首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This study investigated the impact of variation in Australian sheep breeding values (ASBVs) for yearling eye muscle depth (YEMD) within Merino and Poll Dorset sires on intermediary metabolism of progeny. Specifically, the change in the blood concentrations of lactate, non-esterified fatty acids (NEFA) and glucose in response to administration of an exogenous dose of adrenaline was studied. The experiment used 20 Merino and Merino cross Poll Dorset mixed sex sheep. The sires were selected across a range of YEMD ASBVs. The sheep were fitted with indwelling jugular catheters and administered seven levels of adrenaline over a period of 4 days at 4 months of age (0.1, 0.2, 0.4, 0.6, 0.9, 1.2 and 1.6 μg/kg liveweight (LW)) and 16 months of age (0.1, 0.2, 0.6, 1.2, 1.8, 2.4 and 3.0 μg/kg LW). A total of 16 blood samples were collected between -30 min and 130 min relative to administration of the adrenaline challenge and were later measured for the plasma concentrations of lactate, NEFA and glucose. These data were then used to calculate the time to maximum substrate concentration, the maximum concentration and the area under curve (AUC) between 0 and 10 min, thus reflecting the substrate's response to exogenous adrenaline. Selection for muscling led to decreased muscle response due to adrenaline, as indicated by lower maximum concentrations and AUC for lactate. The muscles' response to adrenaline was more prominent at 16 months of age than at 4 months of age. Thus, animals selected for increased muscling have lower levels of glycogenolysis in situations where endogenous adrenaline levels are increased like pre-slaughter. This may minimise the risk of poor meat quality in these animals, as they will express higher muscle concentrations of glycogen at slaughter. Adipose tissue was more sensitive to adrenaline in young lambs from high YEMD sires. This shows that high muscled growing lambs utilise their adipose tissue deposits in times of stress to produce energy. This may explain the phenotypic leanness of these animals. Blood glucose levels that are indicative of liver response to adrenaline decreased with selection for muscling. This response may indicate a potential limiting of glucose that is available within animals selected for muscling, leanness and growth for brain function.  相似文献   

2.
The aim of this experiment was to evaluate the impact of selection for greater muscling on whole body insulin responsiveness in cattle, as reflected by greater uptake of glucose in response to constant insulin infusion and greater glucose disappearance following an intravenous glucose tolerance test. This study used 18-month-old steers from an Angus herd visually assessed and selected for divergence in muscling over 15 years. Eleven high-muscled (High), 10 low-muscled (Low) and 3 high-muscled steers, which were heterozygous for a myostatin polymorphism (HighHet), were infused with insulin using the hyperinsulineamic-euglyceamic clamp technique. Insulin was constantly infused at two levels, 0.6 μIU/kg per min and 6.0 μIU/kg per min. Glucose was concurrently infused to maintain euglyceamia and the steady state glucose infusion rate (SSGIR) indicated insulin responsiveness. An intravenous glucose tolerance test was also administered at 200 mg/kg live weight. Sixteen blood samples were collected from each animal between -30 and 130 min relative to the administration of intravenous glucose, plasma glucose and insulin concentration was determined in order to analyse insulin secretion and glucose disappearance. Insulin-like growth factor-1 (IGF-1) was also measured in basal plasma samples. At the low insulin infusion rate of 0.6 mU/kg per min, the SSGIR was 73% higher for the High muscling genotype animals when compared to the Low (P<0.05). At the high insulin infusion rate of 6.0 mU/kg per min, these differences were proportionately less with the High and the HighHet genotypes having only 27% and 34% higher SSGIR (P<0.05) than the Low-muscled genotype. The High-muscled cattle also had 30% higher plasma IGF-1 concentrations compared to the Low-muscled cattle. There was no effect of muscling genotype on basal insulin or basal glucose concentrations, glucose disappearance or insulin secretion following an intravenous glucose tolerance test. The increased whole body insulin responsiveness in combination with higher IGF-1 concentrations in the High-muscled steers is likely to initiate a greater level of protein synthesis, which may partially explain the increased muscle accretion in these animals.  相似文献   

