首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meat quality traits are the most economically important traits affecting the beef industry in Korea. We performed a whole genome quantitative trait locus (QTL) mapping study of carcass data in Hanwoo Korean cattle. Two hundred sixty-six Hanwoo steers from 65 sires were genotyped using a 10K Affymetrix SNP chip. The average SNP interval across the bovine genome was 1.5Mb. Associations between each individual SNP and four carcass traits [carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), and marbling (MAR)] were assessed using a linear mixed model of each trait. Combined linkage and linkage disequilibrium analysis (LDLA) detected six potential QTL on BTA04, 06, 13, 16, 17, and 23 at the chromosome-wise level (P<0.05). Two MAR QTL were detected at 52.2 cM of BTA06 and 46.04 cM of BTA17. We identified three genes (ARAP2, LOC539460, and LOC511424) in the QTL region of BTA06 and seven genes (RPS14, SCARB1, LOC782103, BRI3BP, AACS, DHX37, and UBC) in the QTL region of BTA17. One significant QTL for CWT was detected at 100 cM on BTA04 and the corresponding QTL region spanned 1.7 cM from 99.7 to 101.4 cM. For EMA QTL, one significant QTL was detected at 3.9 cM of BTA23 and the most likely QTL interval was 1.4 cM, placing 15 candidate genes in the marker bracket. Finally, two QTL for BFT were identified at 68 cM on BTA13 and 24 cM on BTA16. The LPIN3 gene, which is functionally associated with lipodystrophy in humans, is located in the BFT QTL on BTA13. Thus, two potential candidate genes, acetoacetyl-CoA synthetase (AACS) and lipin (LPIN), were detected in QTL regions on BTA17 for MAR and BTA13 for BFT, respectively. In conclusion, LDLA analysis can be used to detect chromosome regions harboring QTL and candidate genes with a low density SNP panel, yielding relatively narrow confidence intervals regarding location.  相似文献   

2.

Background

In a previous study in the Fleckvieh dual purpose cattle breed, we mapped a quantitative trait locus (QTL) affecting milk yield (MY1), milk protein yield (PY1) and milk fat yield (FY1) during first lactation to the distal part of bovine chromosome 5 (BTA5), but the confidence interval was too large for positional cloning of the causal gene. Our objective here was to refine the position of this QTL and to define the candidate region for high-throughput sequencing.

Methods

In addition to those previously studied, new Fleckvieh families were genotyped, in order to increase the number of recombination events. Twelve new microsatellites and 240 SNP markers covering the most likely QTL region on BTA5 were analysed. Based on haplotype analysis performed in this complex pedigree, families segregating for the low frequency allele of this QTL (minor allele) were selected. Single- and multiple-QTL analyses using combined linkage and linkage disequilibrium methods were performed.

Results

Single nucleotide polymorphism haplotype analyses on representative family sires and their ancestors revealed that the haplotype carrying the minor QTL allele is rare and most probably originates from a unique ancestor in the mapping population. Analyses of different subsets of families, created according to the results of haplotype analysis and availability of SNP and microsatellite data, refined the previously detected QTL affecting MY1 and PY1 to a region ranging from 117.962 Mb to 119.018 Mb (1.056 Mb) on BTA5. However, the possibility of a second QTL affecting only PY1 at 122.115 Mb was not ruled out.

Conclusion

This study demonstrates that targeting families segregating for a less frequent QTL allele is a useful method. It improves the mapping resolution of the QTL, which is due to the division of the mapping population based on the results of the haplotype analysis and to the increased frequency of the minor allele in the families. Consequently, we succeeded in refining the region containing the previously detected QTL to 1 Mb on BTA5. This candidate region contains 27 genes with unknown or partially known function(s) and is small enough for high-throughput sequencing, which will allow future detailed analyses of candidate genes.  相似文献   

3.
Genotype-by-environment interactions for production traits in dairy cattle have often been observed, while QTL analyses have focused on detecting genes with general effects on production traits. In this study, a QTL search for genes with environmental interaction for the traits milk yield, protein yield, and fat yield were performed on Bos taurus autosome 6 (BTA6), also including information about the previously investigated candidate genes ABCG2 and OPN. The animals in the study were Norwegian Red. Eighteen grandsires and 716 sires were genotyped for 362 markers on BTA6. Every marker bracket was regarded as a putative QTL position. The effects of the candidate genes and the putative QTL were modeled as a regression on an environmental parameter (herd year), which is based on the predicted herd-year effect for the trait. Two QTL were found to have environmentally dependent effects on milk yield. These QTL were located 3.6 cM upstream and 9.1 cM downstream from ABCG2. No environmentally dependent QTL was found to significantly affect protein or fat yield.  相似文献   

