共查询到20条相似文献,搜索用时 13 毫秒
1.
《Animal : an international journal of animal bioscience》2014,8(6):895-903
The objective of this study was to quantify the accuracy of imputing the genotype of parents using information on the genotype of their progeny and a family-based and population-based imputation algorithm. Two separate data sets were used, one containing both dairy and beef animals (n=3122) with high-density genotypes (735 151 single nucleotide polymorphisms (SNPs)) and the other containing just dairy animals (n=5489) with medium-density genotypes (51 602 SNPs). Imputation accuracy of three different genotype density panels were evaluated representing low (i.e. 6501 SNPs), medium and high density. The full genotypes of sires with genotyped half-sib progeny were masked and subsequently imputed. Genotyped half-sib progeny group sizes were altered from 4 up to 12 and the impact on imputation accuracy was quantified. Up to 157 and 258 sires were used to test the accuracy of imputation in the dairy plus beef data set and the dairy-only data set, respectively. The efficiency and accuracy of imputation was quantified as the proportion of genotypes that could not be imputed, and as both the genotype concordance rate and allele concordance rate. The median proportion of genotypes per animal that could not be imputed in the imputation process decreased as the number of genotyped half-sib progeny increased; values for the medium-density panel ranged from a median of 0.015 with a half-sib progeny group size of 4 to a median of 0.0014 to 0.0015 with a half-sib progeny group size of 8. The accuracy of imputation across different paternal half-sib progeny group sizes was similar in both data sets. Concordance rates increased considerably as the number of genotyped half-sib progeny increased from four (mean animal allele concordance rate of 0.94 in both data sets for the medium-density genotype panel) to five (mean animal allele concordance rate of 0.96 in both data sets for the medium-density genotype panel) after which it was relatively stable up to a half-sib progeny group size of eight. In the data set with dairy-only animals, sufficient sires with paternal half-sib progeny groups up to 12 were available and the within-animal mean genotype concordance rates continued to increase up to this group size. The accuracy of imputation was worst for the low-density genotypes, especially with smaller half-sib progeny group sizes but the difference in imputation accuracy between density panels diminished as progeny group size increased; the difference between high and medium-density genotype panels was relatively small across all half-sib progeny group sizes. Where biological material or genotypes are not available on individual animals, at least five progeny can be genotyped (on either a medium or high-density genotyping platform) and the parental alleles imputed with, on average, ⩾96% accuracy. 相似文献
2.
《Animal : an international journal of animal bioscience》2016,10(7):1077-1085
Availability of high-density single nucleotide polymorphism (SNP) genotyping platforms provided unprecedented opportunities to enhance breeding programmes in livestock, poultry and plant species, and to better understand the genetic basis of complex traits. Using this genomic information, genomic breeding values (GEBVs), which are more accurate than conventional breeding values. The superiority of genomic selection is possible only when high-density SNP panels are used to track genes and QTLs affecting the trait. Unfortunately, even with the continuous decrease in genotyping costs, only a small fraction of the population has been genotyped with these high-density panels. It is often the case that a larger portion of the population is genotyped with low-density and low-cost SNP panels and then imputed to a higher density. Accuracy of SNP genotype imputation tends to be high when minimum requirements are met. Nevertheless, a certain rate of genotype imputation errors is unavoidable. Thus, it is reasonable to assume that the accuracy of GEBVs will be affected by imputation errors; especially, their cumulative effects over time. To evaluate the impact of multi-generational selection on the accuracy of SNP genotypes imputation and the reliability of resulting GEBVs, a simulation was carried out under varying updating of the reference population, distance between the reference and testing sets, and the approach used for the estimation of GEBVs. Using fixed reference populations, imputation accuracy decayed by about 0.5% per generation. In fact, after 25 generations, the accuracy was only 7% lower than the first generation. When the reference population was updated by either 1% or 5% of the top animals in the previous generations, decay of imputation accuracy was substantially reduced. These results indicate that low-density panels are useful, especially when the generational interval between reference and testing population is small. As the generational interval increases, the imputation accuracies decay, although not at an alarming rate. In absence of updating of the reference population, accuracy of GEBVs decays substantially in one or two generations at the rate of 20% to 25% per generation. When the reference population is updated by 1% or 5% every generation, the decay in accuracy was 8% to 11% after seven generations using true and imputed genotypes. These results indicate that imputed genotypes provide a viable alternative, even after several generations, as long the reference and training populations are appropriately updated to reflect the genetic change in the population. 相似文献
3.