3.
Biopsies of skeletal muscle collected from 24 animals classified as “double muscled” were examined by light and electron microscopy. The muscle samples exhibited degenerative changes including the presence of vacuolations and lamellated structures, fragmentation of myofibers, accumulation of glycogen granules, disruption of neuromuscular junctions and disorganization of the sarcolemma. In the light of the excessive fragility of the erythrocyte membranes noted previously, the alteration in the sarcolemma suggests that a generalized cell membrane defect may be the most consistent feature of the “double muscling syndrome” in cattle.  相似文献   

4.
Most athletic horses are fed a high-starch diet despite the risk of health problems. Replacing starch concentrate with high-energy forage would alleviate these health problems, but could result in a shift in major substrates for muscle energy supply from glucose to short-chain fatty acids (SCFA) due to more hindgut fermentation of fibre. Dietary fat inclusion has previously been shown to promote aerobic energy supply during exercise, but the contribution of SCFA to exercise metabolism has received little attention. This study compared metabolic response with exercise and lactate threshold (VLa4) in horses fed a forage-only diet (F) and a more traditional high-starch, low-energy forage diet (forage–concentrate diet - FC). The hypothesis was that diet F would increase plasma acetate concentration and increase VLa4 compared with diet FC. Six Standardbred geldings in race training were used in a 29-day change-over experiment. Plasma acetate, non-esterified fatty acids (NEFA), lactate, glucose and insulin concentrations and venous pH were measured in samples collected before, during and after a treadmill exercise test (ET, day 25) and muscle glycogen concentrations before and after ET. Plasma acetate concentration was higher before and after exercise in horses on diet F compared with diet FC, and there was a tendency (P = 0.09) for increased VLa4 on diet F. Venous pH and plasma glucose concentrations during exercise were higher in horses on diet F than diet FC, as was plasma NEFA on the day after ET. Plasma insulin and muscle glycogen concentrations were lower for diet F, but glycogen utilisation was similar for the two diets. The results show that a high-energy, forage-only diet alters the metabolic response to exercise and, with the exception of lowered glycogen stores, appears to have positive rather than negative effects on performance traits.  相似文献   

5.
The aim of this study was to examine the metabolic response to feed deprivation up to 48 h in low and high yielding lamb genotypes. It was hypothesised that Terminal sired lambs would have decreased plasma glucose and increased plasma non-esterified fatty acids (NEFA) and β-hydroxybutyrate (BHOB) concentrations in response to feed deprivation compared to Merino sired lambs. In addition, it was hypothesised that the metabolic changes due to feed deprivation would also be greater in progeny of sires with breeding values for greater growth, muscling and leanness. Eighty nine lambs (45 ewes, 44 wethers) from Merino dams with Merino or Terminal sires with a range in Australian Sheep Breeding Values (ASBVs) for post-weaning weight (PWT), post-weaning eye muscle depth and post-weaning fat depth (PFAT) were used in this experiment. Blood samples were collected via jugular cannulas every 6 h from time 0 to 48 h of feed deprivation for the determination of plasma glucose, NEFA, BHOB and lactate concentration. From 12 to 48 h of feed deprivation plasma glucose concentration decreased (P < 0.05) by 25% from 4.04 ± 0.032 mmol/l to 3.04 ± 0.032 mmol/l. From 6 h NEFA concentration increased (P < 0.05) from 0.15 ± 0.021 mmol/l by almost 10-fold to 1.34 ± 0.021 mmol/l at 48 h of feed deprivation. Feed deprivation also influenced BHOB concentrations and from 12 to 48 h it increased (P < 0.05) from 0.15 ± 0.010 mmol/l to 0.52 ± 0.010 mmol/l. Merino sired lambs had a 8% greater reduction in glucose and 29% and 10% higher NEFA and BHOB response, respectively, compared to Terminal sired lambs (P < 0.05). In Merino sired lambs, increasing PWT was also associated with an increase in glucose and decline in NEFA and BHOB concentration (P < 0.05). In Terminal sired lambs, increasing PFAT was associated with an increase in glucose and decline in NEFA concentration (P < 0.05). Contrary to the hypothesis, Merino sired lambs showed the greatest metabolic response to fasting especially in regards to fat metabolism.  相似文献   