4.
QTL mapping for growth and carcass traits was performed using a paternal half-sib family composed of 325 Japanese Black cattle offspring. Nine QTL were detected at the 1% chromosome-wise significance level at a false discovery rate of less than 0.1. These included two QTL for marbling on BTA 4 and 18, two QTL for carcass weight on BTA 14 and 24, two QTL for longissimus muscle area on BTA 1 and 4, two QTL for subcutaneous fat thickness on BTA 1 and 15 and one QTL for rib thickness on BTA 6. Although the marbling QTL on BTA 4 has been replicated with significant linkages in two Japanese Black cattle sires, the three Q (more marbling) haplotypes, each inherited maternally, were apparently different. To compare the three Q haplotypes in more detail, high-density microsatellite markers for the overlapping regions were developed within the 95% CIs (65 markers in 44–78 cM). A detailed haplotype comparison indicated that a small region (<3.7 Mb) around 46 cM was shared between the Qs of the two sires, whose dams were related. An association of this region with marbling was shown by a regression analysis using the local population, in which the two sires were produced and this was confirmed by an association study using a population collected throughout Japan. These results strongly suggest that the marbling QTL on BTA 4 is located in the 3.7-Mb region at around 46 cM.  相似文献   

5.
We herein report results from a daughter design genome-scan study aiming to identify quantitative trait loci (QTL) associated with birth weight, direct gestation length and passive immune transfer in a backcross (Holstein × Jersey) × Holstein population. Two-hundred and seventy-six calves, offspring of seven crossbred sires, were genotyped for 161 microsatellite markers distributed along the 29 bovine autosomes. The genome scan was performed through interval mapping using an animal model in order to identify QTL accounting for phenotypic differences between individual animals. Based on significant chi-squared values, we identified putative QTL on BTA7 and BTA14 for gestation length, on BTA2, BTA6 and BTA14 for birth weight and on BTA20 for passive immune transfer. In total, these QTL accounted for 12%, 18% and 1% of the phenotypic variance in gestation length, birth weight and passive immune transfer respectively. We also report results from a supplementary and independent influential grand-daughter Holstein family. In this family, findings on BTA7 and BTA14 for direct gestation length were in agreement with results in the crossbred population. Two other regions on BTA6 and BTA21 putatively underlying QTL for direct gestation length variability were discovered with this analysis.  相似文献   

6.
We report on a complete genome scan for quantitative trait loci (QTL) affecting milk protein percentage (PP) in the Italian Holstein-Friesian cattle population, applying a selective DNA pooling strategy in a daughter design. Ten Holstein-Friesian sires were chosen, and for each sire, about 200 daughters, each from the high and low tails of estimated breeding value for PP, were used to construct milk DNA pools. Sires and pools were genotyped for 181 dinucleotide microsatellites covering all cattle autosomes. Sire marker allele frequencies in the pools were obtained by shadow correction of peak height in the electropherograms. After quality control, pool data from eight sires were used for all subsequent analyses. The QTL heterozygosity estimate was lower than that of similar studies in other cattle populations. Multiple marker mapping identified 19 QTL located on 14 chromosomes (BTA1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 17, 20, 23 and 27). The sires were also genotyped for seven polymorphic sites in six candidate genes (ABCG2, SPP1, casein kappa, DGAT1, GHR and PRLR) located within QTL regions of BTA6, 14 and 20 found in this study. The results confirmed or excluded the involvement of some of the analysed markers as the causative polymorphic sites of the identified QTL. The QTL identified, combined with genotype data of these candidate genes, will help to identify other quantitative trait genes and clarify the complex QTL patterns observed for a few chromosomes. Overall, the results are consistent with the Italian Holstein population having been under long-term selection for high PP.  相似文献   

