首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A quantitative trait locus (QTL) analysis of female reproductive data from a three-generation experimental cross between Meishan (MS) and Large White (LW) pig breeds is presented. Six F1 boars and 23 F1 sows, progeny of six LW boars and six MS sows, produced 573 F2 females and 530 F2 males. Six traits, i.e. teat number (TN), age at puberty (AP), ovulation rate (OR), weight at mating (WTM), number of viable embryos (NVE) and embryo survival (ES) at 30 days of gestation were analysed. Animals were genotyped for a total of 137 markers covering the entire porcine genome. Analyses were carried out based on interval mapping methods, using a line-cross (LC) regression and a half-full sib (HFS) maximum likelihood test. Genome-wide (GW) highly significant (P < 0.001) QTL were detected for WTM on SSC 7 and for AP on SSC 13. They explained, respectively, 14.5% and 8.9% of the trait phenotypic variance. Other GW significant (P < 0.05) QTL were detected for TN on SSC 3, 7, 8, 16 and 17, for OR on SSC 4 and 5, and for ES on SSC 9. Two additional chromosome-wide significant (P < 0.05) QTL were detected for TN, three for WTM, four for AP, three for OR, three for NVE and two for ES. With the exception of the two above-mentioned loci, the QTL explained from 1.2% to 4.6% of trait phenotypic variance. QTL alleles were in most cases not fixed in the grand-parental populations and Meishan alleles were not systematically associated with higher reproductive performance.  相似文献   

2.
Ai H  Ren J  Zhang Z  Ma J  Guo Y  Yang B  Huang L 《Animal genetics》2012,43(4):383-391
Growth and fatness are economically important traits in pigs. In this study, a genome scan was performed to detect quantitative trait loci (QTL) for 14 growth and fatness traits related to body weight, backfat thickness and fat weight in a large-scale White Duroc × Erhualian F(2) intercross. A total of 76 genome-wide significant QTL were mapped to 16 chromosomes. The most significant QTL was found on pig chromosome (SSC) 7 for fatness with unexpectedly small confidence intervals of ~2 cM, providing an excellent starting point to identify causal variants. Common QTL for both fatness and growth traits were found on SSC4, 5, 7 and 8, and shared QTL for fat deposition were detected on SSC1, 2 and X. Time-series analysis of QTL for body weight at six growth stages revealed the continuously significant effects of the QTL on SSC4 at the fattening period and the temporal-specific expression of the QTL on SSC7 at the foetus and fattening stages. For fatness traits, Chinese Erhualian alleles were associated with increased fat deposition except that at the major QTL on SSC7. For growth traits, most of White Duroc alleles enhanced growth rates except for those at three significant QTL on SSC6, 7 and 9. The results confirmed many previously reported QTL and also detected novel QTL, revealing the complexity of the genetic basis of growth and fatness in pigs.  相似文献   

3.
Serum glucose and lipid levels are associated with diabetes mellitus and cardiovascular disease. The purpose of this study was to identify quantitative trait loci (QTL) for serum glucose and lipids in a White Duroc × Erhualian resource population. Serum glucose, glycosylated serum proteins (GSP), and serum lipid levels were measured in a total of 760 F2 animals at 240 days. Strong positive correlations were observed between total cholesterol (TC) and low-density-lipoprotein cholesterol (LDL-C)/high-density-lipoprotein cholesterol (HDL-C). A whole-genome scan was performed with 194 microsatellites covering the pig genome across the entire resource population, revealing 2 QTL for serum glucose and 15 QTL for serum lipids. Of them, three 1% genome-wide significant QTL were identified for LDL-C, TC, and triglycerides (TG) in an adjacent region (67–73 cM) on chromosome 2 (SSC2), and the QTL for LDL-C showed the largest effect with a 95% confidence interval of 5 cM. Another 1% genome-wide significant QTL was found for LDL-C at 87 cM on SSC8. Other QTL showed 5% genome-wide significant or suggestive effects on SSC4, 5, 7, 9, 11, 14, and 15. In total, five significant QTL for serum lipids and a suggestive QTL for GSP on SSC4 were identified for the first time in pigs. Most of the identified QTL are homologous to the previously reported QTL for serum lipids in humans and mice. As correlated traits, QTL for TC and LDL-C were always located in the same genomic regions. The results shed new light on studies of human atherosclerosis and cardiovascular-related diseases. R. Chen, J. Ren, and W. Li contributed equally to this work.  相似文献   

