首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Clark AT  Rykken JJ  Farrell BD 《PloS one》2011,6(11):e28045
Many studies have examined how island biogeography affects diversity on the scale of island systems. In this study, we address how diversity varies over very short periods of time on individual islands. To do this, we compile an inventory of the ants living in the Boston Harbor Islands National Recreation Area, Boston, Massachusetts, USA using data from a five-year All Taxa Biodiversity Inventory of the region's arthropods. Consistent with the classical theory of island biogeography, species richness increased with island size, decreased with island isolation, and remained relatively constant over time. Additionally, our inventory finds that almost half of the known Massachusetts ant fauna can be collected in the BHI, and identifies four new species records for Massachusetts, including one new to the United States, Myrmica scabrinodis. We find that the number of species actually active on islands depended greatly on the timescale under consideration. The species that could be detected during any given week of sampling could by no means account for total island species richness, even when correcting for sampling effort. Though we consistently collected the same number of species over any given week of sampling, the identities of those species varied greatly between weeks. This variation does not result from local immigration and extinction of species, nor from seasonally-driven changes in the abundance of individual species, but rather from weekly changes in the distribution and activity of foraging ants. This variation can be upwards of 50% of ant species per week. This suggests that numerous ant species on the BHI share the same physical space at different times. This temporal partitioning could well explain such unexpectedly high ant diversity in an isolated, urban site.  相似文献   

2.
Aim To identify the biogeographical factors underlying spider species richness in the Macaronesian region and assess the importance of species extinctions in shaping the current diversity. Location The European archipelagos of Macaronesia with an emphasis on the Azores and Canary Islands. Methods Seven variables were tested as predictors of single‐island endemics (SIE), archipelago endemics and indigenous spider species richness in the Azores, Canary Islands and Macaronesia as a whole: island area; geological age; maximum elevation; distance from mainland; distance from the closest island; distance from an older island; and natural forest area remaining per island – a measure of deforestation (the latter only in the Azores). Different mathematical formulations of the general dynamic model of oceanic island biogeography (GDM) were also tested. Results Island area and the proportion of remaining natural forest were the best predictors of species richness in the Azores. In the Canary Islands, area alone did not explain the richness of spiders. However, a hump‐shaped relationship between richness and time was apparent in these islands. The island richness in Macaronesia was correlated with island area, geological age, maximum elevation and distance to mainland. Main conclusions In Macaronesia as a whole, area, island age, the large distance that separates the Azores from the mainland, and the recent disappearance of native habitats with subsequent unrecorded extinctions seem to be the most probable explanations for the current observed richness. In the Canary Islands, the GDM model is strongly supported by many genera that radiated early, reached a peak at intermediate island ages, and have gone extinct on older, eroded islands. In the Azores, the unrecorded extinctions of many species in the oldest, most disturbed islands seem to be one of the main drivers of the current richness patterns. Spiders, the most important terrestrial predators on these islands, may be acting as early indicators for the future disappearance of other insular taxa.  相似文献   

3.
Aim Islands are widely considered to be species depauperate relative to mainlands but, somewhat paradoxically, are also host to many striking adaptive radiations. Here, focusing on Anolis lizards, we investigate if cladogenetic processes can reconcile these observations by determining if in situ speciation can reduce, or even reverse, the classical island–mainland richness discrepancy. Location Caribbean islands and the Neotropical mainland. Methods We constructed range maps for 203 mainland anoles from museum records and evaluated whether geographical area could account for differences in species richness between island and mainland anole faunas. We compared the island species–area relationship with total mainland anole diversity and with the richness of island‐sized mainland areas. We evaluated the role of climate in the observed differences by using Bayesian model averaging to predict island richness based on the mainland climate–richness relationship. Lastly, we used a published phylogeny and stochastic mapping of ancestral states to determine if speciation rate was greater on islands, after accounting for differences in geographical area. Results Islands dominated by in situ speciation had, on average, significantly more species than similarly sized mainland regions, but islands where in situ speciation has not occurred were species depauperate relative to mainland areas. Results were similar at the scale of the entire mainland, although marginally non‐significant. These findings held even after accounting for climate. Speciation has not been faster on islands; instead, when extinction was assumed to be low, speciation rate varied consistently with geographical area. When extinction was high, there was some evidence that mainland speciation was faster than expected based on area. Main conclusions Our results indicate that evolutionary assembly of island faunas can reverse the general pattern of reduced species richness on islands relative to mainlands.  相似文献   

