首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Rates of HIV immune escape and reversion: implications for vaccination   总被引:1,自引:0,他引:1  
HIV-1 mutates extensively in vivo to escape immune control by CD8+ T cells (CTLs). The CTL escape mutant virus might also revert back to wild-type upon transmission to new hosts if significant fitness costs are incurred by the mutation. Immune escape and reversion can be extremely fast if they occur very early after infection, whereas they are much slower when they begin later during infection. Immune escape presents a significant barrier to vaccination, because escape of vaccine-mediated immune responses could neutralise any benefits of vaccination. Here, we consider the dynamics of immune escape and reversion in vivo in natural infection, and suggest how understanding of this can be used to predict optimal vaccine targets and design vaccination strategies that maximise immune control. We predict that inducing synchronous, broad CTL by vaccination should limit the likelihood of viral escape from immune control.  相似文献   

2.
Human immunodeficiency virus type 1 (HIV-1)-specific immune responses over the course of rapidly progressive infection are not well defined. Detailed longitudinal analyses of neutralizing antibodies, lymphocyte proliferation, in vivo-activated and memory cytotoxic T-lymphocyte (CTL) responses, and viral sequence variation were performed on a patient who presented with acute HIV-1 infection, developed an AIDS-defining illness 13 months later, and died 45 months after presentation. Neutralizing-antibody responses remained weak throughout, and no HIV-1-specific lymphocyte proliferative responses were seen even early in the disease course. Strong in vivo-activated CTL directed against Env and Pol epitopes were present at the time of the initial drop in viremia but were quickly lost. Memory CTL against Env and Pol epitopes were detected throughout the course of infection; however, these CTL were not activated in vivo. Despite an initially narrow CTL response, new epitopes were not targeted as the disease progressed. Viral sequencing showed the emergence of variants within the two targeted CTL epitopes; however, viral variants within the immunodominant Env epitope were well recognized by CTL, and there was no evidence of viral escape from immune system detection within this epitope. These data demonstrate a narrowly directed, static CTL response in a patient with rapidly progressive disease. We also show that disease progression can occur in the presence of persistent memory CTL recognition of autologous epitopes and in the absence of detectable escape from CTL responses, consistent with an in vivo defect in activation of CTL.  相似文献   

3.
Improved understanding of the dynamics of host immune responses and viral evolution is critical for effective HIV-1 vaccine design. We comprehensively analyzed Cytotoxic T-lymphocyte (CTL)-viral epitope dynamics in an antiretroviral therapy-naïve subject over the first four years of HIV-1 infection. We found that CTL responses developed sequentially and required constant antigenic stimulation for maintenance. CTL responses exerting strong selective pressure emerged early and led to rapid escape, proliferated rapidly and were predominant during acute/early infection. Although CTL responses to a few persistent epitopes developed over the first two months of infection, they proliferated slowly. As CTL epitopes were replaced by mutational variants, the corresponding responses immediately declined, most rapidly in the cases of strongly selected epitopes. CTL recognition of epitope variants, via cross-reactivity and de novo responses, was common throughout the period of study. Our data demonstrate that HIV-specific CTL responses, especially in the critical acute/early stage, were focused on regions that are prone to escape. Failure of CTL responses to strongly target functional or structurally critical regions of the virus, as well as the sequential cascade of CTL responses, followed closely by viral escape and decline of the corresponding responses, likely contribute to a lack of sustainable viral suppression. Focusing early and rapidly proliferating CTL on persistent epitopes may be essential for durable viral control in HIV-1 infection.  相似文献   

4.
5.
HIV-1 transmission and viral evolution in the first year of infection were studied in 11 individuals representing four transmitter-recipient pairs and three independent seroconverters. Nine of these individuals were enrolled during acute infection; all were men who have sex with men (MSM) infected with HIV-1 subtype B. A total of 475 nearly full-length HIV-1 genome sequences were generated, representing on average 10 genomes per specimen at 2 to 12 visits over the first year of infection. Single founding variants with nearly homogeneous viral populations were detected in eight of the nine individuals who were enrolled during acute HIV-1 infection. Restriction to a single founder variant was not due to a lack of diversity in the transmitter as homogeneous populations were found in recipients from transmitters with chronic infection. Mutational patterns indicative of rapid viral population growth dominated during the first 5 weeks of infection and included a slight contraction of viral genetic diversity over the first 20 to 40 days. Subsequently, selection dominated, most markedly in env and nef. Mutants were detected in the first week and became consensus as early as day 21 after the onset of symptoms of primary HIV infection. We found multiple indications of cytotoxic T lymphocyte (CTL) escape mutations while reversions appeared limited. Putative escape mutations were often rapidly replaced with mutually exclusive mutations nearby, indicating the existence of a maturational escape process, possibly in adaptation to viral fitness constraints or to immune responses against new variants. We showed that establishment of HIV-1 infection is likely due to a biological mechanism that restricts transmission rather than to early adaptive evolution during acute infection. Furthermore, the diversity of HIV strains coupled with complex and individual-specific patterns of CTL escape did not reveal shared sequence characteristics of acute infection that could be harnessed for vaccine design.  相似文献   