7.
The objective of this study was to identify twinning rate quantitative trait loci (QTL) by typing pooled samples in a preliminary screening followed by interval mapping to test QTL effects. Four elite North American Holstein half-sib sire families with high twinning rate predicted transmitting abilities (PTA) were used in this study. Chromosomes 5, 7, 19 and 23 were not genotyped as these chromosomes were scanned for QTL in these families in a previous study. DNA was extracted from phenotypically extreme sons in each sire family. Two pools were prepared from sons of sires in each phenotypic tail, two each for high and low PTA levels for twinning rates. Each pool contained DNA from 4 to 15% of all sons of the sire depending on family. A total of 268 fluorescently labelled microsatellite markers were tested for heterozygosity in sires. About 135--170 informative markers per family were genotyped using pooled DNA samples. Based on the preliminary evidence for potential twinning rate QTL from pooled typing, interval mapping was performed subsequently on 12 chromosomal regions by family combinations. Evidence of QTL for twinning rate was found in one family on BTA 21 and 29 at a chromosome-wide P<0.05 and on BTA 8, 10 and 14 with a chromosome-wide P<0.01.  相似文献   

8.
This study tested positional candidate genes adiponectin (ADIPOQ) and somatostatin (SST) for effects on carcass traits in a commercially relevant cattle population. Both genes are located within a region of BTA1 previously reported to harbour quantitative trait loci (QTL) that affect marbling, quality grade, yield grade, ribeye area and weaning weight in Bos taurus x Bos indicus crosses. Except for the first intron of ADIPOQ, both genes, including over 2 kb upstream of the promoters, were sequenced in five registered Angus sires to identify polymorphisms. A variable copy duplication and three single nucleotide polymorphisms (SNPs) in ADIPOQ and one SNP in SST were genotyped and tested for association with 19 traits in a 14-generation pedigree of 1697 registered Angus artificial insemination sires representing all the major USA lineages of the breed. Linear models that parameterized predicted genetic merits in terms of allele substitution effects were fit by weighted least squares, and goodness-of-fit tests were employed to differentiate causal mutations or polymorphisms in strong linkage disequilibrium (LD) with causal mutations from markers in weak LD with QTL. We confirmed the presence of QTL affecting marbling, ribeye muscle area and fat thickness in the vicinity of SST and ADIPOQ on BTA1 in Angus; excluded SST as underlying the ribeye muscle area QTL; and excluded ADIPOQ as underlying the marbling score QTL. However, association analysis provides very limited information about QTL location and has little intrinsic value when performed in the absence of linkage or LD analysis using flanking marker data to localize the QTL effect relative to positional candidate genes.  相似文献   

9.
The objective of this study was to perform a whole genome scan to detect quantitative trait loci (QTL) for milk protein composition in 849 Holstein–Friesian cows originating from seven sires. One morning milk sample was analysed for the major milk proteins using capillary zone electrophoresis. A genetic map was constructed with 1341 single nucleotide polymorphisms, covering 2829 centimorgans (cM) and 95% of the cattle genome. The chromosomal regions most significantly related to milk protein composition ( P genome < 0.05) were found on Bos taurus autosomes (BTA) 6, 11 and 14. The QTL on BTA6 was found at about 80 cM, and affected αS1-casein, αS2-casein, β-casein and κ-casein. The QTL on BTA11 was found at 124 cM, and affected β-lactoglobulin, and the QTL on BTA14 was found at 0 cM, and affected protein percentage. The proportion of phenotypic variance explained by the QTL was 3.6% for β-casein and 7.9% for κ-casein on BTA6, 28.3% for β-lactoglobulin on BTA11, and 8.6% for protein percentage on BTA14. The QTL affecting αS2-casein on BTA6 and 17 showed a significant interaction. We investigated the extent to which the detected QTL affecting milk protein composition could be explained by known polymorphisms in β-casein , κ -casein , β-lactoglobulin and DGAT1 genes. Correction for these polymorphisms decreased the proportion of phenotypic variance explained by the QTL previously found on BTA6, 11 and 14. Thus, several significant QTL affecting milk protein composition were found, of which some QTL could partially be explained by polymorphisms in milk protein genes.  相似文献   