6.
The metabolic and hormonal response to short term fasting was studied after endurance exercise training. Rats were kept running on a motor driven rodent treadmill 5 days/wk for periods up to 1 h/day for 6 wk. Trained and untrained rats were then fasted for 24 h and 48 h. Liver and muscle glycogen, blood glucose, lactate, beta OH butyrate, glycerol, plasma insulin, testosterone and corticosterone were measured in fed and fasted trained and untrained rats. 48 h fasted trained rats show a lower level of blood lactate (1.08 +/- 0.05 vs 1.33 +/- 0.08 mmol/l-1 of blood glycerol (1 +/- 0.11 vs 0.84 +/- 0.08 mmol/l-1), and of muscle glycogen. There is a significant increase in plasma corticosterone in 48 h fasted trained rats from fed values. Plasma testosterone decreases during fasting, the values are higher in trained rats. Plasma insulin decreases during fasting without any difference between the two groups. These results show higher lipolysis, and decreased glycogenolysis in trained animals during 48 h fasting. The difference between the groups in steroid hormone response could reduce neoglucogenesis and muscle proteolysis in trained animals.  相似文献   

7.
Under current Australian industry pre-slaughter guidelines, lambs may be off feed for up to 48 h before slaughter. The purpose of this study was to examine what proportion of circulating metabolites at slaughter are due to stress and feed deprivation and if this response differs between Merino and Terminal genotypes. In addition the effect of feed deprivation on carcass weight and meat quality was examined. Jugular blood samples were collected from 88 Merino and Terminal sired lambs at rest and at slaughter following 24, 36 and 48 h of feed deprivation and plasma analysed for glucose, lactate, non-esterified fatty acids (NEFA) and β-hydroxybutyrate (BHOB). From the same carcasses hot carcass weight (HCWT) were measured as well as a suite of meat quality traits measured such as M. longissimus lumborum (loin) and M. semitendinosus pH at 24 h postmortem. Loin samples were also analysed for intramuscular fat content and Warner–Bratzer Shear Force. Merino sired lambs had a higher NEFA response compared to Terminal sired lambs at slaughter after 24, 36 and 48 h of feed deprivation, with NEFA levels up to 35% higher than previously reported in the same animals at rest in animal house conditions, whereas BHOB response to feed deprivation was not affected by sire type (P>0.05) and similar to previously reported at rest. In addition to the metabolic effects, increasing feed deprivation from 36 h was associated with a 3% reduction in HCWT and dressing percentage as well as causing increased ultimate pH in the M. semitendinosus in Merino sired lambs. Findings from this study demonstrate that Merino and Terminal sired lambs differ in their metabolic response to feed deprivation under commercial slaughter conditions. In addition, commercial feed deprivation appears to have a negative effect on ultimate pH and carcass weight and warrants further investigation.  相似文献   

8.
The influence of supranormal muscle glycogen levels on glycogen breakdown in contracting muscle was investigated. Rats either rested or swam for 3 h and subsequently had their isolated hindquarters perfused after 21 h with access to food. Muscle glycogen concentrations were measured before and after 15 min of intermittent electrical muscle stimulation. Before stimulation, glycogen was higher in rats that swam on the preceding day (supercompensated rats) compared with controls. During muscle contractions, glycogen breakdown in fast-twitch red and white fibers was larger in supercompensated hindquarters than in controls, and glycogenolysis correlated significantly with precontraction glycogen concentrations. In slow-twitch fibers, electrical stimulation did not elicit glycogenolysis in either group. Glucose uptake and lactate release were decreased and increased, respectively, in supercompensated hindquarters compared with controls. O2 uptake, release of tyrosine and glycerol, and tension development were similar in the two groups. In conclusion, during muscle contractions, increased muscle glycogen levels lead to increased breakdown of glycogen and release of lactate and decreased uptake of glucose by mechanisms exerted within the muscle cells. Intramuscular lipolysis and net protein breakdown are unaffected. There seems to be no close linkage between needs and mobilization of fuel within the working muscle.  相似文献   