4.
Aim Comparisons among islands offer an opportunity to study the effects of biotic and abiotic factors on small, replicated biological communities. Smaller population sizes on islands accelerate some ecological processes, which may decrease the time needed for perturbations to affect community composition. We surveyed ants on 18 small tropical islands to determine the effects of island size, isolation from the mainland, and habitat disturbance on ant community composition. Location Thousand Islands Archipelago (Indonesian name: Kepulauan Seribu) off Jakarta, West Java, Indonesia. Methods Ants were sampled from the soil surface, leaf litter and vegetation in all habitat types on each island. Island size, isolation from the mainland, and land‐use patterns were quantified using GIS software. The presence of settlements and of boat docks were used as indicators of anthropogenic disturbance. The richness of ant communities and non‐tramp ant species on each island were analysed in relation to the islands’ physical characteristics and indicators of human disturbance. Results Forty‐eight ant species from 5 subfamilies and 28 genera were recorded from the archipelago, and approximately 20% of the ant species were well‐known human‐commensal ‘tramp’ species. Islands with boat docks or human settlements had significantly more tramp species than did islands lacking these indicators of anthropogenic disturbance, and the diversity of non‐tramp species decreased with habitat disturbance. Main conclusions Human disturbance on islands in the Thousand Islands Archipelago promotes the introduction and/or establishment of tramp species. Tramp species affect the composition of insular ant communities, and expected biogeographical patterns of ant richness are masked. The island with the greatest estimated species richness and the greatest number of unique ant species, Rambut Island, is a forested bird sanctuary, highlighting the importance of protected areas in preserving the diversity of species‐rich invertebrate faunas.  相似文献   

5.
The island rule generally states that larger species are dwarfed on islands while smaller species exhibit gigantism. Among the smaller species in which this pattern has been observed, rodents have been a focus of numerous studies. Through our long-term trapping on the Boston Harbor Islands, USA, we have revealed that the white-footed mice on Bumpkin and Peddocks Islands exhibit a significantly larger body size than their mainland counterparts. On Bumpkin Island, adult mice averaged 28.2 g (n = 187, SE ± 0.35) and on Peddocks Island adult animals averaged 31.2 g (n = 85, SE ± 0.42). Published average masses for this species range from 15 to 25 g for adults. Additionally, the mice on Bumpkin Island have shown an increase in mass over the course of our study and this increase was significant between 2011 and 2014 when no trapping occurred on that island. The large size suggests that these animals have been isolated on these islands for a sufficient amount of time for divergence to occur. Additionally, the changes in mass over time, in a population with annual turnover, suggests that microevolution in response to environmental factors may be taking place.  相似文献   

6.
The principles of island biogeography are rarely applied to the animal assemblages of Amazonian river islands. Here, we compare bird assemblages of Amazonian river islands with a variety of mainland habitats. We also examine how bird species diversity and composition are related to island physical attributes. Birds were sampled with mist nets and qualitative censuses on 11 river islands and 24 mainland sites on the lower reaches of the Rio Negro in the Brazilian Amazon. Island bird assemblages were characterized by lower species richness and a higher abundance of a few dominant species. Additionally, the species composition of the islands was distinct from that of the mainland, including the nearby floodplain habitats. The number of bird species increased with island size and habitat diversity, and decreased with degree of isolation. In addition, small islands tended to harbor an impoverished subset of the species present on larger ones. Bird species diversity and composition on Amazonian river islands are likely influenced by the ecological succession and historical events affecting island formation. Considering their small total area across the Amazon basin, these insular fluvial communities could be disproportionately threatened by river channel disturbances related to climate change or hydroelectric dam development. Abstract in Portughese is available with online material.  相似文献   

