首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial variations in soil processes regulating mineral N losses to streams were studied in a small watershed near Toronto, Ontario. Annual net N mineralization in the 0–8 cm soil was measured in adjacent upland and riparian forest stands using in situ soil incubations from April 1985 to 1987. Mean annual rates of soil N mineralization and nitrification were higher in a maple soil (93.8 and 87.0 kg.ha–1) than in a pine soil (23.3 and 8.2 kg.ha–1 ). Very low mean rates of mineralization (3.3 kg.ha–1) and nitrification (3.4 kg.ha–1) were found in a riparian hemlock stand. Average NO3-N concentrations in soil solutions were 0.3–1.0 mg.L–1 in the maple stand and >0.06mg.L–1 in the pine stand. Concentrations of NO3–N in shallow ground water and stream water were 3–4× greater in a maple subwatershed than in a pine subwatershed. Rapid N uptake by vegetation was an important mechanism reducing solution losses of NO3–N in the maple stand. Low rates of nitrification were mainly responsible for negligible NO3–N solution losses in the pine stand.  相似文献   

2.
Owen  Jeffrey S.  Wang  Ming Kuang  Sun  Hai Lin  King  Hen Biau  Wang  Chung Ho  Chuang  Chin Fang 《Plant and Soil》2003,251(1):167-174
We used the buried bag incubation method to study temporal patterns of net N mineralization and net nitrification in soils at Ta-Ta-Chia forest in central Taiwan. The site included a grassland zone, (dominant vegetation consists of Yushania niitakayamensis and Miscanthus transmorrisonensis Hayata) and a forest zone (Tsuga chinensis var. formosana and Yushania niitakamensis). In the grassland, soil concentration NH4 + in the organic horizon (0.1–0.2 m) ranged from 1.0 to 12.4 mg N kg–1 soil and that of NO3 varied from 0.2 to 2.1 mg N kg–1 soil. In the forest zone, NH4 + concentration was between 2.8 and 25.0 mg N kg–1 soil and NO3 varied from 0.2 to 1.3 mg N kg–1 soil. There were lower soil NH4 + concentrations during the summer than other seasons. Net N mineralization was higher during the summer while net nitrification rates did not show a distinct seasonal pattern. In the grassland, net N mineralization and net nitrification rates were between –0.1 and 0.24 and from –0.04 to 0.04 mg N kg–1 soil day–1, respectively. In the forest zone, net N mineralization rates were between –0.03 and 0.45 mg N kg–1 soil day–1 and net nitrification rates were between –0.01 and 0.03 mg N kg–1 soil day–1. These differences likely result from differing vegetation communities (C3 versus C4 plant type) and soil characteristics.  相似文献   

3.
Globally, land-use change is occurring rapidly, and impacts on biogeochemical cycling may be influenced by previous land uses. We examined differences in soil C and N cycling during long-term laboratory incubations for the following land-use sequence: indigenous forest (soil age = 1800 yr); 70-year-old pasture planted after forest clearance; 22-year-old pine (Pinus radiata) planted into pasture. No N fertilizer had been applied but the pasture contained N-fixing legumes. The sites were adjacent and received 3–6 kg ha–1 yr–1volcanic N in rain; NO3 -N leaching losses to streamwater were 5–21 kg ha–1 yr–1, and followed the order forest < pasture = pine. Soil C concentration in 0–10 cm mineral soil followed the order: pasture > pine = forest, and total N: pasture > pine > forest. Nitrogen mineralization followed the order: pasture > pine > forest for mineral soil, and was weakly related to C mineralization. Based on radiocarbon data, the indigenous forest 0–10 cm soil contained more pre-bomb C than the other soils, partly as a result of microbial processing of recent C in the surface litter layer. Heterotrophic activity appeared to be somewhat N limited in the indigenous forest soil, and gross nitrification was delayed. In contrast, the pasture soil was rich in labile N arising from N fixation by clover, and net nitrification occurred readily. Gross N cycling rates in the pine mineral soil (per unit N) were similar to those under pasture, reflecting the legacy of N inputs by the previous pasture. Change in land use from indigenous forest to pasture and pine resulted in increased gross nitrification, net nitrification and thence leaching of NO3 -N.  相似文献   