《Animal : an international journal of animal bioscience》2018,12(2):191-198
Accurate genomic analyses are predicated on access to a large quantity of accurately genotyped and phenotyped animals. Because the cost of genotyping is often less than the cost of phenotyping, interest is increasing in generating genotypes for phenotyped animals. In some instances this may imply the requirement to genotype older animals with greater phenotypic information content. Biological material for these older informative animals may, however, no longer exist. The objective of the present study was to quantify the ability to impute 11 129 single nucleotide polymorphism (SNP) genotypes of non-genotyped animals (in this instance sires) from the genotypes of their progeny with or without including the genotypes of the progenys’ dams (i.e. mates of the sire to be imputed). The impact on the accuracy of genotype imputation by including more progeny (and their dams’) genotypes in the imputation reference population was also quantified. When genotypes of the dams were not available, genotypes of 41 sires with at least 15 genotyped progeny were used for the imputation; when genotypes of the dams were available, genotypes of 21 sires with at least 10 genotyped progeny were used for the imputation. Imputation was undertaken exploiting family and population level information. The mean and variability in the proportion of genotypes per individual that could not be imputed reduced as the number of progeny genotypes used per individual increased. Little improvement in the proportion of genotypes that could not be imputed was achieved once genotypes of seven progeny and their dams were used or genotypes of 11 progeny without their respective dam’s genotypes were used. Mean imputation accuracy per individual (depicted by both concordance rates and correlation between true and imputed) increased with increasing progeny group size. Moreover, the range in mean imputation accuracy per individual reduced as more progeny genotypes were used in the imputation. If the genotype of the mate of the sire was also used, high accuracy of imputation (mean genotype concordance rate per individual of 0.988), with little additional benefit thereafter, was achieved with seven genotyped progeny. In the absence of genotypes on the dam, similar imputation accuracy could not be achieved even using genotypes on up to 15 progeny. Results therefore suggest, at least for the SNP density used in the present study, that it is possible to accurately impute the genotypes of a non-genotyped parent from the genotypes of its progeny and there is a benefit of also including the genotype of the sire’s mate (i.e. dam of the progeny). 相似文献
4.
Buch LH Kargo M Berg P Lassen J Sørensen AC 《Animal : an international journal of animal bioscience》2012,6(6):880-886
Today, almost all reference populations consist of progeny tested bulls. However, older progeny tested bulls do not have reliable estimated breeding values (EBV) for new traits. Thus, to be able to select for these new traits, it is necessary to build a reference population. We used a deterministic prediction model to test the hypothesis that the value of cows in reference populations depends on the availability of phenotypic records. To test the hypothesis, we investigated different strategies of building a reference population for a new functional trait over a 10-year period. The trait was either recorded on a large scale (30 000 cows per year) or on a small scale (2000 cows per year). For large-scale recording, we compared four scenarios where the reference population consisted of 30 sires; 30 sires and 170 test bulls; 30 sires and 2000 cows; or 30 sires, 2000 cows and 170 test bulls in the first year with measurements of the new functional trait. In addition to varying the make-up of the reference population, we also varied the heritability of the trait (h2 = 0.05 v. 0.15). The results showed that a reference population of test bulls, cows and sires results in the highest accuracy of the direct genomic values (DGV) for a new functional trait, regardless of its heritability. For small-scale recording, we compared two scenarios where the reference population consisted of the 2000 cows with phenotypic records or the 30 sires of these cows in the first year with measurements of the new functional trait. The results showed that a reference population of cows results in the highest accuracy of the DGV whether the heritability is 0.05 or 0.15, because variation is lost when phenotypic data on cows are summarized in EBV of their sires. The main conclusions from this study are: (i) the fewer phenotypic records, the larger effect of including cows in the reference population; (ii) for small-scale recording, the accuracy of the DGV will continue to increase for several years, whereas the increases in the accuracy of the DGV quickly decrease with large-scale recording; (iii) it is possible to achieve accuracies of the DGV that enable selection for new functional traits recorded on a large scale within 3 years from commencement of recording; and (iv) a higher heritability benefits a reference population of cows more than a reference population of bulls. 相似文献
5.