4.
Ren DR  Ren J  Ruan GF  Guo YM  Wu LH  Yang GC  Zhou LH  Li L  Zhang ZY  Huang LS 《Animal genetics》2012,43(5):545-551
The number of vertebrae is associated with body size and meat production in pigs. To identify quantitative trait loci (QTL) for the number of vertebrae, phenotypic values were measured in 1029 individuals from a White Duroc × Chinese Erhualian intercross F2 population. A whole genome scan was performed with 194 microsatellite markers in the F2 population. Four genome‐wide significant QTL and eight chromosome‐wide significant QTL for the number of vertebrae were identified on pig chromosomes (SSC) 1, 2, 6, 7, 10 and 12. The most significant QTL was detected on SSC7 with a confidence interval of 1 cM, explaining 42.32% of the phenotypic variance in the thoracic vertebral number. The significant QTL on SSC1, 2 and 7 confirmed previous reports. A panel of 276 animals representing seven Western and Chinese breeds was genotyped with 34 microsatellite markers in the SSC7 QTL region. No obvious selective sweep effect was observed in the tested breeds, indicating that intensive selection for enlarged body size in Western commercial breeds did not wipe out the genetic variability in the QTL region. The Q alleles for increased vertebral number originated from both Chinese Erhualian and White Duroc founder animals. A haplotype block of approximately 900 kb was found to be shared by all Q‐bearing chromosomes of F1 sires except for one distinct Q chromosome. The critical region harbours the newly reported VRTN gene associated with vertebral number. Further investigations are required to confirm whether VRTN or two other positional candidate genes, PROX2 and FOS, cause the QTL effect.  相似文献   

5.
Pork quality is an economically important trait and one of the main selection criteria for breeding in the swine industry. In this genome-wide association study (GWAS), 455 pigs from a porcine Large White × Minzhu intercross population were genotyped using the Illumina PorcineSNP60K Beadchip, and phenotyped for intramuscular fat content (IMF), marbling, moisture, color L*, color a*, color b* and color score in the longissimus muscle (LM). Association tests between each trait and the SNPs were performed via the Genome Wide Rapid Association using the Mixed Model and Regression-Genomic Control (GRAMMAR-GC) approach. From the Ensembl porcine database, SNP annotation was implemented using Sus scrofa Build 9. A total of 45 SNPs showed significant association with one or multiple meat quality traits. Of the 45 SNPs, 36 were located on SSC12. These significantly associated SNPs aligned to or were in close approximation to previously reported quantitative trait loci (QTL) and some were located within introns of previously reported candidate genes. Two haplotype blocks ASGA0100525-ASGA0055225-ALGA0067099-MARC0004712-DIAS0000861, and ASGA0085522-H3GA0056170 were detected in the significant region. The first block contained the genes MYH1, MYH2 and MYH4. A SNP (ASGA0094812) within an intron of the USP43 gene was significantly associated with five meat quality traits. The present results effectively narrowed down the associated regions compared to previous QTL studies and revealed haplotypes and candidate genes on SSC12 for meat quality traits in pigs.  相似文献   

6.
Gestation length and maternal ability are important to improve the sow reproduction efficiency and their offspring survival. To map quantitative trait loci (QTL) for gestation length and maternal ability related traits including piglet survival rate and average body weight of piglets at weaning, more than 200 F2 sows from a White Duroc × Erhualian resource population were phenotyped. A genome-wide scan was performed with 194 microsatellite markers covering the whole pig genome. QTL analysis was carried out using a composite regression interval mapping method via QTL express. The results showed that total number of born piglets was significantly correlated with gestation length (r = -0.13, P < 0.05). Three QTL were detected on pig chromosome (SSC)2, 8 and 12 for gestation length. The QTL on SSC2 achieved the 5% genome-wide significant level and the QTL on SSC8 was consistent with previous reports. Four suggestive QTL were identified for maternal ability related traits including 1 QTL for survival rate of piglets at weaning on SSC8, 3 QTL for average body weight of piglet at weaning on SSC3, 11 and 13.  相似文献   