7.
Aim To relate variation in the migration capacity and colonization ability of island communities to island geography and species island occupancy. Location Islands off mainland Britain and Ireland. Methods Mean migration (transfer) capacity and colonization (establishment) ability (ecological indices), indexed from 12 ecological variables for 56 butterfly species living on 103 islands, were related to species nestedness, island and mainland source geography and indices using linear regression models, RLQ analysis and fourth‐corner analysis. Random creation of faunas from source species, rank correlation and rank regression were used to examine differences between island and source ecological indices, and relationships to island geography. Results Island butterfly faunas are highly nested. The two ecological indices related closely to island occupancy, nestedness rank of species, island richness and geography. The key variables related to migration capacity were island area and isolation; for colonization ability they were area, isolation and longitude. Compared with colonization ability, migration capacity was found to correlate more strongly with island species occupancy and species richness. For island faunas, the means for both ecological indices decreased, and variation increased, with increasing island species richness. Mean colonization ability and migration capacity values were significantly higher for island faunas than for mainland source faunas, but these differences decreased with island latitude. Main conclusions The nested pattern of butterfly species on islands off mainland Britain and Ireland relates strongly to colonization ability but especially to migration capacity. Differences in colonization ability among species are most obvious for large, topographically varied islands. Generalists with abundant multiple resources and greater migration capacity are found on all islands, whereas specialists are restricted to large islands with varied and long‐lived biotopes, and islands close to shore. The inference is that source–sink dynamics dominate butterfly distributions on British and Irish islands; species are capable of dispersing to new areas, but, with the exception of large and northern islands, facilities (resources) for permanent colonization are limited. The pattern of colonization ability and migration capacity is likely to be repeated for mainland areas, where such indices should provide useful independent measures for assessing the conservation status of faunas within spatial units.  相似文献   

8.
Previous island biogeography studies have quantified species richness on the scale of entire islands rather than smaller scales relevant to plant-to-plant competitive interactions. Further, they have not accounted for density compensation. Using mainland and island sites along the New England coast, we asked two questions. First, are both richness and density lower in small-scale habitats within islands than in similar mainland habitats? Second, do differences in competitor richness and density drive post-establishment trait variation in nonnative plant species? We used field surveys and individual-based rarefaction to estimate richness and density in 100-m2 plots and demonstrated that island sites have significantly fewer species and individuals per unit area than mainland sites. We then conducted a field study in which we removed competing neighbors from nonnative plant individuals and found that when competitors were removed, individuals in low-competition environments demonstrated a lesser increase in vegetative growth but a greater increase in reproductive effort and herbivore tolerance relative to mainland individuals whose neighbors were also removed. We found that the central concept of island biogeography, i.e., that islands host fewer species than comparable mainland habitats, can be extended to smaller-scale habitats and that this difference in competitive pressure between mainland and island habitats can act as a driver of trait variation in nonnative plants.  相似文献   

9.
Aim To understand factors that facilitate insular colonization by black flies, we tested six hypotheses related to life‐history traits, phylogeny, symbiotes, island area, and distance from source areas. Location Four northern islands, all within 150 km of the North American mainland, were included in the study: Isle Royale, Magdalen Islands, Prince Edward Island, and Queen Charlotte Islands. Methods Immature black flies and their symbiotes were surveyed in streams on the Magdalen Islands, and the results combined with data from similar surveys on Isle Royale, Prince Edward Island, and the Queen Charlotte Islands. Black flies were analysed chromosomally to ensure that all sibling species were revealed. Tests of independence were used to examine the frequency of life‐history traits and generic representation of black flies on islands vs. source areas. Results A total of 13–20 species was found on each of the islands, but no species was unique to any of the islands. The simuliid faunas of the islands reflected the composition of their source areas in aspects of voltinism (univoltine vs. multivoltine), blood feeding (ornithophily vs. mammalophily), and phylogeny (genus Simulium vs. other genera). Five symbiotic species were found on the most distant island group, the Magdalen Islands, supporting the hypothesis that obligate symbiotes are effectively transported to near‐mainland islands. An inverse relationship existed between the number of species per island and distance from the source. The Queen Charlotte Islands did not conform to the species–area relationship. Main conclusions The lack of precinctive insular species and an absence of life‐history and phylogenetic characteristics related to the presence of black flies on these islands argue for gene flow and dispersal capabilities of black flies over open waters, possibly aided by winds. However, the high frequency of precinctive species on islands 500 km or more from the nearest mainland indicates that at some distance beyond 100 km, open water provides a significant barrier to colonization and gene exchange. An inverse relationship between number of species and distance from the source suggests that as long as suitable habitat is present, distance plays an important role in colonization. Failure of the Queen Charlotte Islands to conform to an area–richness trend suggests that not all resident species have been found.  相似文献   

