首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the present study was to compare the effect of maize silage and grass silage on microbial fermentation and protein flow in a semi-continuous rumen simulation system (Rusitec) when milling screen size (MSS) during grinding was varied. Oven-dried silages were milled through screens of 1, 4 or 9 mm pore size and incubated for 48 h in a Rusitec system. Furthermore, the effect of N supplementation to maize silage (MSS: 4 mm) was investigated and single dose vs. continuous infusion of urea-N were compared. Degradation of organic matter (OM), crude protein (CP), fibre fractions and non-structural carbohydrates (NSC) as well as short-chain fatty acid production differed significantly between forage sources. Urea-N supplementation improved the degradation of NSC, but not that of fibre fractions in maize silage. The way of urea supply had only marginal effects on fermentation characteristics. An increase in MSS, and consequently in mean feed particle size, led to an improvement in the degradation of OM, CP and NSC, but efficiency of microbial net protein synthesis (EMPS; mg microbial N flow/g degraded OM) and the microbial amino acid profile were less affected. EMPS was higher in grass silage than in maize silage and was improved by urea-N supplementation in maize silage. This study indicates that fermentation of NSC as well as EMPS during incubation of maize silage was limited by availability of NH3-N. Furthermore, an increase in MSS above 1 mm seems to improve fermentation of silages in the Rusitec system.  相似文献   

2.
The objective was to investigate the effect of variation in forage source and feed particle size of a diet, including interactions, on the amount and the composition of microbial crude protein (CP) in a semi-continuous culture system (Rusitec). Different microbial CP fractions were compared. Five diets with mean forage proportion of 0.88 and different maize silage to grass silage ratios (100 : 0, 79 : 21, 52 : 48, 24 : 76 and 0 : 100) were used. Diets were ground through sieves with a pore size of either 1 or 4 mm, matching the particle size of fine (F) and coarse (C), respectively. Diets were characterised by increasing concentrations of CP and fibre fractions, and decreasing concentrations of starch with ascending inclusion rates of grass silage. Microbial mass was isolated from feed residues after incubation from the liquid phase of the fermenter and from the liquid effluent. The amount of synthesised microbial CP was determined on the basis of 15N balance. It increased quite linearly by the stepwise replacement of maize silage by grass silage, and was higher in C treatments compared to F treatments. Efficiency of microbial CP synthesis (EMPS) was improved from 29 to 43 mg microbial N/g degraded organic matter (OM) by increasing the proportion of grass silage in the diet, but was unaffected by particle size. The N content as well as the profiles of amino acids of the three microbial fractions was affected by diet composition and particle size. The ratio of solid- to liquid-associated microbes was affected by diet composition and feed particle size. The amount and EMPS seemed to be improved by degradation of OM from grass silage and an increasing availability of N. Moreover, the results of this study indicated a shift in the composition of the microbial community caused by variation in forage composition and feed particle size.  相似文献   

3.
Replacing grass silage with maize silage results in a fundamental change in the ratio of structural to non-structural carbohydrates with commensurate changes in rumen fermentation patterns and nutrient utilisation. This study investigated the effects of feeding four forage mixtures, namely grass silage (G); 67 g/100 g grass silage + 33 g/100 g maize silage (GGM); 67 g/100 g maize silage + 33/100 g grass silage (MMG); maize silage (M) to four ruminally and duodenally canulated Holstein Friesian steers. All diets were formulated to be isonitrogenous (22.4 g N/kg DM) using a concentrate mixture. Dietary dry matter (DM) and organic matter (OM) digestibility increased with ascending maize silage inclusion (P < 0.1) whereas starch and neutral detergent fibre digestibility declined (P < 0.05). Ratio of non-glucogenic to glucogenic precursors in the rumen fluid increased with maize silage inclusion (P < 0.01) with a commensurate reduction in rumen pH (P < 0.05). Mean circulating concentrations of insulin were greatest and similar in diets MMG and GGM, lower in diet M and lowest in diet G (P < 0.01). There were no effects of diet on the mean circulating concentration of growth hormone (GH), or the frequency, amplitude and duration of GH pulses, or the mean circulating concentrations of IGF-1. Increasing levels of DM, OM and starch intakes with the substitution of grass silage with maize silage affected overall digestion, nutrient partitioning and subsequent circulating concentrations of insulin.  相似文献   