7.
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhoea in neonatal and postweaning pigs. F41 is one of ETEC fimbriae that adhere to the small intestinal epithelium and lead to development of diarrhoea. The genetic architecture of susceptibility to ETEC F41 remains elusive in pigs. In this study, we determined the in vitro adhesion phenotypes of ETEC F41 in a total of 835 F2 animals from a White Duroc × Erhualian intercross, and performed a genome scan using both F2 and half-sib analyses with 183 microsatellite markers to detect quantitative trait loci (QTL) for porcine susceptibility to ETEC F41. The two analyses consistently revealed a 1% genome-wide significant QTL on pig chromosome 4. Moreover, we determined F41 adhesion phenotypes in 14 purebred Erhualian and 14 White Duroc pigs. The results showed that both the founder breeds are segregating for the F41 adhesion phenotype, while less percentage of Erhualian pigs were adhesive to ETEC F41 compared to White Duroc pigs.  相似文献   

8.
The aim of the present study was to detect quantitative trait loci (QTL) for innate and adaptive immunity in pigs. For this purpose, a Duroc × Pietrain F2 resource population (DUPI) with 319 offspring was used to map QTL for the immune traits blood antibodies and interferon-gamma using 122 microsatellites covering all autosomes. Antibodies response to Mycoplasma hyopneumoniae and tetanus toxoid vaccine and the interferon-gamma (IFNG) serum concentration were measured at three different time points and were used as phenotypes. The differences of antibodies and interferon concentration between different time points were also used for the linkage mapping. Line-cross and imprinting QTL analysis, including two-QTL, were performed using QTL Express. A total of 30 QTL (12, 6, and 12 for mycoplasma, tetanus antibody, and IFNG, respectively) were identified at the 5% chromosome-wide-level significant, of which 28 were detected by line-cross and 2 by imprinting model. In addition, two QTL were identified on chromosome 5 using the two-QTL approach where both loci were in repulsion phase. Most QTL were detected on pig chromosomes 2, 5, 11, and 18. Antibodies were increased over time and immune traits were found to be affected by sex, litter size, parity, and month of birth. The results demonstrated that antibody and IFNG concentration are influenced by multiple chromosomal areas. The flanking markers of the QTL identified for IFNG on SSC5 did incorporate the position of the porcine IFNG gene. The detected QTL will allow further research in these QTL regions for candidate genes and their utilization in selection to improve the immune response and disease resistance in pig.  相似文献   

9.
Adipocyte size and number are correlated with fat deposition, which is of major concern to human health and pork producers. To identify quantitative trait loci (QTL) for adipocyte size and number in pigs, a total of 341 F2 animals at 240 days in a White Duroc × Erhualian cross were measured for the area, perimeters, volume and number of adipocyte in abdominal fat. A genome scan was performed on these animals and their parents and grandparents with 183 microsatellite markers spanning the pig genome. Five chromosomal regions showed effects on the traits measured, predominantly on adipocyte size, on pig chromosome (SSC) 1, 4, 7 and 9. Neither of these QTL has been reported before this study. The QTL for adipocyte size detected in this study perfectly correspond to the previously reported QTL for fatness traits on SSC1, 4 and 7. The most significant association was evidenced at 58 cM on SSC7. At the locus, the favorable allele decreasing adipocyte size was unusually originated from the obese Erhualian breed. Only a suggestive QTL was detected for adipocyte number on SSC9. The results shed new lights on the understanding of the genetic basis of fatness traits in pigs.  相似文献   

10.