6.
Several studies have shown that cytotoxic T lymphocytes (CTLs) play an important role in controlling HIV/SIV infection. Notably, the observation of escape mutants suggests a selective pressure induced by the CTL response. However, it remains difficult to assess the definite role of the cellular immune response. We devise a computational model of HIV/SIV infection having a broad cellular immune response targeting different viral epitopes. The CTL clones are stimulated by viral antigen and interact with the virus population through cytotoxic killing of infected cells. Consequently, the virus population reacts through the acquisition of CTL escape mutations. Our model provides realistic virus dynamics and describes several experimental observations. We postulate that inter-clonal competition and immunodominance may be critical factors determining the sequential emergence of escapes. We show that even though the total killing induced by the CTL response can be high, escape rates against a single CTL clone are often slow and difficult to estimate from infrequent sequence measurements. Finally, our simulations show that a higher degree of immunodominance leads to more frequent escape with a reduced control of viral replication but a substantially impaired replicative capacity of the virus. This result suggests two strategies for vaccine design: Vaccines inducing a broad CTL response should decrease the viral load, whereas vaccines stimulating a narrow but dominant CTL response are likely to induce escape but may dramatically reduce the replicative capacity of the virus.  相似文献   

7.
HIV-1 often evades cytotoxic T cell (CTL) responses by generating variants that are not recognized by CTLs. We used single-genome amplification and sequencing of complete HIV genomes to identify longitudinal changes in the transmitted/founder virus from the establishment of infection to the viral set point at 1 year after the infection. We found that the rate of viral escape from CTL responses in a given patient decreases dramatically from acute infection to the viral set point. Using a novel mathematical model that tracks the dynamics of viral escape at multiple epitopes, we show that a number of factors could potentially contribute to a slower escape in the chronic phase of infection, such as a decreased magnitude of epitope-specific CTL responses, an increased fitness cost of escape mutations, or an increased diversity of the CTL response. In the model, an increase in the number of epitope-specific CTL responses can reduce the rate of viral escape from a given epitope-specific CTL response, particularly if CD8+ T cells compete for killing of infected cells or control virus replication nonlytically. Our mathematical framework of viral escape from multiple CTL responses can be used to predict the breadth and magnitude of HIV-specific CTL responses that need to be induced by vaccination to reduce (or even prevent) viral escape following HIV infection.  相似文献   

8.
It has been hypothesized that sequence variation within CTL epitopes leading to immune escape plays a role in the progression of HIV-1 infection. Only very limited data exist that address the influence of biologic characteristics of CTL epitopes on the emergence of immune escape variants and the efficiency of suppression HIV-1 by CTL. In this report, we studied the effects of HIV-1 CTL epitope sequence variation on HIV-1 replication. The highly conserved HLA-B14-restricted CTL epitope DRFYKTLRAE in HIV-1 p24 was examined, which had been defined as the immunodominant CTL epitope in a long-term nonprogressing individual. We generated a set of viral mutants on an HX10 background differing by a single conservative or nonconservative amino acid substitution at each of the P1 to P9 amino acid residues of the epitope. All of the nonconservative amino acid substitutions abolished viral infectivity and only 5 of 10 conservative changes yielded replication-competent virus. Recognition of these epitope sequence variants by CTL was tested using synthetic peptides. All mutations that abrogated CTL recognition strongly impaired viral replication, and all replication-competent viral variants were recognized by CTL, although some variants with a lower efficiency. Our data indicate that this CTL epitope is located within a viral sequence essential for viral replication. Targeting CTL epitopes within functionally important regions of the HIV-1 genome could limit the chance of immune evasion.  相似文献   