10.
Two half-sib families of backcross progeny were produced by mating F1 Line 1 Hereford (L1) × composite gene combination (CGC) bulls with L1 and CGC cows. Feed intake and periodic weights were measured for 218 backcross progeny. These progenies were genotyped using 232 microsatellite markers that spanned the 29 BTA. Progeny from L1 and CGC females was analysed separately using composite interval mapping to find quantitative trait loci (QTL) affecting daily dry matter intake (DMI), average daily gain (ADG), feed conversion (FCR) and residual feed intake (RFI). Results from both backcrosses were pooled to find additional QTL. In the backcross to L1, QTL were detected for RFI and DMI on BTA11, FCR on BTA16, and ADG on BTA9. In the backcross to CGC, QTL were detected for RFI on BTA10, FCR on BTA12 and 16 and ADG on BTA15 and 17. After pooling, QTL were detected for RFI on BTA 2, 6, 7, 10, 11, 13 and 16; for FCR on BTA 9, 12, 16, 17 and 21; for ADG on BTA 9, 14, 15, 17; and for DMI on BTA 2, 5, 6, 9, 10, 11, 20 and 23.  相似文献   

11.
To map quantitative trait loci (QTL) for growth and carcass traits in a purebred Japanese Black cattle population, we conducted multiple QTL analyses using 15 paternal half-sib families comprising 7860 offspring. We identified 40 QTL with significant linkages at false discovery rates of less than 0.1, which included 12 for intramuscular fat deposition called marbling and 12 for cold carcass weight or body weight. The QTL each explained 2%–13% of the phenotypic variance. These QTL included many replications and shared hypothetical identical-by-descent (IBD) alleles. The QTL for CW on BTA14 was replicated in five families with significant linkages and in two families with a 1% chromosome-wise significance level. The seven sires shared a 1.1-Mb superior Q haplotype as a hypothetical IBD allele that corresponds to the critical region previously refined by linkage disequilibrium mapping. The QTL for marbling on BTA4 was replicated in two families with significant linkages. The QTL for marbling on BTA6, 7, 9, 10, 20, and 21 and the QTL for body weight on BTA6 were replicated with 1% and/or 5% chromosome-wise significance levels. There were shared IBD Q or q haplotypes in the marbling QTL on BTA4, 6, and 10. The allele substitution effect of these haplotypes ranged from 0.7 to 1.2, and an additive effect between the marbling QTL on BTA6 and 10 was observed in the family examined. The abundant and replicated QTL information will enhance the opportunities for positional cloning of causative genes for the quantitative traits and efficient breeding using marker-assisted selection. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users.  相似文献   

12.
中国荷斯坦牛CVM的基因检测及其与产奶性状的关联分析   总被引:1,自引:0,他引:1  
初芹  张毅  孙东晓  俞英  王雅春  张沅 《遗传》2010,32(7):732-736
脊椎畸形综合征(Complex vertebral malformation, CVM)是由位于牛第3号染色体(BTA3)的SLC35A3基因外显子4的一个单碱基突变(G559T)所致。该致病基因在世界许多国家的荷斯坦牛群中都有一定的比例。文章对北京地区38头优秀种公牛进行分析, 发现了4头携带者, 进而检测了这些携带者公牛的555头女儿的基因型, 其中携带者占检测母牛数的44.0%。此外, 关联分析结果表明, 携带者母牛与非携带者母牛的生产性能之间存在显著差异(P<0.01)。携带者母牛的5个产奶性状育种值均显著高于非携带者, 泌乳持续力和体细胞评分SCS的育种值也比非携带者略高。CVM致病基因可能与BTA3上影响产奶性状的QTL或基因连锁。因此, 建议生产中对CVM携带者进行逐步淘汰  相似文献   

13.
14.
Chromosome-specific libraries aid in the development of genetic maps and focus marker development in areas of the genome with identified quantitative trait loci (QTL). A small-insert BTA29 library constructed by microdissection of a 1:29 Rb-fusion cell line, was screened for dinucleotide repeats (CA)(15) and/or (GA)(15) with the goal of generating new genetic markers for this, the smallest bovine autosome. A total of 90 primer pairs were designed and 82 of these successfully amplified bovine genomic DNA by PCR. In addition to these 82 loci, primer pairs were developed for nine putative genes identified from the sequenced clones by BLAST searches of GenBank. A somatic cell panel was used to test for synteny of the new loci with two previously mapped BTA29 markers located on the MARC bovine linkage map. A total of 75 of the 82 microsatellite (ms) loci were integrated into the MARC bovine linkage map. Linkage analysis placed 69 ms markers on BTA29, five on BTAX and one on BTA1. Combined results of the somatic cell and linkage analyses place 79 new markers (ms and gene-related) on BTA29, six loci on BTAX and two loci on BTA1. The results of this effort significantly increase the marker density on BTA29, expanding the ability to fine map QTL associated with this chromosome.  相似文献   

15.