4.
Beet pulp contains high amounts of pectins that can reduce the risk of rumen disorders compared to using feedstuffs high in starch. The objective was to study the effects of inclusion of ensiled pressed beet pulp in total mixed rations (TMR) for high-yielding dairy cows. Two TMR containing no or about 20% (on dry matter (DM) basis) beet pulp silage were used. The beet pulp silage mainly replaced maize silage and corn cob silage. The TMR were intentionally equal in the concentrations of energy and utilisable crude protein (CP) at the duodenum. TMR were fed to 39 and 40 dairy cows, respectively, for 118 days. The average daily milk yield was about 43 kg/day. No significant differences in milk yield and milk fat or milk protein content were detected. DM intake of cows was significantly reduced by the inclusion of beet pulp silage (23.0 v. 24.5 kg/day). However, a digestibility study, separately conducted with sheep, showed a significantly higher organic matter digestibility and metabolisable energy concentration for the TMR that contained beet pulp silage. In vitro gas production kinetics indicated that the intensity of fermentation was lower in the TMR that contained beet pulp silage. In vitro production of short-chain fatty acids, studied using a Rusitec, did not differ between the TMR. However, the inclusion of beet pulp silage in the ration caused a significant reduction in the efficiency of microbial CP synthesis in vitro. The amino acid profile of microbial protein remained unchanged. It was concluded that beet pulp silage has specific effects on ruminal fermentation that may depress feed intake of cows but improve digestibility. An inclusion of beet pulp silage of up to 20% of DM in rations for high-yielding dairy cows is possible without significant effects on milk yield and milk protein or milk fat.  相似文献   

5.
Tannins, polyphenolic compounds found in plants, are known to complex with proteins of feed and rumen bacteria. This group of substances has the potential to reduce methane production either with or without negative effects on digestibility and microbial yield. In the first step of this study, 10 tannin-rich extracts from chestnut, mimosa, myrabolan, quebracho, sumach, tara, valonea, oak, cocoa and grape seed, and four rapeseed tannin monomers (pelargonidin, catechin, cyanidin and sinapinic acid) were used in a series of in vitro trials using the Hohenheim gas test, with grass silage as substrate. The objective was to screen the potential of various tannin-rich extracts to reduce methane production without a significant effect on total gas production (GP). Supplementation with pelargonidin and cyanidin did not reduce methane production; however, catechin and sinapinic acid reduced methane production without altering GP. All tannin-rich extracts, except for tara extract, significantly reduced methane production by 8% to 28% without altering GP. On the basis of these results, five tannin-rich extracts were selected and further investigated in a second step using a Rusitec system. Each tannin-rich extract (1.5 g) was supplemented to grass silage (15 g). In this experiment, nutrient degradation, microbial protein synthesis and volatile fatty acid production were used as additional response criteria. Chestnut extract caused the greatest reduction in methane production followed by valonea, grape seed and sumach, whereas myrabolan extract did not reduce methane production. Whereas chestnut extract reduced acetate production by 19%, supplementation with grape seed or myrabolan extract increased acetate production. However, degradation of fibre fractions was reduced in all tannin treatments. Degradation of dry matter and organic matter was also reduced by tannin supplementation, and no differences were found between the tannin-rich extracts. CP degradation and ammonia-N accumulation in the Rusitec were reduced by tannin treatment. The amount and efficiency of microbial protein synthesis were not significantly affected by tannin supplementation. The results of this study indicated that some tannin-rich extracts are able to reduce methane production without altering microbial protein synthesis. We hypothesized that chestnut and valonea extract have the greatest potential to reduce methane production without negative side effects.  相似文献   

