首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aortic valve reconstruction using leaflet grafts made from autologous pericardium is an effective surgical treatment for some forms of aortic regurgitation. Despite favorable outcomes in the hands of skilled surgeons, the procedure is underutilized because of the difficulty of sizing grafts to effectively seal with the native leaflets. Difficulty is largely due to the complex geometry and function of the valve and the lower distensibility of the graft material relative to native leaflet tissue. We used a structural finite element model to explore how a pericardial leaflet graft of various sizes interacts with two native leaflets when the valve is closed and loaded. Native leaflets and pericardium are described by anisotropic, hyperelastic constitutive laws, and we model all three leaflets explicitly and resolve leaflet contact in order to simulate repair strategies that are asymmetrical with respect to valve geometry and leaflet properties. We ran simulations with pericardial leaflet grafts of various widths (increase of 0%, 7%, 14%, 21% and 27%) and heights (increase of 0%, 13%, 27% and 40%) relative to the native leaflets. Effectiveness of valve closure was quantified based on the overlap between coapting leaflets. Results showed that graft width and height must both be increased to achieve proper valve closure, and that a graft 21% wider and 27% higher than the native leaflet creates a seal similar to a valve with three normal leaflets. Experimental validation in excised porcine aortas (n=9) corroborates the results of simulations.  相似文献   

2.
3.
In aortic valve sparing surgery, cusp prolapse is a common cause of residual aortic insufficiency. To correct cusp pathology, native leaflets of the valve frequently require adjustment which can be performed using a variety of described correction techniques, such as central or commissural plication, or resuspension of the leaflet free margin. The practical question then arises of determining which surgical technique provides the best valve performance with the most physiologic coaptation. To answer this question, we created a new finite element model with the ability to simulate physiologic function in normal valves, and aortic insufficiency due to leaflet prolapse in asymmetric, diseased or sub-optimally repaired valves. The existing leaflet correction techniques were simulated in a controlled situation, and the performance of the repaired valve was quantified in terms of maximum leaflets stress, valve orifice area, valve opening and closing characteristics as well as total coaptation area in diastole. On the one hand, the existing leaflet correction techniques were shown not to adversely affect the dynamic properties of the repaired valves. On the other hand, leaflet resuspension appeared as the best technique compared to central or commissural leaflet plication. It was the only method able to achieve symmetric competence and fix an individual leaflet prolapse while simultaneously restoring normal values for mechanical stress, valve orifice area and coaptation area.  相似文献   

4.
5.
There has been significant improvement in device designs, operative techniques, and early clinical outcomes in <5 years. Presently, there are two catheter-based bioprostheses (balloon expandable or self-expandable), which have been widely used in humans and are undergoing clinical investigations. Three approaches, including transvenous, transarterial, and transapical have been used for delivery of the catheter-based bioprostheses, and transarterial and transapical approaches have been adopted by cardiologists and cardiac surgeons worldwide. The most recent clinical results have been very encouraging and promising. With experience, 30-day operative mortality with either balloon-expandable or self-expandable bioprosthesis was reduced significantly to approximately 10% in high-risk patients. In vivo long-term durability of catheter-based bioprostheses remains unknown, and presently transcatheter procedure is limited to the cohort of high-risk patients. Expanding this new technology to low-risk patients should be done with extreme caution because conventional aortic valve replacement still provides the best long-term outcome with minimal operative mortality and morbidity in low-risk patients. Ongoing clinical trials will address many unanswered questions, such as patient selection, long-term in vivo durability, preoperative assessment, and the role of the procedures in management of valvular diseases.  相似文献   

6.
7.
8.
Biomechanics and Modeling in Mechanobiology - The aortic valve is a highly dynamic structure characterized by a transvalvular flow that is unsteady, pulsatile, and characterized by episodes of...  相似文献   

9.
The bicuspid aortic valve (BAV) is associated with a high prevalence of calcific aortic valve disease (CAVD). Although abnormal hemodynamics has been proposed as a potential pathogenic contributor, the native BAV hemodynamic stresses remain largely unknown. Fluid-structure interaction models were designed to quantify the regional BAV leaflet wall-shear stress over the course of CAVD. Systolic flow and leaflet dynamics were computed in two-dimensional tricuspid aortic valve (TAV) and type-1 BAV geometries with different degree of asymmetry (10 and 16% eccentricity) using an arbitrary Lagrangian–Eulerian approach. Valvular performance and regional leaflet wallshear stress were quantified in terms of valve effective orifice area (EOA), oscillatory shear index (OSI) and temporal shear magnitude (TSM). The dependence of those characteristics on the degree of leaflet calcification was also investigated. The models predicted an average reduction of 49% in BAV peak-systolic EOA relative to the TAV. Regardless of the anatomy, the leaflet wall-shear stress was side-specific and characterized by high magnitude and pulsatility on the ventricularis and low magnitude and oscillations on the fibrosa. While the TAV and non-coronary BAV leaflets shared similar shear stress characteristics, the base of the fused BAV leaflet fibrosa exhibited strong abnormalities, which were modulated by the degree of calcification (6-fold, 10-fold and 16-fold TSM increase in the normal, mildly and severely calcified BAV, respectively, relative to the normal TAV). This study reveals the existence of major differences in wall-shear stress pulsatility and magnitude on TAV and BAV leaflets. Given the ability of abnormal fluid shear stress to trigger valvular inflammation, the results support the existence of a mechano-etiology of CAVD in the BAV.  相似文献   