10.
Aim This study aims to explain the patterns of species richness and nestedness of a terrestrial bird community in a poorly studied region. Location Twenty‐six islands in the Dahlak Archipelago, Southern Red Sea, Eritrea. Methods The islands and five mainland areas were censused in summer 1999 and winter 2001. To study the importance of island size, isolation from the mainland and inter‐island distance, I used constrained null models for the nestedness temperature calculator and a cluster analysis. Results Species richness depended on island area and isolation from the mainland. Nestedness was detected, even when passive sampling was accounted for. The nested rank of islands was correlated with area and species richness, but not with isolation. Idiosyncrasies appeared among species‐poor and species‐rich islands, and among common and rare species. Cluster analysis showed differences among species‐rich islands, close similarity among species‐poor and idiosyncratic islands, and that the compositional similarity among islands decreased with increasing inter‐island distance. Thus, faunas of species‐poor, smaller islands were more likely to be subsets of faunas of species‐rich, larger islands if the distance between the islands was short. Main conclusions Species richness and nestedness were related to island area, and nestedness also to inter‐island distances but not to isolation from the mainland. Thus, nestedness and species richness are not affected in the same way by area and distance. Moreover, idiosyncrasies may have been the outcome of species distributions among islands being influenced also by non‐nested distributions of habitats, inter–specific interactions, and differences in species distributions across the mainland. Idiosyncrasies in nested patterns may be as important as the nested pattern itself for conservation – and conservation strategies based on nestedness and strong area effects (e.g. protection of only larger islands) may fail to preserve idiosyncratic species/habitats.  相似文献   

11.
Aim The influence of physiographic and historical factors on species richness of native and non‐native vascular plants on 22 coastal islands was examined. Location Islands off the coast of north‐eastern USA and south‐eastern Canada between 41° and 45° N latitude were studied. Island size ranges from 3 to 26,668 ha. All islands were deglaciated between 15,000 and 11,000 yr bp ; all but the four New Brunswick islands were attached to the mainland until rising sea level isolated them between 14,000 and 3800 yr bp . Methods Island species richness was determined from floras compiled or revised since 1969. Simple and multiple regression and rank correlation analysis were employed to assess the relative influence of independent variables on species richness. Potential predictors included island area, latitude, elevation, distance from the mainland, distance from the nearest larger island, number of soil types, years since isolation, years since deglaciation, and human population density. Results Native vascular plant species richness for the 22 islands in this study is influenced most strongly by island area, latitude, and distance from the nearest larger island; richness increases with island area, but decreases with latitude and distance from the nearest larger island as hypothesized. That a similar model employing distance from the mainland does not meet the critical value of P confirms the importance of the stepping‐stone effect. Habitat diversity as measured by number of soil types is also an important predictor of native plant species richness, but at least half of its influence can be attributed to island area, with which it is correlated. Two historical factors, years since deglaciation and years since isolation, also appear to be highly correlated with native species richness, but their influence cannot be separated from that of latitude for the present sample size. Non‐native vascular plant species richness is influenced primarily by island area and present‐day human population density, although human population density may be a surrogate for the cumulative effect of several centuries of anthropogenic impacts related to agriculture, hunting, fishing, whaling, tourism, and residential development. Very high densities of ground‐nesting pelagic birds may account for the high percentage of non‐native species on several small northern islands. Main conclusions Many of the principles of island biogeography that have been applied to oceanic islands apply equally to the 22 islands in this study. Native vascular plant species richness for these islands is strongly influenced by physiographic factors. Influence of two historical factors, years since deglaciation and years since isolation, cannot be assessed with the present sample size. Non‐native vascular plant species richness is influenced by island area as well as by human population density; human population density may be a surrogate for other anthropogenic impacts.  相似文献   