9.
In response to neural overactivity (pseudomyotonia), gastrocnemius muscle fibers from C57Bl/6Jdy2J/dy2J mice have different metabolic profiles compared with normal mice. A population of fibers in the fast-twitch superficial region of the dy2J gastrocnemius stores unusually high amounts of glycogen, leading to an increased glycogen storage in the whole muscle. The dy2J muscle also contains twice as much lactate as normal muscle. A [14C]lactate intraperitoneal injection leads to preferential 14C incorporation into glycogen in the dy2J muscle compared with normal muscle. To determine whether skeletal muscles were incorporating lactate into glycogen without body organ (liver, kidney) input, gastrocnemius muscles were bathed in 10 mM [14C]lactate with intact neural and arterial supply but with impeded venous return. The contralateral gastrocnemius serves as a control for body organ input. By using this in situ procedure, we demonstrate that under conditions of high lactate both normal and dy2J muscle can directly synthesize glycogen from lactate. In this case, normal whole muscle incorporates [14C] lactate into glycogen at a higher rate than dy2J whole muscle. Autoradiography, however, suggests that the high-glycogen-containing muscle fibers in the dy2J muscle incorporate lactate into glycogen at nearly four times the rate of normal or surrounding muscle fibers.  相似文献   

10.
1. The effects of aging on the sensitivity and responsiveness of glucose transport, lactate formation and glycogen synthesis to insulin were studied in the incubated stripped soleus muscle isolated from aging Sprague-Dawley and Wistar rats. 2. As Sprague-Dawley rats aged from 5 to 13 weeks, there were marked increases in the concentrations of insulin that were required for half-maximal stimulation (i.e. EC50 value, which is a measure of sensitivity) of glucose transport, lactate formation and glycogen synthesis. 3. In marked contrast, there were no alterations in sensitivities of any of these processes to insulin in soleus muscle prepared from Wistar rats aged between 6 and 12 weeks. 4. However, in soleus muscles from 85-week-old Wistar rats the rates of glycogen synthesis in response to basal, sub-maximal and maximal concentrations of insulin were markedly decreased. The insulin EC50 value of glycogen synthesis was increased 4-fold, but was unchanged for lactate formation. 5. The insulin-stimulated rates of glucose transport in soleus muscles from 5- or 85-week-old Wistar rats were not significantly different.  相似文献   

11.
Endurance training helps muscle tissue oxidize lipids and therefore helps conserve glycogen. It was thought interesting to find out if, in addition to this preferential use of fatty acids by muscle tissue, there is an increase in the capacity of adipose tissue to mobilize lipids. So the response to epinephrine of collagenase-isolated fat cells obtained after biopsies of fat performed in the periumbilical region of 10 trained marathon runners (T) and 10 sedentary subjects (S), all males, was studied in vitro. Glycerol release, chosen as adipocyte lipolysis indicator, was measured by bioluminescence. Lipolysis was studied with increased epinephrine concentration. This caused a significant increase in lipolysis only in the T subjects. The dose-response curves were significantly different for T and S subjects at 10(-6) M and above (P less than 0.05). To determine the modification mechanisms observed, lipolysis with isoproterenol and epinephrine plus propranolol were studied. Isoproterenol significantly increased lipolysis in both groups. The dose-response curves were significantly different at 10(-7) M (P less than 0.01) and above. In both groups, epinephrine plus propranolol significantly decreased lipolysis without distinction between T and S. It is concluded that in male subjects endurance training increases the sensitivity of subcutaneous abdominal adipose tissue to the lipolytic action of epinephrine; this effect seems to be related to an increased response of the beta-adrenergic pathways.  相似文献   

