首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence in the brain of senile plaques which contain an amyloid core made of beta-amyloid peptide (Abeta). Abeta is produced by the cleavage of the amyloid precursor protein (APP). Since impairment of neuronal calcium signalling has been causally implicated in ageing and AD, we have investigated the influence of an influx of extracellular calcium on the metabolism of human APP in rat cortical neurones. We report that a high cytosolic calcium concentration, induced by neuronal depolarization, inhibits the alpha-secretase cleavage of APP and triggers the accumulation of intraneuronal C-terminal fragments produced by the beta-cleavage of the protein (CTFbeta). Increase in cytosolic calcium concentration specifically induces the production of large amounts of intraneuronal Abeta1-42, which is inhibited by nimodipine, a specific antagonist of l-type calcium channels. Moreover, calcium release from endoplasmic reticulum is not sufficient to induce the production of intraneuronal Abeta, which requires influx of extracellular calcium mediated by the capacitative calcium entry mechanism. Therefore, a sustained high concentration of cytosolic calcium is needed to induce the production of intraneuronal Abeta1-42 from human APP. Our results show that this accumulation of intraneuronal Abeta1-42 induces neuronal death, which is prevented by a functional gamma-secretase inhibitor.  相似文献   

2.
Abeta40 protects non-toxic Abeta42 monomer from aggregation   总被引:1,自引:0,他引:1  
Abeta40 and Abeta42 are the predominant Abeta species in the human body. Toxic Abeta42 oligomers and fibrils are believed to play a key role in causing Alzheimer's disease (AD). However, the role of Abeta40 in AD pathogenesis is not well established. Emerging evidence indicates a protective role for Abeta40 in AD pathogenesis. Although Abeta40 is known to inhibit Abeta42 fibril formation, it is not clear whether the inhibition acts on the non-toxic monomer or acts on the toxic Abeta42 oligomers. In contrast to conventional methods that detect the appearance of fibrils, in our study Abeta42 aggregation was monitored by the decreasing NMR signals from Abeta42 monomers. In addition, differential NMR isotope labelling enabled the selective observation of Abeta42 aggregation in a mixture of Abeta42 and Abeta40. We found Abeta40 monomers inhibit the aggregation of non-toxic Abeta42 monomers, in an Abeta42/Abeta40 ratio-dependent manner. NMR titration revealed that Abeta40 monomers bind to Abeta42 aggregates with higher affinity than Abeta42 monomers. Abeta40 can also release Abeta42 monomers from Abeta42 aggregates. Thus, Abeta40 likely protects Abeta42 monomers by competing for the binding sites on pre-existing Abeta42 aggregates. Combining our data with growing evidence from transgenic mice and human genetics, we propose that Abeta40 plays a critical, protective role in Alzheimer's by inhibiting the aggregation of Abeta42 monomer. Abeta40 itself, a peptide already present in the human body, may therefore be useful for AD prevention and therapy.  相似文献   

3.
The low density lipoprotein receptor-related protein (LRP) is highly expressed in the brain and has been shown to alter the metabolism of amyloid precursor protein and amyloid-beta peptide (Abeta) in vitro. Previously we developed mice that overexpress a functional LRP minireceptor (mLRP2) in their brains and crossed them to the PDAPP mouse model of Alzheimer disease. Overexpression of mLRP2 in 22-month-old PDAPP mice with amyloid plaques increased a pool of carbonate-soluble Abeta in the brain and worsened memory-related behavior. In the current study, we examined the effects of mLRP2 overexpression on 3-month-old PDAPP mice that had not yet developed amyloid plaques. We found significantly higher levels of membrane-associated Abeta42 in the hippocampus of mice that overexpressed mLRP2. Using immunohistochemical methods, we observed significant intraneuronal Abeta42 in the hippocampus and frontal cortex of PDAPP mice, which frequently co-localized with the lysosomal marker LAMP-1. Interestingly, PDAPP mice lacking apolipoprotein E (apoE) had much less intraneuronal Abeta42. We also found that PC12 cells overexpressing mLRP2 cleared Abeta42 and Abeta40 more rapidly from media than PC12 cells transfected with the vector only. Preincubation of apoE3 or apoE4 with Abeta42 increased the rate of Abeta clearance, and this effect was partially blocked by receptor-associated protein. Our results support the hypothesis that LRP binds and endocytoses Abeta42 both directly and via apoE but that endocytosed Abeta42 is not completely degraded and accumulates in intraneuronal lysosomes.  相似文献   