Background

Understanding the genetic mechanisms that underlie meat quality traits is essential to improve pork quality. To date, most quantitative trait loci (QTL) analyses have been performed on F2 crosses between outbred pig strains and have led to the identification of numerous QTL. However, because linkage disequilibrium is high in such crosses, QTL mapping precision is unsatisfactory and only a few QTL have been found to segregate within outbred strains, which limits their use to improve animal performance. To detect QTL in outbred pig populations of Chinese and Western origins, we performed genome-wide association studies (GWAS) for meat quality traits in Chinese purebred Erhualian pigs and a Western Duroc × (Landrace × Yorkshire) (DLY) commercial population.

Methods

Three hundred and thirty six Chinese Erhualian and 610 DLY pigs were genotyped using the Illumina PorcineSNP60K Beadchip and evaluated for 20 meat quality traits. After quality control, 35 985 and 56 216 single nucleotide polymorphisms (SNPs) were available for the Chinese Erhualian and DLY datasets, respectively, and were used to perform two separate GWAS. We also performed a meta-analysis that combined P-values and effects of 29 516 SNPs that were common to Erhualian, DLY, F2 and Sutai pig populations.

Results

We detected 28 and nine suggestive SNPs that surpassed the significance level for meat quality in Erhualian and DLY pigs, respectively. Among these SNPs, ss131261254 on pig chromosome 4 (SSC4) was the most significant (P = 7.97E-09) and was associated with drip loss in Erhualian pigs. Our results suggested that at least two QTL on SSC12 and on SSC15 may have pleiotropic effects on several related traits. All the QTL that were detected by GWAS were population-specific, including 12 novel regions. However, the meta-analysis revealed seven novel QTL for meat characteristics, which suggests the existence of common underlying variants that may differ in frequency across populations. These QTL regions contain several relevant candidate genes.

Conclusions

These findings provide valuable insights into the molecular basis of convergent evolution of meat quality traits in Chinese and Western breeds that show divergent phenotypes. They may contribute to genetic improvement of purebreds for crossbred performance.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0120-x) contains supplementary material, which is available to authorized users.  相似文献   

11.
This study was conducted to compare maize quantitative trait loci (QTL) detection for grain yield and yield components in F23 and F67 recombinant inbred (RI) lines from the same population. One hundred and eighty-six F67 RIs from a Mo17×H99 population were grown in a replicated field experiment and analyzed at 101 loci detected by restriction fragment length polymorphisms (RFLPs). Single-factor analysis of variance was conducted for each locus-trait combination to identify QTL. For grain yield, 6 QTL were detected accounting for 22% of the phenotypic variation. A total of 63 QTL were identified for the seven grain yield components with alleles from both parents contributing to increased trait values. Several genetic regions were associated with more than one trait, indicating possible linked and/or pleiotropic effects. In a comparison with 150 F23 lines from the same population, the same genetic regions and parental effects were detected across generations despite being evaluated under diverse environmental conditions. Some of the QTL detected in the F23 seem to be dissected into multiple, linked QTL in the F67 generation, indicating better genetic resolution for QTL detection with RIs. Also, genetic effects at QTL are smaller in the F67 generation for all traits.Abbreviations RFLPs Restriction fragment length polymorphisms - QTL quantitative trait loci - RIs recombinant inbreds Journal Paper no. J-16261 of the Iowa Agric and Home Economics Exp Stn Project no. 3134  相似文献   

12.

Background

Quantitative trait loci (QTL) analyses in pig have revealed numerous individual QTL affecting growth, carcass composition, reproduction and meat quality, indicating a complex genetic architecture. In general, statistical QTL models consider only additive and dominance effects and identification of epistatic effects in livestock is not yet widespread. The aim of this study was to identify and characterize epistatic effects between common and novel QTL regions for carcass composition and meat quality traits in pig.

Methods

Five hundred and eighty five F2 pigs from a Duroc × Pietrain resource population were genotyped using 131 genetic markers (microsatellites and SNP) spread over the 18 pig autosomes. Phenotypic information for 26 carcass composition and meat quality traits was available for all F2 animals. Linkage analysis was performed in a two-step procedure using a maximum likelihood approach implemented in the QxPak program.