6.
The aim of the experiment was to determine the impact of heat stress on nutrient digestibility and nitrogen balance in sheep fed silages differing in fibre quality. The digestibility trial was conducted at three different ambient temperatures (15°C, 25°C and 35°C for 24 h/d). The tested brown-midrib maize (Bm) silage had a higher nutrient digestibility, except for ether extract (EE) and a higher metabolisable energy (ME) content than the control maize (Con) silage. Nitrogen (N) excretion with faeces was higher but N excretion with urine was lower for sheep fed Bm silage, subsequently N balance did not differ between the two silages. Temperature had no effect on nutrient digestibility, except for crude protein (CP), but N excretion with urine was lower at elevated temperatures. A diet by temperature interaction was found for dry matter (DM) and organic matter (OM) digestibility. When the ambient temperature increased from 15°C to 25°C, the DM and OM digestibility increased in animals fed Con silage, but decreased in animals fed Bm silage. Concomitantly, ME estimated from digestible nutrients was higher for Bm than for Con at 15°C, but no differences were found at 25°C and 35°C. Effects of diet by temperature interaction, furthermore, were observed for EE and CP digestibility. Therefore, forage quality has to be considered when feeding heat-stressed animals.  相似文献   

7.
A 2 × 2 factorial feeding experiment was conducted to examine the effects of varying the maturity level of the grass used to prepare silage and the nature of concentrate starch source and their interactions on dry matter intake (DMI), diet digestibility, energy corrected milk (ECM) production and milk composition in dairy cows. Twenty-eight multiparous Swedish Red dairy cows, 133 ± 45 days in milk (DIM), with an average milk yield of 30 ± 4 kg/day and a live weight of 624 ± 69 kg were blocked by DIM and randomly assigned to seven replicated balanced 4 × 4 Latin squares with four 21-day experimental periods. The experimental diets consisted of four total mixed rations (TMR) consisting of early-cut grass silage (EGS) supplemented with either barley- or maize-based concentrate and late-cut grass silage (LGS) supplemented with either barley- or maize-based concentrate. All TMR contained identical proportions of forage (51%) and concentrate (49%). Total tract digestibility was estimated by determining indigestible NDF (iNDF) concentrations in feeds and faeces and using iNDF as an internal marker. The feeds’ ruminal degradation parameters were determined using both in situ (nylon bag) and in vitro (gas production (GP)) techniques. Cows offered diets containing EGS had greater (P < 0.001) daily dry matter (DM) intakes, ECM yields and total tract digestibilities for DM and organic matter (OM), but these were not affected by the nature of the concentrate starch source. No interaction between the maturity of the silage and the nature of the concentrate starch source was observed for DMI, diet digestibility or ECM yield. Both grass silages and concentrates had similar rates of ruminal degradation of NDF when measured in situ. The in situ DM (P < 0.001) and starch (P = 0.001) degradation rates of barley-based concentrate were greater than those for maize-based concentrate. In vitro OM GP rates and extents were similar for both concentrate feeds. The results showed that diets containing EGS offered better animal performance and diet digestibility than diets containing LGS. The concentrate starch source did not affect animal performance, but total NDF digestibility was better with diet containing barley- than maize-based concentrate.  相似文献   

8.
A study was undertaken to investigate the performance of breeding ewes fed a range of forage and concentrate-based diets in late pregnancy, balanced for supply of metabolizable protein (MP). For the final 6 weeks before lambing, 104 twin-bearing multiparous ewes were offered one of four diets: ad libitum precision-chop grass silage + 0.55 kg/day concentrates (GS); ad libitum maize silage + 0.55 kg/day concentrates (MS); a 1 : 1 mixture (on a dry matter (DM) basis) of grass silage and maize silage fed ad libitum + 0.55 kg/day (GSMS); or 1.55 kg/day concentrates + 50 g/day chopped barley straw (C). The CP content of the concentrates was varied between treatments (157 to 296 g/kg DM) with the aim of achieving a daily intake of 130 g/day MP across all treatments. Compared with ewes fed GS, forage DM intake was higher (P < 0.05) in ewes fed MS (+0.21 kg/day) and GSMS (+0.16 kg/day), resulting in higher (P < 0.001) total DM intakes with these treatments. C ewes had the lowest total DM intake of all the treatments examined (P < 0.001). C ewes lost more live weight (LW; P < 0.001) and body condition score (BCS; P < 0.05) during the first 3 weeks of the study but there were no dietary effects on ewe LW or BCS thereafter. The incidence of dystocia was lower (P < 0.01) in C ewes compared with those offered silage-based diets (7.5% v. 37.4% ewes), and was higher (P < 0.01) in ewes fed MS compared with GS or GSMS (50.7%, 34.7% and 26.9%, respectively). There were no significant dietary effects on the plasma metabolite concentrations of ewes in late pregnancy, pre-weaning lamb mortality, weaned lamb output per ewe or on lamb growth rate. The results of this study demonstrate that both maize silage and all-concentrate diets can replace grass silage in pregnant ewe rations without impacting on performance, provided the supply of MP is non-limiting. The higher incidence of dystocia in ewes fed maize silage as the sole forage is a concern.  相似文献   

