis of the relationship between change in platelet reactivity values (dBase and dPRU) and change in fibrinogen concentration (dFg) revealed strong negative correlations: dBase =–63.3 × dFg–27.1 (r =–0.924, p < 0.0005) and dPRU =–54.4 × dFg–21.8 (r =–0.764, p < 0.0005). Thus, the results of our experiments suggest that: (i) blood fibrinogen strongly influences results of the VerifyNow P2Y12 assay, and (ii) correcting for fibrinogen effect may be needed to improve the accuracy of the test in the measuring of antiplatelet effect of clopidogrel therapy.  相似文献   

20.
本研究使用ATP特异性荧光共振能量转移(Fluorescence resonance energy transfer,FRET)为基础的荧光蛋白传感器(Ateam1.03-nD/nA),分析了4种外源信号分子(细胞外ATP、Ca2+、H2O2和NO)对拟南芥(Arabidopsis thaliana(L.)Heynh.)幼苗叶绿体和细胞质中ATP水平的影响。结果显示,细胞质ATP水平整体高于叶绿体,在4种不同浓度的信号分子处理下,叶绿体Ateam1.03-nD/nA的FRET比值仅在1.2 ~ 1.8波动;细胞质Ateam1.03-nD/nA 的FRET比值仅在2.2 ~ 3.0之间波动,未产生显著变化。结果表明在以上外源信号分子的作用下,植物细胞质和叶绿体ATP均维持在较为稳定的水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号