Weller JI Ron M Glick G Shirak A Zeron Y Ezra E 《Animal : an international journal of animal bioscience》2012,6(2):193-202
An efficient algorithm for genomic selection of moderately sized populations based on single nucleotide polymorphism chip technology is described. A total of 995 Israeli Holstein bulls with genetic evaluations based on daughter records were genotyped for either the BovineSNP50 BeadChip or the BovineSNP50 v2 BeadChip. Milk, fat, protein, somatic cell score, female fertility, milk production persistency and herd-life were analyzed. The 400 markers with the greatest effects on each trait were first selected based on individual analysis of each marker with the genetic evaluations of the bulls as the dependent variable. The effects of all 400 markers were estimated jointly using a 'cow model,' estimated from the data truncated to exclude lactations with freshening dates after September 2006. Genotype probabilities for each locus were computed for all animals with missing genotypes. In Method I, genetic evaluations were computed by analysis of the truncated data set with the sum of the marker effects subtracted from each record. Genomic estimated breeding values for the young bulls with genotypes, but without daughter records, were then computed as their parent averages combined with the sum of each animal's marker effects. Method II genomic breeding values were computed based on regressions of estimated breeding values of bulls with daughter record on their parent averages, sum of marker effects and birth year. Method II correlations of the current breeding values of young bulls without daughter records in the truncated data set were higher than the correlations of the current breeding values with the parent averages for fat and protein production, persistency and herd-life. Bias of evaluations, estimated as a difference between the mean of current breeding values of the young bulls and their genomic evaluations, was reduced for milk production traits, persistency and herd-life. Bias for milk production traits was slightly negative, as opposed to the positive bias of parent averages. Correlations of Method II with the means of daughter records adjusted for fixed effects were higher than parent averages for fat, protein, fertility, persistency and herd-life. Reducing the number of markers included in the analysis from 400 to 300 did not reduce correlations of genomic breeding values for protein with current breeding values, but did slightly reduce correlations with means of daughter records. Method II has the advantages as compared with the method of VanRaden in that genotypes of cows can be readily incorporated into the Method II analysis, and it is more effective for moderately sized populations. 相似文献
6.
《Animal : an international journal of animal bioscience》2018,12(7):1350-1357
This study investigated the potential application of genomic selection under a multi-breed scheme in the Spanish autochthonous beef cattle populations using a simulation study that replicates the structure of linkage disequilibrium obtained from a sample of 25 triplets of sire/dam/offspring per population and using the BovineHD Beadchip. Purebred and combined reference sets were used for the genomic evaluation and several scenarios of different genetic architecture of the trait were investigated. The single-breed evaluations yielded the highest within-breed accuracies. Across breed accuracies were found low but positive on average confirming the genetic connectedness between the populations. If the same genotyping effort is split in several populations, the accuracies were lower when compared with single-breed evaluation, but showed a small advantage over small-sized purebred reference sets over the accuracies of subsequent generations. Besides, the genetic architecture of the trait did not show any relevant effect on the accuracy with the exception of rare variants, which yielded slightly lower results and higher loss of predictive ability over the generations. 相似文献
7.