9.
In total, 20 multiparous Holstein-Friesian dairy cows received one of four diets in each of four periods of 28-day duration in a Latin square design to test the hypothesis that the inclusion of lucerne in the ration of high-yielding dairy cows would improve animal performance and milk fatty acid (FA) composition. All dietary treatments contained 0.55 : 0.45 forage to concentrates (dry matter (DM) basis), and within the forage component the proportion of lucerne (Medicago sativa), grass (Lolium perenne) and maize silage (Zea mays) was varied (DM basis): control (C)=0.4 : 0.6 grass : maize silage; L20=0.2 : 0.2 : 0.6 lucerne : grass : maize silage; L40=0.4 : 0.6 lucerne : maize silage; and L60=0.6 : 0.4 lucerne : maize silage. Diets were formulated to contain a similar CP and metabolisable protein content, with the reduction of soya bean meal and feed grade urea with increasing content of lucerne. Intake averaged 24.3 kg DM/day and was lowest in cows when fed L60 (P<0.01), but there was no effect of treatment on milk yield, milk fat or protein content, or live weight change, which averaged 40.9 kg/day, 41.0, 30.9 g/kg and 0.16 kg/day, respectively. Milk fat content of 18:2 c9 c12 and 18:3 c9 c12 c15 was increased (P<0.05) with increasing proportion of lucerne in the ration. Milk fat content of total polyunsaturated fatty acids was increased by 0.26 g/100 g in L60 compared with C. Plasma urea and β-hydroxybutyrate concentrations averaged 3.54 and 0.52 mmol/l, respectively, and were highest (P<0.001) in cows when fed L60 and lowest in C, but plasma glucose and total protein was not affected (P>0.05) by dietary treatment. Digestibility of DM, organic matter, CP and fibre decreased (P<0.01) with increasing content of lucerne in the diet, although fibre digestibility was similar in L40 and L60. It is concluded that first cut grass silage can be replaced with first cut lucerne silage without any detrimental effect on performance and an improvement in the milk FA profile, although intake and digestibility was lowest and plasma urea concentrations highest in cows when fed the highest level of inclusion of lucerne.  相似文献   

10.
Since maize silage is an important forage in cattle nutrition, it is important to know its nutritive value. Much effort is put into breeding maize, and several new varieties are introduced on the market every year. This requires periodical analyses of the nutritive value of current maize varieties for the formulation of cattle rations. The aim of this study was to examine the nutritive value of whole crop maize silage (WCMS) from nine maize varieties in 3 consecutive years. For the analysis of nutrient composition and ruminal degradability of organic matter (OM), crude protein (CP), neutral detergent fibre (aNDFom) and non-fibre carbohydrates (NFC), varieties were harvested at three harvest dates (50%, 55% and 60% dry matter content in ear). Due to capacity limitations, the digestibility of WCMS was tested only for the middle harvest date. The CP and acid detergent fibre (ADFom) content was affected (p < 0.05) while aNDFom and NFC content was not influenced by variety. With advancing maturity, CP, aNDFom and ADFom content declined while NFC content increased. Variety influenced effective ruminal degradability (ED) of nutrients, except for CP. The ED of all examined nutrients decreased as maturity advanced from first to third harvest date. Digestibility of OM, ADFom and NFC was significantly and digestibility of aNDFom was tendentially (p = 0.064) influenced by variety. Additionally, an effect of year and a harvest date × year interaction was found for almost all examined parameters. In conclusion, variety, harvest date and year influence the nutritive value of WCMS. A comparison with earlier studies shows that current varieties have a higher fibre digestibility and a slower-ripening stover compared to older varieties.  相似文献   