4.
Quercetin, a flavonoid found in various foodstuffs, has antioxidant properties and increases glutathione (GSH) levels and antioxidant enzyme function. Considerable attention has been focused on increasing the intracellular GSH levels in many diseases, including Alzheimer's disease (AD). Amyloid beta-peptide [Abeta(1-42)], elevated in AD brain, is associated with oxidative stress and neurotoxicity. We aimed to investigate the protective effects of quercetin on Abeta(1-42)-induced oxidative cell toxicity in cultured neurons in the present study. Decreased cell survival in neuronal cultures treated with Abeta(1-42) correlated with increased free radical production measured by dichlorofluorescein fluorescence and an increase in protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (protein-bound 4-hydroxy-2-nonenal). Pretreatment of primary hippocampal cultures with quercetin significantly attenuated Abeta(1-42)-induced cytotoxicity, protein oxidation, lipid peroxidation and apoptosis. A dose-response study suggested that quercetin showed protective effects against Abeta(1-42) toxicity by modulating oxidative stress at lower doses, but higher doses were not only non-neuroprotective but also toxic. These findings provide motivation to test the hypothesis that quercetin may provide a promising approach for the treatment of AD and other oxidative-stress-related neurodegenerative diseases.  相似文献   

5.
The incidence of amyloid plaques, composed mainly of beta-amyloid peptides (Abeta), does not correlate well with the severity of neurodegeneration in patients with Alzheimer's disease (AD). The effects of Abeta(42) on neurons or neural stem cells (NSCs) in terms of the aggregated form remain controversial. We prepared three forms of oligomeric, fibrillar, and monomeric Abeta(42) peptides and investigated their effects on the proliferation and neural differentiation of adult NSCs, according to the degree of aggregation or concentration. A low micromolar concentration (1 micromol/L) of oligomeric Abeta(42) increased the proliferation of adult NSCs remarkably in a neurosphere assay. It also enhanced the neuronal differentiation of adult NSCs and their ability to migrate. These results provide us with valuable information regarding the effects of Abeta(42) on NSCs in the brains of patients with AD.  相似文献   

6.
One of the major pathological features of Alzheimer's disease (AD) is the presence of extracellular amyloid plaques that are composed predominantly of the amyloid-beta peptide (Abeta). Diffuse plaques associated with AD are composed predominantly of Abeta42, whereas senile plaques contain both Abeta40 and Abeta42. Recently, it has been suggested that diffuse plaque formation is initiated as a plasma membrane-bound Abeta species and that Abeta42 is the critical component. In order to investigate this hypothesis, we have examined Abeta42-membrane interactions using in situ atomic force microscopy and fluorescence spectroscopy. Our studies demonstrate the association of Abeta42 with planar bilayers composed of total brain lipids, which results initially in peptide aggregation and then fibre formation. Modulation of the cholesterol content is correlated with the extent of Abeta42-assembly on the bilayer surface. Although Abeta42 was not visualized directly on cholesterol-depleted bilayers, fluorescence anisotropy and fluorimetry demonstrate Abeta42-induced membrane changes. Our results demonstrate that the composition of the lipid bilayer governs the outcome of Abeta interactions.  相似文献   