《Animal : an international journal of animal bioscience》2013,7(2):183-191
Genomic selection relaxes the requirement of traditional selection tools to have phenotypic measurements on close relatives of all selection candidates. This opens up possibilities to select for traits that are difficult or expensive to measure. The objectives of this paper were to predict accuracy of and response to genomic selection for a new trait, considering that only a cow reference population of moderate size was available for the new trait, and that selection simultaneously targeted an index and this new trait. Accuracy for and response to selection were deterministically evaluated for three different breeding goals. Single trait selection for the new trait based only on a limited cow reference population of up to 10 000 cows, showed that maximum genetic responses of 0.20 and 0.28 genetic standard deviation (s.d.) per year can be achieved for traits with a heritability of 0.05 and 0.30, respectively. Adding information from the index based on a reference population of 5000 bulls, and assuming a genetic correlation of 0.5, increased genetic response for both heritability levels by up to 0.14 genetic s.d. per year. The scenario with simultaneous selection for the new trait and the index, yielded a substantially lower response for the new trait, especially when the genetic correlation with the index was negative. Despite the lower response for the index, whenever the new trait had considerable economic value, including the cow reference population considerably improved the genetic response for the new trait. For scenarios with a zero or negative genetic correlation with the index and equal economic value for the index and the new trait, a reference population of 2000 cows increased genetic response for the new trait with at least 0.10 and 0.20 genetic s.d. per year, for heritability levels of 0.05 and 0.30, respectively. We conclude that for new traits with a very small or positive genetic correlation with the index, and a high positive economic value, considerable genetic response can already be achieved based on a cow reference population with only 2000 records, even when the reliability of individual genomic breeding values is much lower than currently accepted in dairy cattle breeding programs. New traits may generally have a negative genetic correlation with the index and a small positive economic value. For such new traits, cow reference populations of at least 10 000 cows may be required to achieve acceptable levels of genetic response for the new trait and for the whole breeding goal. 相似文献
8.
《Animal : an international journal of animal bioscience》2013,7(5):705-713
Extensive genetic progress has been achieved in dairy cattle populations on many traits of economic importance because of efficient breeding programmes. Success of these programmes has relied on progeny testing of the best young males to accurately assess their genetic merit and hence their potential for breeding. Over the last few years, the integration of dense genomic information into statistical tools used to make selection decisions, commonly referred to as genomic selection, has enabled gains in predicting accuracy of breeding values for young animals without own performance. The possibility to select animals at an early stage allows defining new breeding strategies aimed at boosting genetic progress while reducing costs. The first objective of this article was to review methods used to model and optimize breeding schemes integrating genomic selection and to discuss their relative advantages and limitations. The second objective was to summarize the main results and perspectives on the use of genomic selection in practical breeding schemes, on the basis of the example of dairy cattle populations. Two main designs of breeding programmes integrating genomic selection were studied in dairy cattle. Genomic selection can be used either for pre-selecting males to be progeny tested or for selecting males to be used as active sires in the population. The first option produces moderate genetic gains without changing the structure of breeding programmes. The second option leads to large genetic gains, up to double those of conventional schemes because of a major reduction in the mean generation interval, but it requires greater changes in breeding programme structure. The literature suggests that genomic selection becomes more attractive when it is coupled with embryo transfer technologies to further increase selection intensity on the dam-to-sire pathway. The use of genomic information also offers new opportunities to improve preservation of genetic variation. However, recent simulation studies have shown that putting constraints on genomic inbreeding rates for defining optimal contributions of breeding animals could significantly reduce achievable genetic gain. Finally, the article summarizes the potential of genomic selection to include new traits in the breeding goal to meet societal demands regarding animal health and environmental efficiency in animal production. 相似文献
9.