Background

Female fertility is important for the maintenance of the production in a dairy cattle herd. Two QTL regions on BTA04 and on BTA13 previously detected in Nordic Holstein (NH) and validated in the Danish Jersey (DJ) and Nordic Red (NR) were investigated further in the present study to further refine the QTL locations. Refined QTL regions were imputed to the full sequence data. The genes in the regions were then studied to ascertain their possible effect on fertility traits.

Results

BTA04 was screened for number of inseminations (AIS), 56-day non-return rate (NRR), days from first to last insemination (IFL), and the interval from calving to first insemination (ICF) in the range of 38,257,758 to 40,890,784 bp, whereas BTA13 was screened for ICF only in the range from 21,236,959 to 46,150,079 with the HD bovine SNP array for NH, DJ and NR. No markers in the DJ and NR breeds reached significance. By analyzing imputed sequence data the QTL position on BTA04 was narrowed down to two regions in the NH. In these two regions a total of 9 genes were identified. BTA13 was analyzed using sequence data for the NH breed. The highest –log10(P-value) was 19.41 at 33,903,159 bp. Two regions were identified: Region 1: 33,900,143-33,908,994 bp and Region 2: 34,051,815-34,056,728 bp. SNPs within and between these two regions were annotated as intergenic.

Conclusion

Screening BTA04 and BTA13 for female fertility traits in NH, NR and DJ suggested that the QTL for female fertility were specific for NH. A missense mutation in CD36 showed the strongest association with fertility traits on BTA04. The annotated SNPs on BTA13 were all intergenic variants. It is possible that BTA13 at this stage is poorly annotated such that the associated polymorphisms are located in as-yet undiscovered genes. Fertility traits are complex traits as many different biological and physiological factors determine whether a cow is fertile. Therefore it is not expected that there is a simple explanation with an obvious candidate gene but it is more likely a network of genes and intragenic variants that explain the variation of these traits.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-790) contains supplementary material, which is available to authorized users.  相似文献   

16.
A whole‐genome scan was carried out in New Zealand and Australia to detect quantitative trait loci (QTL) for live animal and carcass composition traits and meat quality attributes in cattle. Backcross calves (385 heifers and 398 steers) were generated, with Jersey and Limousin backgrounds. The New Zealand cattle were reared and finished on pasture, whilst Australian cattle were reared on grass and finished on grain for at least 180 days. This paper reports on meat quality traits (tenderness measured as shear force at 4–5 ages on two muscles as well as associated traits of meat colour, pH and cooking loss) and a number of metabolic traits. For meat quality traits, 18 significant QTL (P < 0.05), located in nine linkage groups, were detected on a genome‐wise basis, in combined‐sire (seven QTL) or within‐sire analyses (11 QTL). For metabolic traits, 11 significant QTL (P < 0.05), located in eight linkage groups, were detected on a genome‐wise basis, in combined‐sire (five QTL) or within‐sire analyses (six QTL). BTA2 and BTA3 had QTL for both metabolic traits and meat quality traits. Six significant QTL for meat quality and metabolic traits were found at the proximal end of chromosome 2. BTA2 and BTA29 were the most common chromosomes harbouring QTL for meat quality traits; QTL for improved tenderness were associated with Limousin‐derived and Jersey‐derived alleles on these two chromosomes, respectively.  相似文献   

17.
Quantitative trait loci (QTL) influencing the weight of abdominal fat (AF) and of breast muscle (BM) were detected on chicken chromosome 5 (GGA5) using two successive F2 crosses between two divergently selected 'Fat' and 'Lean' INRA broiler lines. Based on these results, the aim of the present study was to identify the number, location and effects of these putative QTL by performing multitrait and multi-QTL analyses of the whole available data set. Data concerned 1186 F2 offspring produced by 10 F1 sires and 85 F1 dams. AF and BM traits were measured on F2 animals at slaughter, at 8 (first cross) or 9 (second cross) weeks of age. The F0, F1 and F2 birds were genotyped for 11 microsatellite markers evenly spaced along GGA5. Before QTL detection, phenotypes were adjusted for the fixed effects of sex, F2 design, hatching group within the design, and for body weight as a covariable. Univariate analyses confirmed the QTL segregation for AF and BM on GGA5 in male offspring, but not in female offspring. Analyses of male offspring data using multitrait and linked-QTL models led us to conclude the presence of two QTL on the distal part of GGA5, each controlling one trait. Linked QTL models were applied after correction of phenotypic values for the effects of these distal QTL. Several QTL for AF and BM were then discovered in the central region of GGA5, splitting one large QTL region for AF into several distinct QTL. Neither the 'Fat' nor the 'Lean' line appeared to be fixed for any QTL genotype. These results have important implications for prospective fine mapping studies and for the identification of underlying genes and causal mutations.  相似文献   