7.
Aggregation of the amyloid-beta-42 (Abeta42) peptide in the brain parenchyma is a pathological hallmark of Alzheimer's disease (AD), and the prevention of Abeta aggregation has been proposed as a therapeutic intervention in AD. However, recent reports indicate that Abeta can form several different prefibrillar and fibrillar aggregates and that each aggregate may confer different pathogenic effects, suggesting that manipulation of Abeta42 aggregation may not only quantitatively but also qualitatively modify brain pathology. Here, we compare the pathogenicity of human Abeta42 mutants with differing tendencies to aggregate. We examined the aggregation-prone, EOFAD-related Arctic mutation (Abeta42Arc) and an artificial mutation (Abeta42art) that is known to suppress aggregation and toxicity of Abeta42 in vitro. In the Drosophila brain, Abeta42Arc formed more oligomers and deposits than did wild type Abeta42, while Abeta42art formed fewer oligomers and deposits. The severity of locomotor dysfunction and premature death positively correlated with the aggregation tendencies of Abeta peptides. Surprisingly, however, Abeta42art caused earlier onset of memory defects than Abeta42. More remarkably, each Abeta induced qualitatively different pathologies. Abeta42Arc caused greater neuron loss than did Abeta42, while Abeta42art flies showed the strongest neurite degeneration. This pattern of degeneration coincides with the distribution of Thioflavin S-stained Abeta aggregates: Abeta42Arc formed large deposits in the cell body, Abeta42art accumulated preferentially in the neurites, while Abeta42 accumulated in both locations. Our results demonstrate that manipulation of the aggregation propensity of Abeta42 does not simply change the level of toxicity, but can also result in qualitative shifts in the pathology induced in vivo.  相似文献   

8.
Accumulating evidence points to an important role of intraneuronal Abeta as a trigger of the pathological cascade of events leading to neurodegeneration and eventually to Alzheimer's disease (AD) with its typical clinical symptoms, like memory impairment and change in personality. As a new concept, intraneuronal accumulation of Abeta instead of extracellular Abeta deposition has been introduced to be the disease-triggering event in AD. The present review compiles current knowledge on the amyloid precursor protein (APP)/PS1KI mouse model with early and massive intraneuronal Abeta42 accumulation: (1) The APP/PS1KI mouse model exhibits early robust brain and spinal cord axonal degeneration and hippocampal CA1 neuron loss. (2) At the same time-point, a dramatic, age-dependent reduced ability to perform working memory and motor tasks is observed. (3) The APP/PS1KI mice are smaller and show development of a thoracolumbar kyphosis, together with an incremental loss of body weight. (4) Onset of the observed behavioral alterations correlates well with robust axonal degeneration in brain and spinal cord and with abundant hippocampal CA1 neuron loss.  相似文献   

9.
Alzheimer's disease (AD) is neuropathologically characterized by depositions of extracellular amyloid and intracellular neurofibrillary tangles, associated with loss of neurons in the brain. Amyloid beta-peptide (Abeta) is the major component of senile plaques and is considered to have a causal role in the development and progress of AD. Several lines of evidence suggest that enhanced oxidative stress and inflammation play important roles in the pathogenesis or progression of AD. The present study aimed to investigate the protective effects of ethyl-4-hydroxy-3-methoxycinnamic acid (FAEE), a phenolic compound which shows antioxidant and anti-inflammatory activity, on Abeta(1-42)-induced oxidative stress and neurotoxicity. We hypothesized that the structure of FAEE would facilitate radical scavenging and may induce protective proteins. Abeta(1-42) decreases cell viability, which was correlated with increased free radical formation, protein oxidation (protein carbonyl, 3-nitrotyrosine), lipid peroxidation (4-hydroxy-2-trans-nonenal) and inducible nitric oxide synthase. Pre-treatment of primary hippocampal cultures with FAEE significantly attenuated Abeta(1-42)-induced cytotoxicity, intracellular reactive oxygen species accumulation, protein oxidation, lipid peroxidation and induction of inducible nitric oxide synthase. Treatment of neurons with Abeta(1-42) increases levels of heme oxygenase-1 and heat shock protein 72. Consistent with a cellular stress response to the Abeta(1-42)-induced oxidative stress, FAEE treatment increases the levels of heme oxygenase-1 and heat shock protein 72, which may be regulated by oxidative stresses in a coordinated manner and play a pivotal role in the cytoprotection of neuronal cells against Abeta(1-42)-induced toxicity. These results suggest that FAEE exerts protective effects against Abeta(1-42) toxicity by modulating oxidative stress directly and by inducing protective genes. These findings suggest that FAEE could potentially be of importance for the treatment of AD and other oxidative stress-related diseases.  相似文献   