Dimauro C Steri R Pintus MA Gaspa G Macciotta NP 《Animal : an international journal of animal bioscience》2011,5(6):833-837
High-density single nucleotide polymorphism (SNP) platforms are currently used in genomic selection (GS) programs to enhance the selection response. However, the genotyping of a large number of animals with high-throughput platforms is rather expensive and may represent a constraint for a large-scale implementation of GS. The use of low-density marker (LDM) platforms could overcome this problem, but different SNP chips may be required for each trait and/or breed. In this study, a strategy of imputation independent from trait and breed is proposed. A simulated population of 5865 individuals with a genome of 6000 SNP equally distributed on six chromosomes was considered. First, reference and prediction populations were generated by mimicking high- and low-density SNP platforms, respectively. Then, the partial least squares regression (PLSR) technique was applied to reconstruct the missing SNP in the low-density chip. The proportion of SNP correctly reconstructed by the PLSR method ranged from 0.78 to 0.97 when 90% and 50%, respectively, of genotypes were predicted. Moreover, data sets consisting of a mixture of actual and PLSR-predicted SNP or only actual SNP were used to predict genomic breeding values (GEBVs). Correlations between GEBV and true breeding values varied from 0.74 to 0.76, respectively. The results of the study indicate that the PLSR technique can be considered a reliable computational strategy for predicting SNP genotypes in an LDM platform with reasonable accuracy. 相似文献
10.
近年来,随着基因芯片技术的发展与育种技术的进步,动植物的基因组选择成为研究热点。在家畜育种中,基因组选择凭借其准确性高、世代间隔短和育种成本低等优势被应用于各种经济动物的种畜选择中。本文详细介绍了基因分型技术和基因组育种值估计方法(最小二乘法、RR-BLUP法、GBLUP法、ssGBLUP法、贝叶斯A法、贝叶斯B法等),并对这些育种方法选用的标记范围、准确性以及计算速度进行了比较,总结了我国和其他国家基因组选择在种畜选择中的应用情况及存在的问题,展望了目前国内外在基因组选择上的最新研究动态及进展,以期为其他育种工作者进一步了解基因组选择提供参考。 相似文献
11.
The rapid accumulation of genomic data has led to an explosion of studies searching for signals of past selection left within DNA sequences. Yet the majority of theoretical studies investigating the traces of selection have assumed a simple form of selection, without interactions among selectively fixed sites. Fitness interactions—‘epistasis’—are commonplace, however, and take on a myriad of forms ( Whitlock et al. 1995 ; Segrèet al. 2005 ; Phillips 2008 ). It is thus important to determine how such epistasis would influence selective sweeps. On p. 5018 of this issue, Takahasi (2009) explores the effect of epistasis on genetic variation neighbouring two sites that interact in determining fitness, finding that such epistasis has a dramatic impact on the genetic variability in regions surrounding the interacting sites. 相似文献
12.
Numerous Bayesian methods of phenotype prediction and genomic breeding value estimation based on multilocus association models have been proposed. Computationally the methods have been based either on Markov chain Monte Carlo or on faster maximum a posteriori estimation. The demand for more accurate and more efficient estimation has led to the rapid emergence of workable methods, unfortunately at the expense of well-defined principles for Bayesian model building. In this article we go back to the basics and build a Bayesian multilocus association model for quantitative and binary traits with carefully defined hierarchical parameterization of Student's t and Laplace priors. In this treatment we consider alternative model structures, using indicator variables and polygenic terms. We make the most of the conjugate analysis, enabled by the hierarchical formulation of the prior densities, by deriving the fully conditional posterior densities of the parameters and using the acquired known distributions in building fast generalized expectation-maximization estimation algorithms. 相似文献
13.