12.
Island communities are exposed to several evolutionary and ecological processes that lead to changes in their diversity and structure compared to mainland biotas. These phenomena have been observed for various taxa but not for parasitoids, a key group in terms of community diversity and functioning. Here we use the parasitoid communities associated with the moth Acroclita subsequana (Lepidoptera: Tortricidae) in the Macaronesian region, to test whether species richness differs between islands and mainland, and whether island parasitoid faunas are biased towards generalist species. Host larvae were collected on several islands and adjacent mainland, carefully searched for ectoparasitoid larvae and dissected to recover any endoparasitoids. Parasitoids were classified as idiobionts, which usually have a wide host range (i.e. generalists), or koinobionts that are considered specialists. Mainland species richness was lower than expected by chance, with most of the species being koinobionts. On the other hand, island communities showed a greater proportion of idiobiont species. Overall parasitism rates were similar between islands and mainland, but islands had higher rates of parasitism by idiobionts than expected by chance, and mainland areas showed the highest koinobiont parasitism rates. These results suggest that island parasitoid communities are dominated by generalists, in comparison to mainland communities. Several hypotheses may explain this pattern: (1) generalist parasitoids might have better dispersal abilities; (2) they may be less constrained by ‘sequential dependencies’; and (3) island parasitoids probably have fewer competitors and/or predators, thus favouring the establishment of generalists. New studies including multiple hosts, other habitats, and/or more islands are necessary to identify which of these processes shape island parasitoid communities.  相似文献   

13.
Summary Few studies of island biogeography have been made on islands in which the time of insularization is precisely known. We tested the effects of island formation on ant species diversity in a man-made lake in South Africa, to determine whether island effects are detectable after only 16 years of insularization. The number of ant species observed at trap-line censuses on islands was significantly correlated with island size (r=0.608; P<0.05) and ant species diversity was generally low compared with similar mainland habitats. Mean species number for all islands, including landbridge islands, was 5.5±3.3 species, and on mainland sites was 7.9±2.85 species. Island effects were more marked on islands <20 ha, which had a mean of 3.3±2.5 species per island. Species number on islands was inversely related to densities of the aggressive Anoplolepis custodiens and A. steingroeveri. These two species were only patchily distributed on mainlands, but these ants were nearly ubiquitous on small islands. Several lines of evidence suggest that this single species domination may be responsible for island effects. Island sites also differed in the number of ant species in different trophic groupings, tending to have fewer granivorous species than the mainland sites, but species in other diet groups were similar in both island and mainland habitats. We conclude that there have been marked changes in the ant faunas on islands smaller than 20 ha apparently due to changes in abundance of the dominant ant species. However, the causes of these changes are unknown.  相似文献   