10.
Alzheimer's disease (AD) is a common neurodegenerative disease that affects cognitive function in the elderly. Large extracellular beta-amyloid (Abeta) plaques and tau-containing intraneuronal neurofibrillary tangles characterize AD from a histopathologic perspective. However, the severity of dementia in AD is more closely related to the degree of the associated neuronal and synaptic loss. It is not known how neurons die and synapses are lost in AD; the current review summarizes what is known about this issue. Most evidence indicates that amyloid precursor protein (APP) processing is central to the AD process. The Abeta in plaques is a metabolite of the APP that forms when an alternative (beta-secretase and then gamma-secretase) enzymatic pathway is utilized for processing. Mutations of the APP gene lead to AD by influencing APP metabolism. One leading theory is that the Abeta in plaques leads to AD because Abeta is directly toxic to the adjacent neurons. Other theories advance the notion that neuronal death is triggered by intracellular events that occur during APP processing or by extraneuronal preplaque Abeta oligomers. Some investigators speculate that in many cases there is a more general disorder of protein processing in neurons that leads to cell death. In the later models, Abeta plaques are a byproduct of the disease process, rather than the direct cause of neuronal death. A direct correlation between Abeta plaque burden and neuronal (or synaptic) loss should occur in AD if Abeta plaques cause AD through a direct toxic effect. However, histopathologic studies indicate that the correlation between Abeta plaque burden and neuronal (or synaptic) loss is poor. We conclude that APP processing and Abeta formation is important to the AD process, but that neuronal alterations that underlie symptoms of AD are not due exclusively to a direct toxic effect of the Abeta deposits that occur in plaques. A more general problem with protein processing, damage due to the neuron from accumulation of intraneuronal Abeta or extracellular, preplaque Abeta may also be important as underlying factors in the dementia of AD.  相似文献   

11.
Alzheimer's disease (AD) is characterized by overproduction of beta amyloid peptides in the brain with progressive loss of neuronal cells. The 42-aa form of the beta amyloid peptide (Abeta(42)) is implied as a major causative factor, because it is toxic to neurons and elicits inflammatory responses in the brain by activating microglial cells. Despite the overproduction of Abeta(42), AD brain tissue also generates protective factor(s) that may antagonize the neurodestructive effect of Abeta(42). Humanin is a gene cloned from an apparently normal region of an AD brain and encodes a 24-aa peptide. Both secreted and synthetic Humanin peptides protect neuronal cells from damage by Abeta(42), and the effect of Humanin may involve putative cellular receptor(s). To elucidate the molecular identity of such receptor(s), we examined the activity of synthetic Humanin on various cells and found that Humanin induced chemotaxis of mononuclear phagocytes by using a human G protein-coupled formylpeptide receptor-like-1 (FPRL1) and its murine counterpart FPR2. Coincidentally, FPRL1 and FPR2 are also functional receptors used by Abeta(42) to chemoattract and activate phagocytic cells. Humanin reduced the aggregation and fibrillary formation by suppressing the effect of Abeta(42) on mononuclear phagocytes. In neuroblast cells, Humanin and Abeta(42) both activated FPRL1; however, only Abeta(42) caused apoptotic death of the cells, and its cytopathic effect was blocked by Humanin. We conclude that Humanin shares human FPRL1 and mouse FPR2 with Abeta(42) and suggest that Humanin may exert its neuroprotective effects by competitively inhibiting the access of FPRL1 to Abeta(42).  相似文献   