基因组选择在猪杂交育种中的应用 总被引:5,自引:0,他引:5
基因组选择是指在全基因组范围内通过基因组中大量的标记信息估计出个体全基因组范围的育种值,可进一步提升育种效率和准确性,目前在猪纯繁育种中得到广泛应用。但有研究表明,现有的基因组选择方法在猪杂交育种上的应用效果并不理想,在跨群体条件下预测准确性极低。杂交作为养猪业中最为广泛的育种手段之一,通过结合基因组选择理论进一步提升猪的生产性能,具有重要的经济和研究价值。本文综述了基因组选择的发展及其在猪育种中的应用现状,并结合国内外猪杂交育种的方式,分析了目前基因组选择方法在猪杂交育种应用方面的不足,旨在为未来基因组选择在猪杂交育种中的合理应用提供参考。 相似文献
14.
畜禽育种中传统上利用系谱信息评估群体近交程度?近年来随着高通量单核苷酸多态(single nucleotide polymorphism, SNP)检测成本降低,使利用基因组信息分析真实的基因组近交程度成为可能?本研究利用牛54 K SNP 芯片数据统计了北京地区2107头荷斯坦牛基因组上的长纯合片段(runs of homozygosity, ROH)的频率和分布,计算了2种基因组近交系数,即染色体上ROH的长度占基因组总长度的比例(Froh)及个体所有标记基因型中纯合子所占比例,即基因组纯合度(Fhom),进而分析了两种基因组近交系数之间的相关性以及基因组近交与系谱近交系数之间的相关性?结果表明,共检测到44 676个ROH片段,其长度主要分布在1~10 Mb之间?不同长度的ROH散布于个体基因组内,短ROH较长ROH更为常见?ROH在染色体上并非均匀分布,ROH频率最高的区域为10号染色体中部?两种基因组近交系数之间相关性很高(91%以上),但基因组近交与系谱近交之间的相关性较低(低于50%)?系谱完整性是影响基因组近交与系谱近交结果一致的重要因素,基因组近交系数能够反映个体真实的近交,本研究为评估群体近交水平提供了有力工具? 相似文献
15.
《Animal : an international journal of animal bioscience》2016,10(6):1067-1075
Small reference populations limit the accuracy of genomic prediction in numerically small breeds, such like Danish Jersey. The objective of this study was to investigate two approaches to improve genomic prediction by increasing size of reference population in Danish Jersey. The first approach was to include North American Jersey bulls in Danish Jersey reference population. The second was to genotype cows and use them as reference animals. The validation of genomic prediction was carried out on bulls and cows, respectively. In validation on bulls, about 300 Danish bulls (depending on traits) born in 2005 and later were used as validation data, and the reference populations were: (1) about 1050 Danish bulls, (2) about 1050 Danish bulls and about 1150 US bulls. In validation on cows, about 3000 Danish cows from 87 young half-sib families were used as validation data, and the reference populations were: (1) about 1250 Danish bulls, (2) about 1250 Danish bulls and about 1150 US bulls, (3) about 1250 Danish bulls and about 4800 cows, (4) about 1250 Danish bulls, 1150 US bulls and 4800 Danish cows. Genomic best linear unbiased prediction model was used to predict breeding values. De-regressed proofs were used as response variables. In the validation on bulls for eight traits, the joint DK-US bull reference population led to higher reliability of genomic prediction than the DK bull reference population for six traits, but not for fertility and longevity. Averaged over the eight traits, the gain was 3 percentage points. In the validation on cows for six traits (fertility and longevity were not available), the gain from inclusion of US bull in reference population was 6.6 percentage points in average over the six traits, and the gain from inclusion of cows was 8.2 percentage points. However, the gains from cows and US bulls were not accumulative. The total gain of including both US bulls and Danish cows was 10.5 percentage points. The results indicate that sharing reference data and including cows in reference population are efficient approaches to increase reliability of genomic prediction. Therefore, genomic selection is promising for numerically small population. 相似文献
16.