14.
The results from investigations on oribatid mites of the Galápagos archipelago during 10 years are presented. Samples were taken on all larger and most smaller islands of the archipelago, as well as in all vegetation zones and some special habitats such as grass or cactus litter and fumaroles. A total of 202 oribatid species belonging to 64 families were encountered; among them 81 species are new to science. The Oribatida occur from the littoral zone to the summit of the volcanoes. Diversity and abundance increases from the arid to the moister zones at higher elevations. Most species prefer moist habitats at medium to higher elevations of the islands, in some parts reaching remarkably high abundances (in the Scalesia zone of Santa Cruz approximately 18 000 individuals m–2). The species richness of an island depends on the altitude and number of available habitats rather than the area of the island. Many oribatid species on the Galápagos Islands have a wide biogeographical distribution. The majority originate from the Central and South American mainland, but several Pacific and even Holarctic elements were also found. In comparison with the species composition of the adjacent mainland, the oribatid mite fauna of the Galápagos Islands can be regarded as disharmonic. Sea surface transportation has been proved at least between the islands, which also applies to oribatid species living at higher elevations. Long distance dispersal can be assumed to be mainly hydrochorous. The oribatid fauna of the littoral and arid vegetation zones is presented in detail. Some species even inhabit such extreme habitats as warm fern litter in fumaroles or hot volcanic soils. Others were mainly found in or near agricultural areas, suggesting human introduction. Striking distribution patterns within the archipelago are discussed. The distribution of endemic forms in the genera Aeroppia, Scapheremaeus, Scheloribates and Cultrobates indicates both speciation on different islands, as well as speciation on the same island by occupying different habitats.  相似文献   

15.
Ian Abbott 《Oecologia》1978,33(2):221-233
Summary New evidence from the passerine faunas of islands off Southwestern Australia agrees with the hypothesis that the passerine faunas of Australian and New Zealand islands are impoverished because most passerine species are poor colonizers. Dispersal of landbirds onto Carnac Island near Perth was infrequent, and many of those species that arrived were represented by single birds. Comparison of similarly structured island and mainland habitats showed that island habitats still have fewer passerine bird species than mainland habitats. Island bird faunas are more stable over short periods of time than over long periods; this is contrary to island avifaunas in the Northern Hemisphere.The following features typify the avifaunas of Australian islands: immigration of species of land birds occurs infrequently; (natural) extinction is rare; and the degree of saturation of the avifaunas is low. Without more direct evidence, competitive interactions should not be invoked to account for the species poverty of these insular avifaunas.  相似文献   

16.
Because land snails inhabiting the seashore are most likely to be carried by ocean currents or by attaching to seabirds, land snail fauna on oceanic islands include species derived from the mainland ancestors inhabiting the seashore. If habitat use of the island descendants is constrained by the ecology of the mainland ancestor, the island species that moved from the coastal habitat to the inland habitat may still be restricted to relatively exposed microhabitats with high pH, calcium carbonate‐rich substrates, and poor litter cover. We tested this hypothesis by investigating the association between environmental conditions and species diversity of seashore‐derived species of the endemic land snails on the oceanic Hahajima Island (Ogasawara Islands). Seashore‐derived species showed higher species richness on limestone outcrops than non‐limestone areas, whereas the other species showed no significant increase in species richness in limestone outcrops. There was a higher proportion of seashore‐derived species on the limestone ridges than on the soil of dolines, even in the limestone area. Accordingly, the species derived from the seashore of the mainland are restricted to microhabitats with poor vegetation cover, poor litter cover, high pH, and calcium carbonate‐rich substrates, which supports the hypothesis that the inland species on an island derived from the mainland seashore still prefer environments similar to the seashore. In addition, the seashore‐derived species on the limestone outcrop include cave‐dwellers lacking functional eyes. This suggests that the probability of colonizing a cave environment is restricted to seashore‐derived species. The findings obtained in the present study suggest that habitat use of the ancestral lineages can constrain habitat use of the descendants, even in the oceanic islands with depauperate fauna. This bias in the species composition on the limestone outcrop constrains lineages that can colonize and adapt to the inside of caves, and therefore, habitat use of the ancestral lineages affects the ability of descendant lineages to colonize novel habitats. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 686–693.  相似文献   