12.
Subcutaneous abdominal adipose tissue is one of the largest fat depots and contributes the major proportion of circulating nonesterified fatty acids (NEFA). Little is known about aspects of human adipose tissue metabolism in vivo other than lipolysis. Here we collated data from 331 experiments in 255 healthy volunteers over a 23-year period, in which subcutaneous abdominal adipose tissue metabolism was studied by measurements of arterio-venous differences after an overnight fast. NEFA and glycerol were released in a ratio of 2.7:1, different (P < 0.001) from the value of 3.0 that would indicate no fatty acid re-esterification. Fatty acid re-esterification was 10.2 ± 1.4%. Extraction of triacylglycerol (TG) (fractional extraction 5.7 ± 0.4%) indicated intravascular lipolysis by lipoprotein lipase, and this contributed 21 ± 3% of the glycerol released. Glucose uptake (fractional extraction 2.6 ± 0.3%) was partitioned around 20-25% for provision of glycerol 3-phosphate and 30% into lactate production. There was release of lactate and pyruvate, with extraction of the ketone bodies 3-hydroxybutyrate and acetoacetate, although these were small numerically compared with TG and glucose uptake. NEFA release (expressed per 100 g tissue) correlated inversely with measures of fat mass (e.g., with BMI, r(s) = -0.24, P < 0.001). We examined within-person variability. Systemic NEFA concentrations, NEFA release, fatty acid re-esterification, and adipose tissue blood flow were all more consistent within than between individuals. This picture of human adipose tissue metabolism in the fasted state should contribute to a greater understanding of adipose tissue physiology and pathophysiology.  相似文献   

13.
1. The effects of hypothyroidism (caused by surgical thyroidectomy followed by treatment for 1 month with propylthiouracil) and of hyperthyroidism [induced by subcutaneous administration of L-tri-iodothyronine (T3)] on glucose tolerance and skeletal-muscle sensitivity to insulin were examined in rats. Glucose tolerance was estimated during 2 h after subcutaneous glucose injection (1 g/kg body wt.). The sensitivity of the soleus muscle to insulin was studied in vitro in sedentary and acutely exercised animals. 2. Glucose tolerance was impaired in both hypothyroid and hyperthyroid rats in comparison with euthyroid controls. 3. In the soleus muscle, responsiveness of the rate of lactate formation to insulin was abolished in hypothyroid rats, whereas the sensitivity of the rate of glycogen synthesis to insulin was unchanged. In hyperthyroid animals, opposite changes were found, i.e. responsiveness of the rate of glycogen synthesis was inhibited and the sensitivity of the rate of lactate production did not differ from that in control sedentary rats. 4. A single bout of exercise for 30 min potentiated the stimulatory effect of insulin on lactate formation in hyperthyroid rats and on glycogen synthesis in hypothyroid animals. 5. The data suggest that thyroid hormones exert an interactive effect with insulin in skeletal muscle. This is likely to be at the post-receptor level, inhibiting the effect of insulin on glycogen synthesis and stimulating oxidative glucose utilization.  相似文献   

14.
The relationships between the lactate threshold (TLa), plasma catecholamines, and ventilatory threshold (TVE) were examined under normal and glycogen-depleted conditions. Nine male subjects performed a graded exercise test on a bicycle ergometer in a normal glycogen (NG) state and in a glycogen-depleted (GD) state to determine if manipulation of muscle glycogen content would affect their ventilatory, lactate, and catecholamine responses. High correlations were found between plasma lactate and the two catecholamines, epinephrine (r = 0.964) and norepinephrine (r = 0.965) under both conditions. The GD protocol resulted in a shift in the TLa to a later work rate; inflections in epinephrine and norepinephrine shifted in a coordinated manner. TVE and TLa occurred at similar work loads under NG conditions [67.2 +/- 1.5 and 65.6 +/- 2.3% maximal oxygen consumption (VO2max), respectively], but TLa occurred at a later work load (75.3 +/- 1.9% VO2max) compared with TVE (68.3 +/- 1.6% VO2max) under GD conditions. These results suggest a causal relationship between plasma lactate and epinephrine during a graded exercise test under the glycogen conditions studied. Although an association existed between ventilation and lactate, this relationship was not as strong.  相似文献   