9.
HLA B57 and the closely related HLA B5801 are over-represented among HIV-1 infected long-term nonprogressors (LTNPs). It has been suggested that this association between HLA B57/5801 and asymptomatic survival is a consequence of strong CTL responses against epitopes in the viral Gag protein. Moreover, CTL escape mutations in Gag would coincide with viral attenuation, resulting in low viral load despite evasion from immune control. In this study we compared HLA B57/5801 HIV-1 infected progressors and LTNPs for sequence variation in four dominant epitopes in Gag and their ability to generate CTL responses against these epitopes and the autologous escape variants. Prevalence and appearance of escape mutations in Gag epitopes and potential compensatory mutations were similar in HLA B57/5801 LTNPs and progressors. Both groups were also indistinguishable in the magnitude of CD8+ IFN-gamma responses directed against the wild-type or autologous escape mutant Gag epitopes in IFN-gamma ELISPOT analysis. Interestingly, HIV-1 variants from HLA B57/5801 LTNPs had much lower replication capacity than the viruses from HLA B57/5801 progressors, which did not correlate with specific mutations in Gag. In conclusion, the different clinical course of HLA B57/5801 LTNPs and progressors was not associated with differences in CTL escape mutations or CTL activity against epitopes in Gag but rather with differences in HIV-1 replication capacity.  相似文献   

10.
CD8(+) cytotoxic T-lymphocytes (CTLs) perform a critical role in the immune control of viral infections, including those caused by human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV). As a result, genetic variation at CTL epitopes is strongly influenced by host-specific selection for either escape from the immune response, or reversion due to the replicative costs of escape mutations in the absence of CTL recognition. Under strong CTL-mediated selection, codon positions within epitopes may immediately "toggle" in response to each host, such that genetic variation in the circulating virus population is shaped by rapid adaptation to immune variation in the host population. However, this hypothesis neglects the substantial genetic variation that accumulates in virus populations within hosts. Here, we evaluate this quantity for a large number of HIV-1- (n > or = 3,000) and HCV-infected patients (n > or = 2,600) by screening bulk RT-PCR sequences for sequencing "mixtures" (i.e., ambiguous nucleotides), which act as site-specific markers of genetic variation within each host. We find that nonsynonymous mixtures are abundant and significantly associated with codon positions under host-specific CTL selection, which should deplete within-host variation by driving the fixation of the favored variant. Using a simple model, we demonstrate that this apparently contradictory outcome can be explained by the transmission of unfavorable variants to new hosts before they are removed by selection, which occurs more frequently when selection and transmission occur on similar time scales. Consequently, the circulating virus population is shaped by the transmission rate and the disparity in selection intensities for escape or reversion as much as it is shaped by the immune diversity of the host population, with potentially serious implications for vaccine design.  相似文献   

11.
Escape from specific T-cell responses contributes to the progression of human immunodeficiency virus type 1 (HIV-1) infection. T-cell escape viral variants are retained following HIV-1 transmission between major histocompatibility complex (MHC)-matched individuals. However, reversion to wild type can occur following transmission to MHC-mismatched hosts in the absence of cytotoxic T-lymphocyte (CTL) pressure, due to the reduced fitness of the escape mutant virus. We estimated both the strength of immune selection and the fitness cost of escape variants by studying the rates of T-cell escape and reversion in pigtail macaques. Near-complete replacement of wild-type with T-cell escape viral variants at an immunodominant simian immunodeficiency virus Gag epitope KP9 occurred rapidly (over 7 days) following infection of pigtail macaques with SHIVSF162P3. Another challenge virus, SHIVmn229, previously serially passaged through pigtail macaques, contained a KP9 escape mutation in 40/44 clones sequenced from the challenge stock. When six KP9-responding animals were infected with this virus, the escape mutation was maintained. By contrast, in animals not responding to KP9, rapid reversion of the K165R mutation occurred over 2 weeks after infection. The rapidity of reversion to the wild-type sequence suggests a significant fitness cost of the T-cell escape mutant. Quantifying both the selection pressure exerted by CTL and the fitness costs of escape mutation has important implications for the development of CTL-based vaccine strategies.  相似文献   

12.
Cytolytic T lymphocytes (CTL) play a major role in controlling human immunodeficiency virus type 1 (HIV-1) infection. To evade immune pressure, HIV-1 is selected at targeted CTL epitopes, which may consequentially alter viral replication fitness. In our longitudinal investigations of the interplay between T-cell immunity and viral evolution following acute HIV-1 infection, we observed in a treatment-naïve patient the emergence of highly avid, gamma interferon-secreting, CD8+ CTL recognizing an HLA-Cw*0102-restricted epitope, NSPTRREL (NL8). This epitope lies in the p6Pol protein, located in the transframe region of the Gag-Pol polyprotein. Over the course of infection, an unusual viral escape mutation arose within the p6Pol epitope through insertion of a 3-amino-acid repeat, NSPT(SPT)RREL, with a concomitant insertion in the p6Gag late domain, PTAPP(APP). Interestingly, this p6Pol insertion mutation is often selected in viruses with the emergence of antiretroviral drug resistance, while the p6Gag late-domain PTAPP motif binds Tsg101 to permit viral budding. These results are the first to demonstrate viral evasion of immune pressure by amino acid insertions. Moreover, this escape mutation represents a novel mechanism whereby HIV-1 can alter its sequence within both the Gag and Pol proteins with potential functional consequences for viral replication and budding.  相似文献   