4.
Overwinter and snowmelt processes are thought to be critical to controllersof nitrogen (N) cycling and retention in northern forests. However, therehave been few measurements of basic N cycle processes (e.g.mineralization, nitrification, denitrification) during winter and littleanalysis of the influence of winter climate on growing season N dynamics.In this study, we manipulated snow cover to assess the effects of soilfreezing on in situ rates of N mineralization, nitrification and soilrespiration, denitrification (intact core, C2H2 – based method),microbial biomass C and N content and potential net N mineralization andnitrification in two sugar maple and two yellow birch stands with referenceand snow manipulation treatment plots over a two year period at theHubbard Brook Experimental Forest, New Hampshire, U.S.A. The snowmanipulation treatment, which simulated the late development of snowpackas may occur in a warmer climate, induced mild (temperatures >–5 °C) soil freezing that lasted until snowmelt. The treatmentcaused significant increases in soil nitrate (NO3 )concentrations in sugar maple stands, but did not affect mineralization,nitrification, denitrification or microbial biomass, and had no significanteffects in yellow birch stands. Annual N mineralization and nitrificationrates varied significantly from year to year. Net mineralization increasedfrom 12.0 g N m–2 y–1 in 1998 to 22 g N m–2 y–1 in 1999 and nitrification increased from 8 g N m–2 y–1 in 1998 to 13 g N m–2 y–1 in 1999.Denitrification rates ranged from 0 to 0.65 g N m–2 y–1. Ourresults suggest that mild soil freezing must increase soil NO3 levels by physical disruption of the soil ecosystem and not by direct stimulation of mineralization and nitrification. Physical disruption canincrease fine root mortality, reduce plant N uptake and reduce competitionfor inorganic N, allowing soil NO3 levels to increase evenwith no increase in net mineralization or nitrification.  相似文献   

5.
The Catskill Mountains of southeastern New York receive among the highest rates of atmospheric nitrogen (N) deposition in eastern North America, and ecosystems in the region may be sensitive to human disturbances that affect the N cycle. We studied the effects of a clearcut in a northern hardwood forest within a 24-ha Catskill watershed on the net rates of N mineralization and nitrification in soil plots during 6 years (1994–1999) that encompassed 3-year pre- and post-harvesting periods. Despite stream NO3 concentrations that increased by more than 1400 mol l–1 within 5 months after the clearcut, and three measures of NO3 availability in soil that increased 6- to 8-fold during the 1st year after harvest, the net rates of N mineralization and nitrification as measured by in situ incubation in the soil remained unchanged. The net N-mineralization rate in O-horizon soil was 1– 2 mg N kg–1 day–1 and the net nitrification rate was about 1 mg N kg–1 day–1, and rates in B-horizon soil were only one-fifth to one-tenth those of the O-horizon. These rates were obtained in single 625 m2 plots in the clearcut watershed and reference area, and were confirmed by rate measurements at 6 plots in 1999 that showed little difference in N-mineralization and nitrification rates between the treatment and reference areas. Soil temperature increased 1 ± 0.8 °C in a clearcut study plot relative to a reference plot during the post-harvest period, and soil moisture in the clearcut plot was indistinguishable from that in the reference plot. These results are contrary to the initial hypothesis that the clearcut would cause net rates of these N-cycling processes to increase sharply. The in situ incubation method used in this study isolated the samples from ambient roots and thereby prevented plant N uptake; therefore, the increases in stream NO3 concentrations and export following harvest largely reflect diminished uptake. Changes in temperature and moisture after the clearcut were insufficient to measurably affect the net rates of N mineralization and nitrification in the absence of plant uptake. Soil acidification resulting from the harvest may have acted in part to inhibit the rates of these processes. The US Governments right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