15.
The state of the muscle cells of the heart was studied experimentally in 36 albino rats the next day after a single administration of adrenaline hydrochloride (3mg/kg), intramuscularly into the hip. Areas of overcontraction and overextension of myofibrills, numerous myelin-like figures not infrequently containing mitochondria and glycogen, drops of lipids were observed by electron microscopy. It is suggested that the affecting action of adrenaline is expressed through the activation of lipolysis which results in dissociation of the protein-lipid components of the mitochondrial membranes, accumulation of fatty acids in the cytoplasm and resynthesis of the new unusual membranous formations.  相似文献   

16.
Frog skeletal muscle mainly utilizes the substrates glucose and lactate for energy metabolism. The goal of this study was to determine the effect of insulin on the uptake and metabolic fate of lactate and glucose at rest in skeletal muscle of the American bullfrog, Lithobates catesbeiana, under varying temperature regimens. We hypothesize that lactate and glucose metabolic pathways will respond differently to the presence of insulin in cold versus warm acclimated frog tissues, suggesting an interaction between temperature and metabolism under varying environmental conditions. We employed radiolabeled tracer techniques to measure in vitro uptake, oxidation, and incorporation of glucose and lactate into glycogen by isolated muscles from bullfrogs acclimated to 5 °C (cold) or 25 °C (warm). Isolated bundles from Sartorius muscles were incubated at 5 °C, 15 °C, or 25 °C, and in the presence and absence of 0.05 IU/mL bovine insulin. Insulin treatment in the warm acclimated and incubated frogs resulted in an increase in glucose incorporation into glycogen, and an increase in intracellular [glucose] of 0.5 μmol/g (P<0.05). Under the same conditions lactate incorporation into glycogen was reduced (P<0.05) in insulin-treated muscle. When compared to the warm treatment group, cold acclimation and incubation resulted in increased rates of glucose oxidation and glycogen synthesis, and a reduction in free intracellular glucose levels (P<0.05). When muscles from either acclimation group were incubated at an intermediate temperature of 15 °C, insulin's effect on substrate metabolism was attenuated or even reversed. Therefore, a significant interaction between insulin and acclimation condition in controlling skeletal muscle metabolism appears to exist. Our findings further suggest that one of insulin's actions in frog muscle is to increase glucose incorporation into glycogen, and to reduce reliance on lactate as the primary metabolic fuel.  相似文献   

17.
1. Fasting of ad libitum- or maintenance-fed steers for 4 to 9 days did not alter basal lipolytic rates in vitro. 2. Epinephrine stimulation of adipose tissue of fasted steers resulted in greater (P less than 0.05) lipolysis than in tissue from fed steers. 3. Prostaglandin E2 (PGE2) did not alter epinephrine-stimulated lipolysis in ad libitum- or maintenance-fed cattle. 4. Indomethacin did not influence basal lipolysis, even in the presence of PGE2. 5. Insulin neither affected basal lipolysis nor inhibited dibutyl cAMP-stimulated lipolysis.  相似文献   