12.
Abeta40 and Abeta42 are the major forms of amyloid beta peptides (Abeta) in the brain. Although Abeta42 differs from Abeta40 by only two residues, Abeta42 is much more prone to aggregation and more toxic to neurons than Abeta40. To probe whether dynamics contribute to such dramatic difference in function, backbone ps-ns dynamics of native Abeta monomers were characterized by 15N spin relaxation at 273.3 K and 800 MHz. Abeta42 aggregates much faster than Abeta40 in the NMR tube. The effect of Abeta aggregation was removed from the relaxation measurement by interleaved data collection. R1, R2 and nuclear Overhauser enhancement (NOE) values are similar in Abeta40 and Abeta42, except at the C terminus, indicating Abeta42 and Abeta40 monomers have identical global motions. Comparisons of the spectral density function J(0.87omegaH) and order parameters (S2) indicate that the Abeta42 C terminus is more rigid than the Abeta40 C terminus. At 280.4 K and 287.6 K, the Abeta42 C terminus remains more rigid than the Abeta40 C terminus, suggesting such a dynamical difference is likely present at the physiological temperature. The Abeta42 monomer likely has less configurational entropy due to restricted motion in the C terminus and may pay a smaller entropic price to form fibrils than the Abeta40 monomer. We hypothesize that the entropic difference between Abeta40 and Abeta42 monomers might partly account for the fact that Abeta42 is the major Abeta species in parenchymal senile plaques in most Alzheimer's diseased brains in spite of the predominance of Abeta40 in plasma. The increased rigidity of the Abeta42 C terminus is likely due to its pre-ordering for beta-conformation present in soluble oligomers and fibrils. The Abeta42 C terminus may therefore serve as an internal seed for aggregation.  相似文献   

13.
Previously, we found that amyloid beta-protein (Abeta)1-42 exhibits neurotoxicity, while Abeta1-40 serves as an antioxidant molecule by quenching metal ions and inhibiting metal-mediated oxygen radical generation. Here, we show another neuroprotective action of nonamyloidogenic Abeta1-40 against Abeta1-42-induced neurotoxicity in culture and in vivo. Neuronal death was induced by Abeta1-42 at concentrations higher than 2 microm, which was prevented by concurrent treatment with Abeta1-40 in a dose-dependent manner. However, metal chelators did not prevent Abeta1-42-induced neuronal death. Circular dichroism spectroscopy showed that Abeta1-40 inhibited the beta-sheet transformation of Abeta1-42. Thioflavin-T assay and electron microscopy analysis revealed that Abeta1-40 inhibited the fibril formation of Abeta1-42. In contrast, Abeta1-16, Abeta25-35, and Abeta40-1 did not inhibit the fibril formation of Abeta1-42 nor prevent Abeta1-42-induced neuronal death. Abeta1-42 injection into the rat entorhinal cortex (EC) caused the hyperphosphorylation of tau on both sides of EC and hippocampus and increased the number of glial fibrillary acidic protein (GFAP)-positive astrocytes in the ipsilateral EC, which were prevented by the concurrent injection of Abeta1-40. These results indicate that Abeta1-40 protects neurons from Abeta1-42-induced neuronal damage in vitro and in vivo, not by sequestrating metals, but by inhibiting the beta-sheet transformation and fibril formation of Abeta1-42. Our data suggest a mechanism by which elevated Abeta1-42/Abeta1-40 ratio accelerates the development of Alzheimer's disease (AD) in familial AD.  相似文献   