11.
Information about the effects of rising atmospheric CO2 concentration and drought on the feed value of maize silage and interactions with the thermal environment during feeding is limited. A free air carbon dioxide enrichment facility was operated in a maize field to generate an elevated CO2 concentration of 550 ppm. Drought was induced by the exclusion of precipitation in one half of all experimental plots. Plants were harvested, chopped and ensiled. In a balance experiment on sheep, the nutrient digestibility was determined for three climatic treatments (temperate, temperature humidity index (THI) 57-63; mild heat, THI 68-71; severe heat, THI 75-80). The CO2 concentration and drought did not alter the crude nutrient content of silage dry matter (DM) or nutrient and organic matter (OM) digestibility. Drought increased the concentration of deoxynivalenol (DON, p < 0.001). The drought-associated increase of DON was reduced by CO2 enrichment (p = 0.003). The lowest digestibility of acid detergent fibre (p = 0.024) and neutral detergent fibre (p = 0.005) was observed during the coldest climate. OM digestibility increased during mild heat (p = 0.023). This study did not indicate considerable alterations of the feed value of maize silage due to increased atmospheric CO2 and drought. Enriched CO2 may decrease DON contaminations during drought. The thermal environment during the balance experiment did not interact with feeding maize silage grown under elevated CO2, but may affect cell wall and OM digestibility.  相似文献   

12.
Eight multiparous lactating Holstein-Friesian cows were used to evaluate the partitioning of dietary nitrogen (N) from diets based on mixtures of red clover and maize silages in comparison with diets based on ryegrass silage. All cows received 4 kg/day of a standard dairy concentrate with one of four forage treatments in an incomplete changeover design with three 4-week periods. Three treatments were based on mixtures of red clover and maize silage. N intake was altered both by varying the ratio of these silages (40/60 and 25/75 on a dry matter (DM) basis) and by an additional treatment for which the DM intake of the 40/60 mixture was restricted to the level achieved with grass silage. Rumen passage rates were estimated from faecal excretion curves following a pulse oral dose of Dysprosium-labeled silage and urinary excretion of purine derivatives (PD) was used as an index of rumen microbial protein synthesis. Red clover silage mixtures led to significantly increased feed intake (21.5, 20.7 and 15.2 kg DM/day for 40/60 and 25/75 red clover/maize silage mixtures and grass silage, respectively), milk production (25.8, 27.8 and 20.0 kg/day for the same treatments, respectively) and milk component yields, but were without effect on milk fat and protein concentrations. The large increase in the yield of milk (24.5 kg/day) and milk components for the restricted red clover/maize silage treatment, in comparison with the grass silage treatment, was proportionately greater than the increase in DM intake (16.6 kg DM/day). There were no significant treatment effects on diet digestibility, while the higher intakes of red clover silage mixtures were associated with higher rumen passage rates (5.82%, 6.24% and 4.55%/h, respectively). There were significant effects of both N intake and forage source on the partitioning of dietary N between milk and urine. When dietary protein was diluted by the inclusion of maize silage, red clover silage led to increased milk N and reduced urinary N in comparison with grass silage. Improvements in N utilisation may be related to increased dietary starch and/or rumen passage rates leading to increased microbial protein synthesis for these treatments. Urinary excretion of PD was significantly higher for all diets based on mixtures of red clover and maize silages, in comparison with grass silage. Urinary N output was close to literature predictions based on N intake for the diet based on ryegrass silage, but 40 to 80 g/day (25% to 30%) less than predicted for the diets based on the mixtures of red clover and maize silages.  相似文献   