13.
During acute human immunodeficiency virus type 1 (HIV-1) infection, early host cellular immune responses drive viral evolution. The rates and extent of these mutations, however, remain incompletely characterized. In a cohort of 98 individuals newly infected with HIV-1 subtype B, we longitudinally characterized the rates and extent of HLA-mediated escape and reversion in Gag, Pol, and Nef using a rational definition of HLA-attributable mutation based on the analysis of a large independent subtype B data set. We demonstrate rapid and dramatic HIV evolution in response to immune pressures that in general reflect established cytotoxic T-lymphocyte (CTL) response hierarchies in early infection. On a population level, HLA-driven evolution was observed in approximately 80% of published CTL epitopes. Five of the 10 most rapidly evolving epitopes were restricted by protective HLA alleles (HLA-B*13/B*51/B*57/B*5801; P = 0.01), supporting the importance of a strong early CTL response in HIV control. Consistent with known fitness costs of escape, B*57-associated mutations in Gag were among the most rapidly reverting positions upon transmission to non-B*57-expressing individuals, whereas many other HLA-associated polymorphisms displayed slow or negligible reversion. Overall, an estimated minimum of 30% of observed substitutions in Gag/Pol and 60% in Nef were attributable to HLA-associated escape and reversion events. Results underscore the dominant role of immune pressures in driving early within-host HIV evolution. Dramatic differences in escape and reversion rates across codons, genes, and HLA restrictions are observed, highlighting the complexity of viral adaptation to the host immune response.  相似文献   

14.
Infections with human immunodeficiency virus (HIV) and the closely related monkey viruses simian-human immunodeficiency virus (SHIV) and simian immunodeficiency virus (SIV) are characterized by progressive waves of immune responses, followed by viral mutation and "immune escape." However, escape mutation usually leads to lower replicative fitness, and in the absence of immune pressure, an escape mutant (EM) virus "reverts" to the wild-type phenotype. Analysis of the dynamics of immune escape and reversion has suggested it is a mechanism for identifying the immunogens best capable of controlling viremia. We have analyzed and modeled data of the dynamics of wild-type (WT) and EM viruses during SHIV infection of macaques. Modeling suggests that the dynamics of reversion and immune escape should be determined by the availability of target cells for infection. Consistent with this suggestion, we find that the rate of reversion of cytotoxic T-lymphocyte (CTL) EM virus strongly correlates with the number of CD4(+) T cells available for infection. This phenomenon also affects the rate of immune escape, since this rate is determined by the balance of CTL killing and the WT fitness advantage. This analysis predicts that the optimal timing for the selection of immune escape variants will be immediately after the peak of viremia and that the development of escape variants at later times will lead to slower selection. This has important implications for comparative studies of immune escape and reversion in different infections and for identifying epitopes with high fitness cost for use as vaccine targets.  相似文献   

15.
Cellular immune responses are thought to be an important antiviral host defense, but the relationship between virus-specific T-helper and cytotoxic-T-lymphocyte (CTL) responses has not been defined. To investigate a potential link between these responses, we examined functional human immunodeficiency virus type 1 (HIV-1)-specific memory CTL precursor frequencies and p24-specific proliferative responses in a cohort of infected untreated persons with a wide range of viral loads and CD4 cell counts. Levels of p24-specific proliferative responses positively correlated with levels of Gag-specific CTL precursors and negatively correlated with levels of plasma HIV-1 RNA. These data linking the levels of HIV-specific CTL with virus-specific helper cell function during chronic viral infection provide cellular immunologic parameters to guide therapeutic and prophylactic vaccine development.  相似文献   

16.
Several vaccine studies have ameliorated disease progression in simian-human immunodeficiency virus (SHIV) infections. The successes of these vaccines have been largely attributed to protective effects of cytotoxic T-lymphocyte (CTL) responses, although the precise correlates of immune protection remain poorly defined. It is now well established that vigorous CTL and antibody responses can rapidly select for viral escape variants after HIV and SIV infection. Here we suggest that viral variation analyses should be performed on viruses derived from vaccinated, SIV-, or SHIV-challenged animals as a routine component of vaccine evaluation to determine the contribution of immune responses to the success (or failure) of the vaccine regimen. To illustrate the importance of escape analysis, we show that rapid emergence of escape variants postchallenge contributed to the failure of a DNA prime/MVA boost vaccine regimen encoding SIV Tat.  相似文献   