18.
A variable number of tandem repeats (VNTR) polymorphism in exon 3 of the human dopamine D4 receptor gene ( DRD4 ) has been associated with attention deficit hyperactivity disorder (ADHD). Rodents possess no analogous repeat sequence, whereas a similar tandem repeat polymorphism of the DRD4 gene was identified in dogs, horses and chimpanzees. Here, we present a genetic association study of the DRD4 VNTR and the activity-impulsivity dimension of the recently validated dog-ADHD Rating Scale. To avoid false positives arising from population stratification, a single breed of dogs (German shepherd) was studied. Two DRD4 alleles (referred to as 2 and 3a ) were detected in this breed, and genotype frequencies were in Hardy–Weinberg equilibrium. For modelling distinct environmental conditions, 'pet' and 'police' German shepherds were characterized. Police German shepherds possessing at least one 3a allele showed significantly higher scores in the activity-impulsivity dimension of the dog-ADHD Rating Scale than dogs without this allele ( P  = 0.0180). This difference was not significant in pet German shepherds. To the best of our knowledge, this is the first report of an association between a candidate gene and a behaviour trait in dogs, and it reinforces the functional role of DRD4 exon 3 polymorphism.  相似文献   

19.
We present an approach to evaluate the support for candidate genes as quantitative trait loci (QTLs) within the context of genome-wide map-based cloning strategies. To establish candidacy, a bacterial artificial chromosome (BAC) clone containing a putative candidate gene is physically assigned to an anchored linkage map to localise the gone relative to an identified QTL effect. Microsatellite loci derived from BAC clones containing an established candidate gone are integrated into the linkage map facilitating the evaluation by interval analysis of the statistical support for QTL identity. Permutation analysis is employed to determine experiment-wise statistical support. The approach is illustrated for the growth hormone 1 ( GH1 ) gene and growth and carcass phenotypes in cattle. Polymerase chain reaction (PCR) primers which amplify a 441 bp fragment of GH1 were used to systematically screen a bovine BAC library comprising 60 000 clones and with a 95% probability of containing a single copy sequence. The presence of GH1 in BAC-110R2C3 was confirmed by sequence analysis of the PCR product from this clone and by the physical assignment of BAC110R2C3 to bovine chromosome 19 (BTA19) band 22 by fluorescence in situ hybridisation (FISH). Microsatellite KHGH1 was isolated from BAC110R2C3 and scored in 529 reciprocal backcross and F2 fullsib progeny from 41 resource families derived from Angus ( Bos taurus ) and Brahman ( Bos indicus ). The microsatellite KHGH1 was incorporated into a framework genetic map of BTA19 comprising 12 microsatellite loci, the erythrocyte antigen T and a GH1-TaqI restriction fragment length polymorphism (RFLP). Interval analysis localised effects of taurus vs. indicus alleles on subcutaneous fat and the percentage of ether extractable fat from the longissimus dorsi muscle to the region of BTA19 harbouring GH1 .  相似文献   

20.
To fine map the previously detected quantitative trait loci (QTLs) affecting milk production traits on bovine chromosome 6 (BTA6), 15 microsatellite markers situated within an interval of 14.3 cM spanning from BMS690 to BM4528 were selected and 918 daughters of 8 sires were genotyped. Two mapping approaches, haplotype sharing based LD mapping and single marker regression mapping, were used to analyze the data. Both approaches revealed a quantitative trait locus (QTL) with significant effects on milk yield, fat yield and protein yield located in the segment flanked by markers BMS483 and MNB209, which spans a genetic distance of 0.6 cM and a physical distance of 1.5 Mb. In addition, the single marker regression mapping also revealed a QTL affecting fat percentage and protein percentage at marker DIK2291. Our fine mapping work will facilitate the cloning of candidate genes underlying the QTLs for milk production traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号