13.
Diets based on large proportions of grassland-based feed are uncommon in forage-based intensive beef production, thus contradicting governmental or commercial strategies to promote the use of grassland-based feed in ruminant production systems. Compared with typical maize silage/concentrate diets, grassland-based diets are associated with impaired nitrogen (N) and energy utilisation because of the comparably lower energy and higher CP content of these feeds. However, quantitative studies concerning the effects of increased dietary proportions of grassland-derived feeds on N and energy losses and utilisation and on methane emissions are missing and the compensation potential of using a limited proportion of an energy-rich forage is unknown. Therefore, we tested five diets with varying types and proportions of forage and concentrate. Three diets consisted of grass silage, maize silage, and concentrate in ratios of, g/kg DM, 100:600:300 (G100; control), 300:500:200 (G300), and 500:300:200 (G500), respectively. Two diets were composed of grass silage, corn-cob mix (CCM), and concentrate in ratios of, g/kg DM, 500:300:200 (G500CCM), and 750:150:100 (G750CCM), respectively. A high-protein concentrate (270 g CP/kg DM) was fed to G100, whereas a low-protein concentrate (140 g CP/kg DM) was used in the remaining diets. Diets were fed throughout the entire fattening period to groups of six Limousin-crossbred bulls each. When weighing 246 ± 18 kg, each animal underwent a 7-day total daily faeces and urine collection, which was followed by measuring methane emissions in respiration chambers for 48 h. Total DM intake was similar across all diets, whereas the N intake varied (P < 0.05). Urinary N loss (g/day) was the highest for G750CCM (28.2) and G100 (26.6) and lowest for G500CCM (15.2) and G300 (16.9) (P < 0.001). Energy utilisation was comparable among all groups. Metabolisable energy intake decreased numerically only with increasing proportions of grass silage in the diet. Substituting maize silage with CCM counteracted the loss in metabolisable energy intake. Absolute methane emissions were not different across the groups, but methane emission intensity (mg/g body protein retention) varied (P < 0.05), being numerically lower for G100 (349) and G500CCM (401) compared with the other groups (488 on average). In conclusion, the results show that the grass silage proportion in beef cattle diets can be substantially increased when strategically combined with energy-dense forages, such as CCM. This also limits the need for concentrate and additional protein sources; in addition, the associated urinary N emissions, which are potentially noxious to the environment, are avoided.  相似文献   

14.
The objective of the study was to examine how the fatty acid composition of milk especially concentrations of conjugated linoleic acids (CLA) and trans-C18:1 isomers and milk fat percentage were affected by silage type and concentrate level. Forty dairy cows were blocked and randomly assigned to one of four diets in a 2 x 2 factorial arrangement of treatments and a six week experimental period. Treatments were total mixed rations with maize (M) or grass (G) silage differing in polyunsaturated fatty acid (PUFA) profile and starch content, combined with a high (H) or a low (L) level of concentrate (with or without grain). Treatments had no significant effect on milk, protein and lactose yield, but energy corrected milk yield, milk fat percentage and fat yield was lower and protein percentage higher for maize compared with grass silage diets. Overall, maize silage diets resulted in higher concentrations of CLA isomers compared with grass silage diets, but there was a significant interaction between silage type and concentrate level for concentrations of cis9,trans11-CLA; trans10,cis12-CLA; trans11-C18:1 and trans10-C18:1. A high level of concentrate increased trans10,cis12-CLA and trans10-C18:1 and reduced cis9,trans11-CLA and trans11-C18:1 when maize but not grass silage was provided. The results suggest that high levels of concentrate (grain) do not significantly alter the pattern of PUFA biohydrogenation in the rumen, the concentration of CLA and trans-C18:1 isomers in milk or cause milk fat depression unless combined with forage naturally high in starch and C18:2n-6 such as maize silage.  相似文献   