Results

A number of interacting QTL was observed for different traits, leading to the identification of a variety of networks among chromosomal regions throughout the porcine genome. We distinguished 17 epistatic QTL pairs for carcass composition and 39 for meat quality traits. These interacting QTL pairs explained up to 8% of the phenotypic variance.

Conclusions

Our findings demonstrate the significance of epistasis in pigs. We have revealed evidence for epistatic relationships between different chromosomal regions, confirmed known QTL loci and connected regions reported in other studies. Considering interactions between loci allowed us to identify several novel QTL and trait-specific relationships of loci within and across chromosomes.  相似文献   

13.
The aim of this study was to investigate chromosomal regions affecting gestation length in sows. An experimental F2 cross between Iberian and Meishan pig breeds was used for this purpose and we genotyped 119 markers covering the 18 porcine autosomal chromosomes. Within this context, we have developed a new empirical Bayes factor (BF) approach to compare between nested models, with and without the quantitative trait loci (QTL) effect, and after including the location of the QTL as an unknown parameter in the model. This empirical BF can be easily calculated from the output of a Markov chain Monte Carlo sampling by averaging conditional densities at the null QTL effects. Linkage analyses were performed in each chromosome using an animal model to account for infinitesimal genetic effects. Initially, three QTL were detected at chromosomes 6, 8 and 11 although, after correcting for multiple testing, only the additive QTL located in cM 110 of chromosome 8 remained. For this QTL, the allelic effect of substitution of the Iberian allele increased gestation length in 0.521 days, with a highest posterior density region at 95% ranged between 0.121 and 0.972 days. Although future studies are necessary to confirm if detected QTL is relevant and segregating in commercial pig populations, a hot-spot on the genetic regulation of gestation length in pigs seems to be located in chromosome 8.  相似文献   

14.

Background

Limb bone lengths and bone mineral density (BMD) have been used to assess the bone growth and the risk of bone fractures in pigs, respectively. It has been suggested that limb bone lengths and BMD are under genetic control. However, the knowledge about the genetic basis of the limb bone lengths and mineralisatinon is limited in pigs. The aim of this study was to identify quantitative trait loci (QTL) affecting limb bone lengths and BMD of the distal femur in a White Duroc × Erhualian resource population.

Results

Limb bone lengths and femoral bone mineral density (fBMD) were measured in a total of 1021 and 116 F2 animals, respectively. There were strong positive correlations among the lengths of limb bones and medium positive correlations between the lengths of limb bones and fBMD. A whole-genome scan involving 183 microsatellite markers across the pig genome revealed 35 QTL for the limb bone lengths and 2 for femoral BMD. The most significant QTL for the lengths of five limb bones were mapped on two chromosomes affecting all 5 limb bones traits. One was detected around 57 cM on pig chromosome (SSC) 7 with the largest F-value of more than 26 and 95% confidence intervals of less than 5 cM, providing a crucial start point to identify the causal genes for these traits. The Erhualian alleles were associated with longer limb bones. The other was located on SSCX with a peak at 50–53 cM, whereas alleles from the White Duroc breed increased the bone length. Many QTL identified are homologous to the human genomic regions containing QTL for bone-related traits and a list of interesting candidate genes.

Conclusion

This study detected the QTL for the lengths of scapula, ulna, humerus and tibia and fBMD in the pig for the first time. Moreover, several new QTL for the pig femoral length were found. As correlated traits, QTL for the lengths of five limb bones were mainly located in the same genomic regions. The most promising QTL for the lengths of five limb bones on SSC7 merits further investigation.
  相似文献   