14.
Accumulating evidence suggests that intracellular amyloid-beta (Abeta) peptide triggers the early pathological events in Alzheimer's disease (AD). However, little is known about the consequence of cytosolic Abeta. In this study, we ectopically expressed Abeta42 in the cytoplasm of SH-SY5Y neuroblastoma cells by expressing a fusion protein of GFP-tagged ubiquitin and Abeta42 (GFPUb-Abeta42). Although GFPUb and Abeta42 are stochastically produced with the same molar ratio in the cytoplasm, Abeta42 was completely degraded in more than 50% of the GFPUb-expressing cells. However, if Abeta42 was not degraded in their cytoplasm, then Abeta42-expressing cells underwent apoptosis. The number of Abeta42-expressing cells is significantly increased by the inhibition of proteasome with MG132. Cytosolic Abeta42 which has escaped degradation inhibits proteasome and thereby may accelerate the accumulation of Abeta42 and its detrimental effects. Our findings suggest that cells have the potential to degrade Abeta42 in their cytoplasm but if Abeta42 appears in the cytoplasm due to its incomplete degradation, it accumulates and may trigger the fatal cascade of pathology of AD.  相似文献   

15.
Apart from its role as a risk factor in arteriosclerosis, plasma cholesterol is increasingly recognized to play a major role in the pathogenesis of Alzheimer's disease (AD). Moreover, alterations of intracellular cholesterol metabolism in neuronal and vascular cells are of considerable importance for the understanding of AD. Cellular cholesterol accumulation enhances the deposition of insoluble beta-amyloid peptides, which is considered a hallmark in the pathogenesis of AD. In order to test the hypothesis, whether exogenous beta-amyloid peptides (Abeta42, Abeta40) might contribute to cellular cholesterol accumulation by opsonization of lipoproteins, we compared the binding and uptake of native LDL, enzymatically modified LDL (E-LDL), copper oxidized LDL (Ox-LDL) and HDL as control, preincubated either in the absence or presence of Abeta42 or Abeta40, by human monocytes or monocyte-derived macrophages. Incubation of monocytes and macrophages with Abeta-lipoprotein-complexes lead to increased cellular free and esterified cholesterol when compared to non-opsonized lipoproteins, except for HDL. Furthermore, the cellular uptake of these complexes regulated Abeta-receptors such as FPRL-1 or LRP/CD91. In summary, our results suggest that Abeta42 and Abeta40 act as potent opsonins for LDL, E-LDL and Ox-LDL and enhance cellular cholesterol accumulation as well as Abeta-deposition in vessel wall macrophages.  相似文献   

16.
Glutamate transporters are involved in the maintenance of synaptic glutamate concentrations. Because of its potential neurotoxicity, clearance of glutamate from the synaptic cleft may be critical for neuronal survival. Inhibition of glutamate uptake from the synapse has been implicated in several neurodegenerative disorders. In particular, glutamate uptake is inhibited in Alzheimer's disease (AD); however, the mechanism of decreased transporter activity is unknown. Oxidative damage in brain is implicated in models of neurodegeneration, as well as in AD. Glutamate transporters are inhibited by oxidative damage from reactive oxygen species and lipid peroxidation products such as 4-hydroxy-2-nonenal (HNE). Therefore, we have investigated a possible connection between the oxidative damage and the decreased glutamate uptake known to occur in AD brain. Western blots of immunoprecipitated HNE-immunoreactive proteins from the inferior parietal lobule of AD and control brains suggest that HNE is conjugated to GLT-1 to a greater extent in the AD brain. A similar analysis of beta amyloid (Abeta)-treated synaptosomes shows for the first time that Abeta1-42 also increases HNE conjugation to the glutamate transporter. Together, our data provide a possible link between the oxidative damage and neurodegeneration in AD, and supports the role of excitotoxicity in the pathogenesis of this disorder. Furthermore, our data suggests that Abeta may be a possible causative agent in this cascade.  相似文献   