15.
The objective was to assess the effects of inclusion rate and chop length of lucerne silage, when fed in a total mixed ration (TMR), on milk yield, dry matter (DM) intake (DMI) and digestion in dairy cows. Diets were formulated to contain a 50 : 50 ratio of forage : concentrate (DM basis) and to be isonitrogenous (170 g/kg CP). The forage portion of the offered diets was comprised of maize and lucerne silage in proportions (DM basis) of either 25 : 75 (high Lucerne (HL)) or 75 : 25 (low lucerne (LL)). Lucerne was harvested and conserved as silage at either a long (L) or short (S) chop length. These variables were combined in a 2×2 factorial arrangement to give four treatments (HLL, HLS, LLL, LLS) which were fed in a Latin square design study to Holstein dairy cows in two separate experiments. In total, 16 and 8 multiparous, mid-lactation cows were used in experiments 1 and 2, respectively. To ensure sufficient silage for both experiments, different cuts of lucerne silage (taken from the same sward) were used for each experiment: first cut for experiment 1 (which was of poorer quality) and second cut for experiment 2. Dry matter intake, milk yield and milk composition where measured in both experiments, and total tract digestibility and nitrogen (N) balance were assessed using four cows in experiment 2. In experiment 1, cows fed LL had increased DMI (+3.2 kg/day), compared with those fed HL. In contrast, there was no difference in DMI due to lucerne silage inclusion rate in experiment 2. A reduction in milk yield was observed with the HL treatment in both experiment 1 and 2 (−3.0 and −2.9 kg/day, respectively). The HL diet had reduced digestibility of DM and organic matter (OM) (−3% and −4%, respectively), and also reduced the efficiency of intake N conversion into milk N (−4%). The S chop length increased total tract digestibility of DM and OM (both +4%), regardless of inclusion rate. Inclusion of lucerne silage at 25% of forage DM increased milk yield relative to 75% inclusion, but a S chop length partially mitigated adverse effects of HL on DMI and milk yield in experiment 1 and on DM digestibility in experiment 2.  相似文献   

16.
Green biorefineries provide novel opportunities to use the green biomass efficiently and utilize the ecosystem services provided by grasslands more widely. The effects of the inclusion of fractionated grass silage solid fraction (pulp) on feed intake, rumen fermentation, diet digestion and milk production in dairy cows were investigated. Pulp was separated from grass silage using a screw press simulating a green biorefinery. Partial removal of liquid from forage increased DM concentration from 220 to 432 g/kg and NDF from 589 to 709 g/kg DM while CP decreased from 144 to 107 g/kg DM. A feeding trial using an incomplete changeover design with 24 Nordic Red cows and two 3-week periods was conducted. The pulp replaced grass silage in the diet at 0 (P0), 25 (P25) and 50 (P50) percentage of total forage, which was fed ad libitum with 13 kg of concentrate for all treatments. The forage DM intake was highest on P25 (14.1 kg/day) while P0 and P50 did not differ from each other (13.2 and 13.0 kg/day, respectively). There were no differences between the treatments in rumen pH or ammonia N, but the proportion of acetate increased with increasing pulp inclusion. The digestibility was measured using acid insoluble ash and indigestible NDF (iNDF) as internal markers. Neither of the markers detected differences in NDF digestibility, but according to iNDF, apparent total tract organic matter digestibility decreased with increasing pulp inclusion. The cows maintained milk production at P25, but it showed some decline at P50 (energy-corrected milk at P0 and P25 was 39.8 kg/day while for P50, it was 38.5 kg/day, P = 0.056) and the milk protein yield significantly declined with higher pulp inclusion. Simultaneously, the nitrogen use efficiency in milk production increased. It seems that the fibrous grass-based fraction from a biorefinery process has potential to be used as a feed for ruminants.  相似文献   

17.
Summary As with forage diets in general, ensiled tropical residue feeds and temperate grass and legume herbage tend to have lower fibre digestibility, ruminal biomass production and feed bypass, resulting in limited protein nutrition and intake in the animal. Various modified (recombinant and mutated) microbial inculants might be used mainly to: (1) boost lactic acid production in temperate silage to stabilize against further clostridial protein breakdown during the ensiling process and effect silage fibre (lignin, cellulose, and hemicellulose) digestion to increase digestibility and (2) increase microbial digestion of fibre along with boosting microbial protein synthesis to increase microbial biomass production in the rumen.  相似文献   