《Animal : an international journal of animal bioscience》2012,6(9):1369-1376
Reliable selection criteria are required for young riding horses to increase genetic gain by increasing accuracy of selection and decreasing generation intervals. In this study, selection strategies incorporating genomic breeding values (GEBVs) were evaluated. Relevant stages of selection in sport horse breeding programs were analyzed by applying selection index theory. Results in terms of accuracies of indices (rTI) and relative selection response indicated that information on single nucleotide polymorphism (SNP) genotypes considerably increases the accuracy of breeding values estimated for young horses without own or progeny performance. In a first scenario, the correlation between the breeding value estimated from the SNP genotype and the true breeding value (= accuracy of GEBV) was fixed to a relatively low value of rmg = 0.5. For a low heritability trait (h2 = 0.15), and an index for a young horse based only on information from both parents, additional genomic information doubles rTI from 0.27 to 0.54. Including the conventional information source ‘own performance’ into the before mentioned index, additional SNP information increases rTI by 40%. Thus, particularly with regard to traits of low heritability, genomic information can provide a tool for well-founded selection decisions early in life. In a further approach, different sources of breeding values (e.g. GEBV and estimated breeding values (EBVs) from different countries) were combined into an overall index when altering accuracies of EBVs and correlations between traits. In summary, we showed that genomic selection strategies have the potential to contribute to a substantial reduction in generation intervals in horse breeding programs. 相似文献
17.
《Animal : an international journal of animal bioscience》2014,8(3):388-394
In this study, an industry terminal breeding goal was used in a deterministic simulation, using selection index methodology, to predict genetic gain in a beef population modelled on the UK pedigree Limousin, when using genomic selection (GS) and incorporating phenotype information from novel commercial carcass traits. The effect of genotype–environment interaction was investigated by including the model variations of the genetic correlation between purebred and commercial cross-bred performance (ρX). Three genomic scenarios were considered: (1) genomic breeding values (GBV)+estimated breeding values (EBV) for existing selection traits; (2) GBV for three novel commercial carcass traits+EBV in existing traits; and (3) GBV for novel and existing traits plus EBV for existing traits. Each of the three scenarios was simulated for a range of training population (TP) sizes and with three values of ρX. Scenarios 2 and 3 predicted substantially higher percentage increases over current selection than Scenario 1. A TP of 2000 sires, each with 20 commercial progeny with carcass phenotypes, and assuming a ρX of 0.7, is predicted to increase gain by 40% over current selection in Scenario 3. The percentage increase in gain over current selection increased with decreasing ρX; however, the effect of varying ρX was reduced at high TP sizes for Scenarios 2 and 3. A further non-genomic scenario (4) was considered simulating a conventional population-wide progeny test using EBV only. With 20 commercial cross-bred progenies per sire, similar gain was predicted to Scenario 3 with TP=5000 and ρX=1.0. The range of increases in genetic gain predicted for terminal traits when using GS are of similar magnitude to those observed after the implementation of BLUP technology in the United Kingdom. It is concluded that implementation of GS in a terminal sire breeding goal, using purebred phenotypes alone, will be sub-optimal compared with the inclusion of novel commercial carcass phenotypes in genomic evaluations. 相似文献
18.
《Animal : an international journal of animal bioscience》2016,10(6):1025-1032
The aim of this study was to test how genetic gain for a trait not measured on the nucleus animals could be obtained within a genomic selection pig breeding scheme. Stochastic simulation of a pig breeding program including a breeding nucleus, a multiplier to produce and disseminate semen and a production tier where phenotypes were recorded was performed to test (1) the effect of obtaining phenotypic records from offspring of nucleus animals, (2) the effect of genotyping production animals with records for the purpose of including them in a genomic selection reference population or (3) to combine the two approaches. None of the tested strategies affected genetic gain if the trait under investigation had a low economic value of only 10% of the total breeding goal. When the relative economic weight was increased to 30%, a combination of the methods was most effective. Obtaining records from offspring of already genotyped nucleus animals had more impact on genetic gain than to genotype more distant relatives with phenotypes to update the reference population. When records cannot be obtained from offspring of nucleus animals, genotyping of production animals could be considered for traits with high economic importance. 相似文献
19.