18.
The effect of glycogen content on the activation of glycogen phosphorylase during adrenaline stimulation was investigated in soleus muscles from Wistar rats. Furthermore, adrenergic activation of glycogen phosphorylase in the slow-twitch oxidative soleus muscle was compared to the fast-twitch glycolytic epitrochlearis muscle. The glycogen content was 96.4 +/- 4.4 mmol (kg dw)(-1) in soleus muscles. Three hours of incubation with 10 mU/ml of insulin (and 5.5 mM glucose) increased the glycogen content to 182.2+/-5.9 mmol (kg dw)(-1) which is similar to that of epitrochlearis muscles (175.7+/-6.9 mmol (kg dw)(-1)). Total phosphorylase activity in soleus was independent of glycogen content. Adrenaline (10(-6) M) transformed about 20% and 35% (P < 0.01) of glycogen phosphorylase to the a form in soleus with normal and high glycogen content, respectively. In epitrochlearis, adrenaline stimulation transformed about 80% of glycogen phosphorylase to the a form. Glycogen synthase activation was reduced to low level in soleus muscles with both normal and high glycogen content. In conclusion, adrenaline-mediated glycogen phosphorylase activation is enhanced in rat soleus muscles with increased glycogen content. Glycogen phosphorylase activation during adrenaline stimulation was much higher in epitrochlearis than in soleus muscles with a similar content of glycogen.  相似文献   

19.
The importance of gluconeogenic substrates (i.e., lactate, glycerol, and alanine) in the glycogen resynthesis observed in fasting rats after exhausting submaximal exercise [R.D. Fell et al. Am. J. Physiol. 238 (Regulatory Integrative Comp. Physiol. 7): R328-R332, 1980] was examined in muscles and liver in response to pharmacological alterations of gluconeogenic precursor flux. The minor role of lactate for glycogen resynthesis after prolonged submaximal exercise was confirmed by the insignificant accumulation of lactate neither in muscles nor in plasma. When the rate of lipolysis is reduced either by beta-blockade or by nicotinic acid injection, the replenishment of muscle glycogen persisted, suggesting that glycerol released by triglycerides hydrolysis did not play an important role in glycogen resynthesis. On the other hand, when pyruvate oxidation is enhanced by dichloroacetate (DCA), thus reducing plasma levels of lactate and alanine, glycogen resynthesis was completely blocked in liver and partly in some but not all muscles. This failure in total inhibition of glycogen resynthesis associated with the significant reduction of the plasma alanine level could be attributed to the possible stimulation of gluconeogenesis from alanine by DCA (R.A. Harris and D.W. Crabb. Arch. Biochem. Biophys. 189: 364-371, 1978). The results could point out alanine as the major gluconeogenic substrate during recovery from exhaustive exercise in fasting conditions.  相似文献   

20.
Activation of glycogen phosphorylase by hormones was examined in hepatocytes isolated from euthyroid and hypothyroid female rats and incubated by Ca2+-free buffer containing 1 mM-EGTA. Basal glycogen phosphorylase activity was decreased in Ca2+-free buffer. However, the activation of hepatocyte glycogen phosphorylase, in the absence of extracellular Ca2+, in response to adrenaline, glucagon or phenylephrine was slightly lower, whereas that by vasopressin was abolished. The activation of glycogen phosphorylase by phenylephrine, adrenaline or isoproterenol (isoprenaline) in hepatocytes from euthyroid rats incubated in the absence of Ca2+ was not accompanied by any detectable increase in total cyclic AMP. The log-dose/response curves for activation of phosphorylase by phenylephrine or low concentrations of adrenaline were the same in hepatocytes from hypothyroid as compared wit euthyroid rats, whereas the response to isoproterenol was greater in hepatocytes from hypothyroid rats. However, the increases in total cyclic AMP accumulation caused by adrenaline or isoproterenol were greater in hepatocytes from hypothyroid rats than in hepatocytes from euthyroid rats. The increases in cyclic AMP accumulation caused by adrenaline or isoproterenol in Ca2+-depleted hepatocytes from hypothyroid rats were blocked by propranolol, a beta-adrenergic antagonist. In contrast, propranolol was only partially effective asan inhibitor of the activation of glycogen phosphorylase by phenylephrine or adrenaline in hepatocytes from hypothyroid rats and ineffective on phosphorylase activation in cells from euthyroid rats. These data indicate that the alpha-adrenergic activation of glycogen phosphorylase is not affected by the absence of extracellular Ca2+, and the extent to which total cyclic AMP was increased by adrenergic amines did not correlate with glycogen phosphorylase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号