6.
Mineral nutrition and growth of tropical maize as affected by soil acidity   总被引:11,自引:0,他引:11  
Soil constraints linked to low pH reduce grain yield in about 10% of the maize growing area in tropical developing countries. The aim of this research was to elucidate the reasons for this maize yield reduction on an oxisol of Guadeloupe. The field experiment had two treatments: the native non-limed soil (NLI, pH 4.5, 2.1 cmol Al kg–1, corresponding to 20% Al saturation), and the same soil limed 6 years prior to the experiment (LI, pH 5.3, 0 cmol Al kg–1). The soils were fertilized with P and N. The above-ground biomass, root biomass at flowering, grain yield and yield components, leaf area index (LAI), light interception, radiation-use-efficiency (RUE), P and N uptake, soil water storage, and soil mineral N were measured during the maize cycle. The allometric relationships between shoot N concentration, LAI and above-ground biomass in LI were similar to those reported for maize cropped in temperate regions, indicating that these relationships are also useful to describe maize growth on tropical soils without Al toxicity. In NLI, soil acidity severely affected leaf appearance, leaf size and consequently the LAI, which was reduced by 60% at flowering, although the RUE was not affected. Therefore, the reduction in the above-ground biomass (30% at flowering) and grain yield (47%) were due to the lower LAI and light interception. At flowering, the root/shoot ratio was 0.25 in NLI and 0.17 in LI, and the root biomass in NLI was reduced by 64% compared to LI. Nitrogen uptake was also reduced in NLI in spite of high soil N availability. Nevertheless, shoot N concentration vs aboveground biomass showed a typical decline in both treatments. In NLI, the shoot P concentration vs above-ground biomass relationship showed an increase in the early stages, indicating that P uptake and root-shoot competition for the absorbed P in the early plant stages controlled the establishment and the development of the leaf area.  相似文献   

7.
The effects of select monoterpenes on nitrogen (N) mineralization and nitrification potentials were determined in four separate laboratory bioassays. The effect of increasing monoterpene addition was an initial reduction in NO3 -N production (nitrification inhibition), followed by a reduction in the sum of NH4 +-N and NO3 -N (inhibition of net N mineralization and net immobilization at high monoterpene additions. Monoterpenes could produce this pattern by inhibiting nitrification, reducing net N mineralization, enhancing immobilization of NO3 -N relative to NH4 +-N, and/or stimulating overall net immobilization of N by carbon-rich material.Initial monoterpene concentrations in the assay soils were about 5% of the added amount and were below detection after incubation in most samples.Potential N mineralization-immobilization, nitrification, and soil monoterpene concentrations were determined by soil horizon for four collections from a ponderosa pine (Pinus ponderosa) stand in New Mexico. Concentrations of monoterpenes declined exponentially with soil depth and varied greatly within a horizon. Monoterpene content of the forest floor was not correlated with forest floor biomass. Net N mineralization was inversely correlated with total monoterpene content of all sampled horizons. Nitrification was greatest in the mineral soil, intermediate in the F-H horizon, and never occurred in the L horizon. Nitrification in the mineral soil was inversely correlated with the amount of monoterpenes in the L horizon that contain terminal unsaturated carbon-carbon bonds (r 2 = 0.37, P 0.01). This pattern in the field corresponded to the pattern shown in the laboratory assays with increasing monoterpene additions.  相似文献   