《Animal : an international journal of animal bioscience》2016,10(6):1033-1041
Recent genomic evaluation studies using real data and predicting genetic gain by modeling breeding programs have reported moderate expected benefits from the replacement of classic selection schemes by genomic selection (GS) in small ruminants. The objectives of this study were to compare the cost, monetary genetic gain and economic efficiency of classic selection and GS schemes in the meat sheep industry. Deterministic methods were used to model selection based on multi-trait indices from a sheep meat breeding program. Decisional variables related to male selection candidates and progeny testing were optimized to maximize the annual monetary genetic gain (AMGG), that is, a weighted sum of meat and maternal traits annual genetic gains. For GS, a reference population of 2000 individuals was assumed and genomic information was available for evaluation of male candidates only. In the classic selection scheme, males breeding values were estimated from own and offspring phenotypes. In GS, different scenarios were considered, differing by the information used to select males (genomic only, genomic+own performance, genomic+offspring phenotypes). The results showed that all GS scenarios were associated with higher total variable costs than classic selection (if the cost of genotyping was 123 euros/animal). In terms of AMGG and economic returns, GS scenarios were found to be superior to classic selection only if genomic information was combined with their own meat phenotypes (GS-Pheno) or with their progeny test information. The predicted economic efficiency, defined as returns (proportional to number of expressions of AMGG in the nucleus and commercial flocks) minus total variable costs, showed that the best GS scenario (GS-Pheno) was up to 15% more efficient than classic selection. For all selection scenarios, optimization increased the overall AMGG, returns and economic efficiency. As a conclusion, our study shows that some forms of GS strategies are more advantageous than classic selection, provided that GS is already initiated (i.e. the initial reference population is available). Optimizing decisional variables of the classic selection scheme could be of greater benefit than including genomic information in optimized designs. 相似文献
20.
《Animal : an international journal of animal bioscience》2020,14(8):1565-1575
The net benefit from investing in any technology is a function of the cost of implementation and the expected return in revenue. The objective of the present study was to quantify, using deterministic equations, the net monetary benefit from investing in genotyping of commercial females. Three case studies were presented reflecting dairy cows, beef cows and ewes based on Irish population parameters; sensitivity analyses were also performed. Parameters considered in the sensitivity analyses included the accuracy of genomic evaluations, replacement rate, proportion of female selection candidates retained as replacements, the cost of genotyping, the sire parentage error rate and the age of the female when it first gave birth. Results were presented as an annualised monetary net benefit over the lifetime of an individual, after discounting for the timing of expressions. In the base scenarios, the net benefit was greatest for dairy, followed by beef and then sheep. The net benefit improved as the reliability of the genomic evaluations improved and, in fact, a negative net benefit of genotyping was less frequent when the reliability of the genomic evaluations was high. The impact of a 10% point increase in genomic reliability was, however, greatest in sheep, followed by beef and then dairy. The net benefit of genotyping female selection candidates reduced as replacement rate increased. As genotyping costs increased, the net benefit reduced irrespective of the percentage of selection candidates kept, the replacement rate or even the population considered. Nonetheless, the association between the genotyping cost and the net benefit of genotyping differed by the percentage of selection candidates kept. Across all replacement rates evaluated, retaining 25% of the selection candidates resulted in the greatest net benefit when genotyping cost was low but the lowest net benefit when genotyping cost was high. Genotyping breakeven cost was non-linearly associated with the percentage of selection candidates retained, reaching a maximum when 50% of selection candidates were retained, irrespective of replacement rate, genomic reliability or the population. The genotyping breakeven cost was also non-linearly associated with replacement rate. The approaches outlined within provide the back-end framework for a decision support tool to quantify the net benefit of genotyping, once parameterised by the relevant population metrics. 相似文献