17.
Mutational escape from the CTL response represents a major driving force for viral diversification in HIV-1-infected adults, but escape during infancy has not been described previously. We studied the immune response of perinatally infected children to an epitope (B57-TW10) that is targeted early during acute HIV-1 infection in adults expressing HLA-B57 and rapidly mutates under this selection pressure. Viral sequencing revealed the universal presence of escape mutations within TW10 among B57- and B5801-positive children. Mutations in TW10 and other B57-restricted epitopes arose early following perinatal infection of B57-positive children born to B57-negative mothers. Surprisingly, the majority of B57/5801-positive children exhibited a robust response to the TW10 escape variant while recognizing the wild-type epitope weakly or not at all. These data demonstrate that children, even during the first years of life, are able to mount functional immune responses of sufficient potency to drive immune escape. Moreover, our data suggest that the consequences of immune escape may differ during infancy because most children mount a strong variant-specific immune response following escape, which is rarely seen in adults. Taken together, these findings indicate that the developing immune system of children may exhibit greater plasticity in responding to a continually evolving chronic viral infection.  相似文献   

18.
19.
Human immunodeficiency virus type 1 (HIV-1) genetic diversity is a major obstacle for the design of a successful vaccine. Certain viral polymorphisms encode human leukocyte antigen (HLA)-associated immune escape, potentially overcoming limited vaccine protection. Although transmission of immune escape variants has been reported, the overall extent to which this phenomenon occurs in populations and the degree to which it contributes to HIV-1 viral evolution are unknown. Selection on the HIV-1 env gene at transmission favors neutralization-sensitive variants, but it is not known to what degree selection acts on the internal HIV-1 proteins to restrict or enhance the transmission of immune escape variants. Studies have suggested that HLA class I may determine susceptibility to HIV-1 infection, but a definitive role for HLA at transmission remains unproven. Comparing populations of acute seroconverters and chronically infected patients, we found no evidence of selection acting to restrict transmission of HIV-1 variants. We found that statistical associations previously reported in chronic infection between viral polymorphisms and HLA class I alleles are not present in acute infection, suggesting that the majority of viral polymorphisms in these patients are the result of transmission rather than de novo adaptation. Using four episodes of HIV-1 transmission in which the donors and recipients were both sampled very close to the time of infection we found that, despite a transmission bottleneck, genetic variants of HIV-1 infection are transmitted in a frequency-dependent manner. As HIV-1 infections are seeded by unique donor-adapted viral variants, each episode is a highly individual antigenic challenge. Host-specific, idiosyncratic HIV-1 antigenic diversity will seriously tax the efficacy of immunization based on consensus sequences.  相似文献   

20.
Virus-specific T-cell immune responses are important in restraint of human immunodeficiency virus type 1 (HIV-1) replication and control of disease. Plasma viral load is a key determinant of disease progression and infectiousness in HIV infection. Although HIV-1 subtype C (HIV-1C) is the predominant virus in the AIDS epidemic worldwide, the relationship between HIV-1C-specific T-cell immune responses and plasma viral load has not been elucidated. In the present study we address (i) the association between the level of plasma viral load and virus-specific immune responses to different HIV-1C proteins and their subregions and (ii) the specifics of correlation between plasma viral load and T-cell responses within the major histocompatibility complex (MHC) class I HLA supertypes. Virus-specific immune responses in the natural course of HIV-1C infection were analyzed in the gamma interferon (IFN-gamma)-enzyme-linked immunospot assay by using synthetic overlapping peptides corresponding to the HIV-1C consensus sequence. For Gag p24, a correlation was seen between better T-cell responses and lower plasma viral load. For Nef, an opposite trend was observed where a higher T-cell response was more likely to be associated with a higher viral load. At the level of the HLA supertypes, a lower viral load was associated with higher T-cell responses to Gag p24 within the HLA A2, A24, B27, and B58 supertypes, in contrast to the absence of such a correlation within the HLA B44 supertype. The present study demonstrated differential correlations (or trends to correlation) in various HIV-1C proteins, suggesting (i) an important role of the HIV-1C Gag p24-specific immune responses in control of viremia and (ii) more rapid viral escape from immune responses to Nef with no restraint of plasma viral load. Correlations between the level of IFN-gamma-secreting T cells and viral load within the MHC class I HLA supertypes should be considered in HIV vaccine design and efficacy trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号