18.
ABSTRACT

The study was conducted to determine effects of a complex of fibre-degrading enzymes (xylanase, cellulase and β-glucanase) on nutrient digestibility, fibre fermentation and concentrations of short chain fatty acids (SCFA) at different parts of digestive tract in pigs fed different fibre-rich ingredients. A total of 36 barrows fitted with T-cannulas in the distal ileum (initial body weight of 41.1 ± 2.7 kg) were randomly allotted to six dietary treatments with three different high-fibre diets including maize bran (MB), sugar beet pulp (SBP) and soybean hulls (SH) with or without supplementation of fibre-degrading enzymes. Enzyme supplementation improved (p < 0.05) apparent ileal digestibility (AID) of dietary gross energy (GE), crude protein, dry matter (DM), organic matter (OM), total dietary fibre (TDF), neutral detergent fibre (NDF) and apparent total tract digestibility (ATTD) of dietary GE, DM, OM, TDF, insoluble dietary fibre (IDF) when pigs were fed MB, SBP or SH diets. When compared to the SBP and SH diets, the AID of GE, DM, ash, OM and NDF in diet MB was higher (p < 0.05), but the hindgut disappearance and ATTD of nutrients, except for ether extract and crude ash, were lower (p < 0.05). Enzyme supplementation increased acetate and total SCFA concentrations in ileal digesta and faeces of pigs. In conclusion, enzyme addition improved IDF fermentation and SCFA concentration in the whole intestine of pigs, and there was a large variation of digestibility of fibre components among MB, SH and SBP owing to their different fibre composition. Therefore, fibre-degrading enzymes should be applied to fibrous diets to improve efficient production of swine, especially considering low fibre digestibility of fibre-rich ingredients.  相似文献   

19.
Even though extensive research has examined the role of nutrition on milk fat composition, there is less information on the impact of forages on milk fatty acid (FA) composition. In the current study, the effect of replacing grass silage (GS) with maize silage (MS) as part of a total mixed ration on animal performance and milk FA composition was examined using eight multiparous mid-lactation cows in a replicated 4 × 4 Latin square with 28-day experimental periods. Four treatments comprised the stepwise replacement of GS with MS (0, 160, 334 and 500 g/kg dry matter (DM)) in diets containing a 54 : 46 forage : concentrate ratio on a DM basis. Replacing GS with MS increased (P < 0.001) the DM intake, milk yield and milk protein content. Incremental replacement of GS with MS in the diet enhanced linearly (P < 0.001) the proportions of 6:0-14:0, decreased (P < 0.01) the 16:0 concentrations, but had no effect on the total milk fat saturated fatty acid content. Inclusion of MS altered the distribution of trans-18:1 isomers and enhanced (P < 0.05) total trans monounsaturated fatty acid and total conjugated linoleic acid content. Milk total n-3 polyunsaturated fatty acid (PUFA) content decreased with higher amounts of MS in the diet and n-6 PUFA concentration increased, leading to an elevated n-6 : n-3 PUFA ratio. Despite some beneficial changes associated with the replacement of GS with MS, the overall effects on milk FA composition would not be expected to substantially improve long-term human health. However, the role of forages on milk fat composition must also be balanced against the increases in total milk and protein yield on diets containing higher proportions of MS.  相似文献   

20.
Five morphological fractions (leaf blade, leaf sheath, stem, husk and cob) of stover of five maize genotypes, namely waxy, conventional, fodder, sweet and high-oil maize, respectively, were used to test the effects of genotype and morphological fractions on chemical composition and in vitro fermentation characteristics. The waxy maize had a higher (P < 0.05) stem but lower (P < 0.05) leaf blade proportion and fodder maize had a higher (P < 0.05) leaf blade but lower (P < 0.05) leaf sheath proportion than other genotypes, respectively. Maize genotype had a significant effect (P < 0.001) on the chemical composition of stover parts except for organic matter (OM) concentration. Chemical composition of stover parts was affected (P < 0.001) by morphological fractions. The interaction effects between genotype and morphological fraction on the fiber content of stover parts were significant. Over 0.40 and 0.50 of phosphorus (P) and crude protein (CP) of whole-plant maize stover were averagely contributed by leaf blade. Leaf blade, stem and cob contributed over 0.75 of OM, CP, P and fiber in the whole plant. There were significant effects of genotype and morphological fraction on both in vitro gas production parameters and in vitro organic matter disappearance of maize stovers. The genotype and morphological fraction of maize stover and their interaction had significant effects on NH3-N and total volatile fatty acid concentration and the molar proportion of volatile fatty acid in the supernatant after 72 h of incubation except for valeric acid. The present data indicated that the genotype and morphological fraction of maize resulted in variation in the nutritive value of maize stover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号