10.
PURPOSE OF REVIEW: Degenerative aortic valve stenosis is a common disease in the elderly, and traditional risk factors for atherosclerotic disease including hyperlipidaemia have been associated with the condition in several studies. This review addresses the role of the various risk factors and the potential for intervention. RECENT FINDINGS: The association of lipid abnormalities such as high lipoprotein(a) levels and the presence of the apolipoprotein E4 allele with aortic stenosis, as well as the presence of several inflammatory markers both in plasma and in surgically excised valves, suggest that the stenotic process is driven by many of the same factors behind atherosclerosis. The aortic valves of animals fed a cholesterol-rich diet exhibit many characteristics in common with the early stages of aortic stenosis. This opens up the potential of retarding the process through intervention strategies. SUMMARY: Hyperlipidaemia is associated with degenerative aortic valve stenosis, and the disease resembles the inflammatory process of atherosclerosis. Randomized controlled clinical trials will be needed to demonstrate the role of lipid intervention in patients with this condition.  相似文献   

11.
Netherlands Heart Journal -  相似文献   

12.
Aortic valve leaflets experience varying applied loads during the cardiac cycle. These varying loads act on both cell types of the leaflets, endothelial and interstitial cells, and cause molecular signaling events that are required for repairing the leaflet tissue, which is continually damaged from the applied loads. However, with increasing age, this reparative mechanism appears to go awry as valve interstitial cells continue to remain in their ‘remodeling’ phenotype and subsequently cause the tissue to become stiff, which results in heart valve disease. The etiology of this disease remains elusive; however, multiple clues are beginning to coalesce and mechanical cues are turning out to be large predicators of cellular function in the aortic valve leaflets, when compared to the cells from the pulmonary valve leaflets, which are under a significantly less demanding mechanical loading regime. Finally, this paper discusses the mechanical environment of the constitutive cell populations, mechanobiological processes that are currently unclear, and a mechano-potential etiology of aortic disease will be presented.  相似文献   

13.
14.
15.
16.
17.
18.
19.

A Finite Element workflow for the multiscale analysis of the aortic valve biomechanics was developed and applied to three physiological anatomies with the aim of describing the aortic valve interstitial cells biomechanical milieu in physiological conditions, capturing the effect of subject-specific and leaflet-specific anatomical features from the organ down to the cell scale. A mixed approach was used to transfer organ-scale information down to the cell-scale. Displacement data from the organ model were used to impose kinematic boundary conditions to the tissue model, while stress data from the latter were used to impose loading boundary conditions to the cell level. Peak of radial leaflet strains was correlated with leaflet extent variability at the organ scale, while circumferential leaflet strains varied over a narrow range of values regardless of leaflet extent. The dependency of leaflet biomechanics on the leaflet-specific anatomy observed at the organ length-scale is reflected, and to some extent emphasized, into the results obtained at the lower length-scales. At the tissue length-scale, the peak diastolic circumferential and radial stresses computed in the fibrosa correlated with the leaflet surface area. At the cell length-scale, the difference between the strains in two main directions, and between the respective relationships with the specific leaflet anatomy, was even more evident; cell strains in the radial direction varied over a relatively wide range (\(0.36-0.87\)) with a strong correlation with the organ length-scale radial strain (\(R^{2}= 0.95\)); conversely, circumferential cell strains spanned a very narrow range (\(0.75-0.88\)) showing no correlation with the circumferential strain at the organ level (\(R^{2}= 0.02\)). Within the proposed simulation framework, being able to account for the actual anatomical features of the aortic valve leaflets allowed to gain insight into their effect on the structural mechanics of the leaflets at all length-scales, down to the cell scale.

  相似文献   

20.
The place of balloon dilatation of the aortic valve in the treatment of calcific aortic stenosis is controversial. Thirty two patients (mean age 76) in whom valve replacement was contraindicated were followed up for three to 24 months (mean 8); 25 were in functional class III or IV according to the New York Heart Association''s classification. Major complications of the procedure occurred in four patients. Echocardiography and Doppler studies were performed before operation and before discharge in 28 patients, and the area of the valve was measured again six to 50 (mean 23) weeks after operation in 11 patients. The peak to peak aortic pressure gradient fell from a mean of 65 (SD 24) to 46 (20) mm Hg, but the area of the aortic valve, measured by Doppler echocardiography, in 18 patients showed a modest but significant increase, from 0.61 (0.16) to 0.74 (0.23) cm2. One month after dilatation, 29 patients were alive, of whom 17 had improved symptoms. Only two had lasting clinical benefit. Sixteen patients died, 12 of a cardiac cause. The estimated one year survival rate was 49%. Six patients underwent or required valve replacement because of persisting symptoms. In view of its limited long term efficacy balloon dilatation of the aortic valve should be used only for patients with severe symptoms whose life expectancy is limited by other disease or who are considered to be unsuitable for valve replacement. It may have a role in improving the condition of patients who present with cardiogenic shock or pulmonary oedema before valve replacement is undertaken.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号