17.
Non-steroidal anti-inflammatory drugs (NSAIDs) have been associated with reduced risk for Alzheimer's disease (AD) and selected NSAIDs racemates suppress beta-amyloid (Abeta) accumulation in vivo and Abeta42 production in vitro. Clinical use of NSAIDs for preventing or treating AD has been hampered by dose-limiting toxicity believed to be due to cyclooxygenase (COX)-inhibition that is reportedly not essential for selective Abeta42 reduction. Profens have racemates and R-enantiomers were supposed to be inactive forms. Here we demonstrate that R-ibuprofen and R-flurbiprofen, with poor COX-inhibiting activity, reduce Abeta42 production by human cells. Although these R-enantiomers inhibit nuclear factor-kappaB (NF-kappaB) activation and NF-kappaB can selectively regulate Abeta42, Abeta42 reduction is not mediated by inhibition of NF-kappaB activation. Because of its efficacy at lowering Abeta42 production and low toxicity profile, R-flurbiprofen is a strong candidate for clinical development.  相似文献   

18.
Alzheimer disease (AD), the most frequent cause of dementia, is characterized by an important neuronal loss. A typical histological hallmark of AD is the extracellular deposition of beta-amyloid peptide (A beta), which is produced by the cleavage of the amyloid precursor protein (APP). Most of the gene mutations that segregate with the inherited forms of AD result in increasing the ratio of A beta 42/A beta 40 production. A beta 42 also accumulates in neurons of AD patients. Altogether, these data strongly suggest that the neuronal production of A beta 42 is a critical event in AD, but the intraneuronal A beta 42 toxicity has never been demonstrated. Here, we report that the long term expression of human APP in rat cortical neurons induces apoptosis. Although APP processing leads to production of extracellular A beta 1-40 and soluble APP, these extracellular derivatives do not induce neuronal death. On the contrary, neurons undergo apoptosis as soon as they accumulate intracellular A beta 1-42 following the expression of full-length APP or a C-terminal deleted APP isoform. The inhibition of intraneuronal A beta 1-42 production by a functional gamma-secretase inhibitor increases neuronal survival. Therefore, the accumulation of intraneuronal A beta 1-42 is the key event in the neurodegenerative process that we observed.  相似文献   

19.
Alzheimer's disease (AD) is a neurodegenerative disorder that results from a loss of synaptic transmission and ultimately cell death. The presenting pathology of AD includes neuritic plaques composed of beta-amyloid peptide (Abeta) and neurofibrillary tangles composed of hyperphosphorylated tau, with neuronal loss in specific brain regions. However, the mechanisms that induce neuronal cell loss remain elusive. Focal adhesion (FA) proteins assemble into intracellular complexes involved in integrin-mediated communication between the extracellular matrix and the actin cytoskeleton, regulating many cell physiological processes including the cell cycle. Interestingly, recent studies report that integrins bind to Abeta fibrils, mediating Abeta signal transmission from extracellular sites of Abeta deposits into the cell and ultimately to the nucleus. In this review, we will discuss the Abeta induced integrin/FA signaling pathways that mediate cell cycle activation and cell death.  相似文献   

20.
The abnormal deposition of amyloid beta peptide (Abeta) is a hallmark of Alzheimer's disease (AD). Phospholipase C-delta1 (PLC-delta1) is also known to abnormally accumulate in the brains of AD patients, but no report has addressed the relationship between these two events. This study investigated the effect of Abeta42 on the PLC-delta1 expression in human neuroblastoma cell lines. The PLC-delta1 mRNA level was increased by treatment with Abeta42 in a RT-PCR analysis. In the reporter assay, Abeta42 was found to activate the PLC-delta1 promoter activity in a dose-dependent manner. A novel NF-kappaB binding site in the PLC-delta1 promoter appeared to be responsible for the Abeta42 activity. First, the dominant negative forms of the NF-kappaB activating molecules, dominant negative TGF-beta activated kinase 1 (dnTAK1) and dnNIK (dominant negative NF-kappaB-inducing kinase), abolished the Abeta42 activity in the reporter assay. Second, the Abeta42 augmented a factor binding on the NF-kappaB site in the electrophoretic mobility shift assay (EMSA), which was abolished by a molar excess of the unlabeled consensus NF-kappaB oligonucleotide. These results suggest that the PLC-delta1 promoter is under the control of NF-kappaB, which mediates the expression of PLC-delta due to the Abeta42 treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号