17.
Treeline research has strongly focused on mountain systems on the mainland. However, island treelines offer the opportunity to contribute to the global framework on treeline elevation due to their island‐specific attributes such as isolation, small area, low species richness and relative youth. We hypothesize that, similar to the mainland, latitude‐driven temperature variation is the most important determinant of island treeline elevation on a global scale. To test this hypothesis, we compared mainland with island treeline elevations. Then we focused 1) on the global effects of latitude, 2) on the regional effects of island type (continental vs oceanic islands) and 3) the local effects of several specific island characteristics (age, area, maximum island elevation, isolation and plant species richness). We collected a global dataset of islands (n = 86) by applying a stratified design using GoogleEarth and the Global Island Database. For each island we extracted data on latitude and local characteristics. Treeline elevation decreased from the mainland through continental to oceanic islands. Island treeline elevation followed a hump‐shaped latitudinal distribution, which is fundamentally different from the mainland double‐hump. Higher maximum island elevation generated higher treeline elevation and was found the best single predictor of island treeline elevation, even better than latitude. Lower island treeline elevation may be the result of a low mass elevation effect (MEE) influencing island climates and an increasingly impoverished species pool but also trade wind inversion‐associated aridity. The maximum island elevation effect possibly results from an increasing mass elevation effect (MEE) with increasing island elevation but also range shifts during climatic fluctuations and the summit syndrome (i.e. high wind speeds and poor soils in peak regions). Investigating islands in treeline research has enabled disentangling the global effect of latitude from regional and local effects and, at least for islands, a comprehensive quantification of the MEE.  相似文献   

18.
Island biogeography has greatly contributed to our understanding of the processes determining species' distributions. Previous research has focused on the effects of island geography (i.e., island area, elevation, and isolation) and current climate as drivers of island species richness and endemism. Here, we evaluate the potential additional effects of historical climate on breeding land bird richness and endemism in Wallacea and the West Indies. Furthermore, on the basis of species distributions, we identify island biogeographical network roles and examine their association with geography, current and historical climate, and bird richness/endemism. We found that island geography, especially island area but also isolation and elevation, largely explained the variation in island species richness and endemism. Current and historical climate only added marginally to our understanding of the distribution of species on islands, and this was idiosyncratic to each archipelago. In the West Indies, endemic richness was slightly reduced on islands with historically unstable climates; weak support for the opposite was found in Wallacea. In both archipelagos, large islands with many endemics and situated far from other large islands had high importance for the linkage within modules, indicating that these islands potentially act as speciation pumps and source islands for surrounding smaller islands within the module and, thus, define the biogeographical modules. Large islands situated far from the mainland and/or with a high number of nonendemics acted as links between modules. Additionally, in Wallacea, but not in the West Indies, climatically unstable islands tended to interlink biogeographical modules. The weak and idiosyncratic effect of historical climate on island richness, endemism, and network roles indicates that historical climate had little effects on extinction‐immigration dynamics. This is in contrast to the strong effect of historical climate observed on the mainland, possibly because surrounding oceans buffer against strong climate oscillations and because geography is a strong determinant of island richness, endemism and network roles.  相似文献   

19.
Crustacea Decapoda and Stomatopoda are inventoried for the first time in Juan de Nova Island, Iles Eparses, Mozambique channel. In total, 112 species are reported: 69 crabs, 28 anomurans, 11 shrimps, 3 mantis shrimps and 1 lobster. A comparison is made with nearby islands in the Mozambique channel: Glorieuses Islands (157 species), Europa Island (178 species), and Mayotte Island (505 species). The lower species richness at Juan de Nova is explained by the small size of the island and by the difficulties to collect the crustaceans on the reef flat hardly accessible at low tide. The crustaceans are listed by main habitats from land to outer reef (2–20 m). The presence of the coconut crab (Birgus latro), an endangered species vulnerable to human predation, is confirmed.  相似文献   

20.
浙江海岛鸟兽地理生态学的初步研究   总被引:6,自引:1,他引:5  
对浙江洞头岛及舟山五岛的鸟兽调查表明,海岛动物的种数较相邻大陆为低,但种群密度却高于大陆,岛上的某些种类出现生态位扩展的现象。舟山五岛兽类的种数和岛屿面积呈正相关,其关系式为S=2.12A~(0.29),但种群密度随着岛屿面积的增大而下降。文中据此提出了保护和发展岛屿动物资源的某些措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号