15.
Alterations in robustness- and health-related traits lead to physiological changes, such as changes in the serum clinical chemical parameters in individuals. Therefore, clinical–chemical traits can be used as biomarkers to examine the health status of chickens. The aim of the present study was to detect the quantitative trait loci (QTLs) influencing eight clinical–chemical traits (glucose, total protein, creatinine, high-density lipoprotein cholesterol, total cholesterol, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and α-amylase) in an F1 nuclear families comprising 83 F0 founders and 585 F1 progeny of Korean native chickens. Genotypic data on 135 DNA markers representing 26 autosomes have been generated for this resource pedigree. The total length of the map was 2729.4 cM. We used a multipoint variance component linkage approach to identify QTLs for the traits. A significant QTL affecting serum α-amylase levels was identified on chicken chromosome (GGA) 7 [logarithm of odds (LOD) = 3.02, P value = 1.92 × 10?4]. Additionally, we detected several suggestive linkage signals for the levels of total cholesterol, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and creatinine on GGA 4, 12, 13, and 15. In this study, serum α-amylase levels related significant QTL was mapped on GGA7 and cholesterol, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and creatinine traits related suggestive QTLs were detected on GGA4, 12, 13 and 15, respectively. Further verification and fine mapping of these identified QTLs can provide valuable information for understanding the variations of clinical chemical trait in chickens.  相似文献   

16.
Late season drought coinciding with the rice booting to heading stage affects the development of plant height,panicle exsertion,and flag leaf size,and causes significant yield loss.In this study,a recombinant inbred line population derived from a cross between paddy and upland cultivars was used for data collection of the morphologic traits under well water and drought stress conditions.bought stress was applied at the stage of panicle initiation in the field in 2002 and at the booting stage in PVC pipes in 2003.The data from stress con ditions and their ratios(tait measured under stress condition/trait measured under well water condition)or differences(trait measured under stress condition minus trait measured under well water condition)were used for OTL analysis.Totally,17 and 36 QTLs for these traits were identified in 2002 and 2003,respectively,which explained a range of 2.58%-29.82%Of the phenotypic variation.Among them,six QTLs were commonly identified in the two years,suggesting that the drought stress in the two years was different.The genetic basis of these traits will provide useful information for improving rice late season drought resistance,and their application as indirect indices in rice late season drought resistance screening was also discussed.  相似文献   

17.
18.
19.
Oilseed rape (Brassica napus L.) is among dicotyledonous plants, a model species for microspore embryogenesis. Tremendous differences exist among oilseed rape genotypes in their embryogenic response and direct embryo to plant conversion. Despite some attempts to identify relevant genes, the genetic basis of these traits remains largely unknown. The objective of this work was to develop and to provide to the scientific community a doubled haploid (DH) population derived from a cross of the reported highly embryogenic genotype DH4079 and the low embryogenic inbred line Express 617. A population of 198 DH-lines was generated and genotyped with the Brassica 60 K Illumina Infinium? SNP array. The parental and the F1 genotypes as well as between 81 and 107 DH-lines were characterized for their number of microspores, number of microspore-derived embryos, embryo survival rate, direct embryo to shoot conversion, and related traits. The results obtained for the F1 genotype were mostly in between the two parents. SNP markers in the DH population showed to 49% distorted segregation and of those 63% were in favor of DH4079. Significant genotypic differences were found for all traits and heritabilities ranged from 66 to 88%. Together, 13 quantitative trait loci (QTL) for the different traits were identified on linkage groups A01, A02, A05, A10, C04, and C06, and candidate genes were identified within their QTL confidence intervals.  相似文献   

20.
The PPARγ2 gene is a key regulator of both proliferation and preadipocyte differentiation in mammals. Herein its genotype and allele frequencies were analyzed using PCR-SSCP in eight pig breeds (N = 416). Two kinds of polymorphisms of the PPARγ2 gene were detected, including a previously reported shift SNP A177G (Met59Val) in exon 1 and a novel silent mutation G876A in exon 5. The results revealed that European pig breeds carry a higher allele A frequency at the A177G locus and a fixed GG genotype at the G876A locus. Allele A at the G876A locus was only found in Jinhua pigs. The association between haplotype (A177G/G876A) and carcass and meat quality traits was analyzed in a Pietrain x Jinhua F2 population (N = 248). The PPARγ2 gene was found to be significantly associated with backfat thickness at the shoulder (p < 0.05), 6-7(th) ribs (p < 0.01), last rib (p < 0.01), gluteus medius (p <0.05) and ham weight (p < 0.01). Significant effects of different haplotypes on ham weight and backfat thickness at the 6-7(th) ribs, last rib, and gluteus medius were also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号