8.
The importance of heterotrophic nitrification was studied in soil from a mixed-conifer forest. Three sites in the forest were sampled: a clear cut area, a young stand and a mature stand. In the mature stand, the mineral soil (0–10 cm) and the organic layer were sampled separately. Gross rates of N mineralization and nitrification were measured by15NH 4 + and15NO 3 isotopic pool dilution, respectively. The rates of autotrophic and heterotrophic nitrification were distinguished by use of acetylene as a specific inhibitor of autotrophic nitrification. In samples supplemented with15NH 4 + and treated with acetylene, no15NO 3 was detectable showing that the acetylene treatment effectively blocked the autotrophic nitrification, and that NH 4 + was not a substrate for heterotrophic nitrification. In the clear cut area, autotrophic nitrification was the most important NO 3 generating process with total nitrification (45 ug N kg–1h–1) accounting for about one-third of gross N mineralization (140 ug N kg–1 h–1). In the young and mature forested sites, gross nitrification rates were largely unaffected by acetylene treatment indicating that heterotrophic nitrification dominated the NO 3 generating process in these areas. In the mature forest mineral and organic soil, nitrification (heterotrophic) was equal to only about 5% of gross mineralization (gross mineralization rates of 90 ug N kg–1 h–1 mineral; 550 ug N kg–1 h–1 organic). The gross nitrification rate decreased from the clear cut area to the young forest area to the mineral soil of the mature forest (45; 17; 4.5 ug kg–1 h–1 respectively). The15N isotope pool dilution method, combined with acetylene as an inhibitor of autotrophic nitrification provided an effective technique for assessing the importance of heterotrophic nitrification in the N-cycle of this mixed-conifer ecosystem.  相似文献   

9.
Field experiments were carried out in 1987 on winter wheat crops grown on three types of soil. 15N-labelled urea, 15NH4NO3 or NH4 15NO3 (80 kg N ha-1) was applied at tillering. The soils (chalky soil, hydromorphic loamy soil, sandy clay soil) were chosen to obtain a range of nitrogen dynamics, particularly nitrification. Soil microbial N immobilization and crop N uptake were measured at five dates. Shortly after fertilizer application (0–26 days), the amount of N immobilized in soil were markedly higher with labelled urea or ammonium than that with nitrate in all soils. During the same period, crop 15N uptake occurred preferentially at the expense of nitrate. Nitrification differed little between soils, the rates were 2.0 to 4.7 kg N ha-1 day-1 at 9°C daily mean temperature. The differences in immobilization and uptake had almost disappeared at flowering and harvest. 15N recovery in soil and crop varied between 50 and 100%. Gaseous losses probably occurred by volatilization in the chalky soil and denitrification in the hydromorphic loamy soil. These losses affected the NH4 + and NO3 - pools differently and determined the partitioning of fertilizer-N between immobilization and absorption.  相似文献   

10.
The distributions of vascular plants in south Swedish deciduous forests were related to exchangeable (exc) and soil solution concentrations of H+ (pH), Ca, Al and the Ca:Al ratios within these fractions. Topsoils (0–5 cm) of 172 sites with a pHKCl of 3.2–3.9 (corresponding to 3.7–4.4 in soil solution) were used. In the soil solution both total Alt and quickly reacting Alr were determined. Exchangeable concentrations were generally well related to plant distributions, the highest correlation coefficients usually being given by pHKCl>Caexc>Alexc.>(Ca:Al)exc. The (Ca:Al)exc ratio was clearly inferior. Out of the soil solution variables studied, Ca concentration, followed by pH, was best correlated with plant distributions, Alt, Alr, and the Ca:Al ratios having similar and lower coefficients. It is concluded that the use of Ca:Al ratios as a general measure of Al toxicity in controlling plant distributions is rather problematic. It seems difficult to apply evidence for Ca-Al interactions from solution culture experiments to field conditions when measured as exchangeable or soil solution concentrations of the soil.  相似文献   

11.
Summary The fate of 100 kg N ha–1 applied as15N-urea and its modified forms was followed in 4 successive field-grown wetland rice crops in a vertisol. The first wet season crop recovered about 27 to 36.6% of the applied N depending upon the N source. In subsequent seasons the average uptake was very small and it gradually decreased from 1.4 to 0.5 kg N ha–1 although about 18 to 20, 12 to 17 and 14 to 18 kg ha–1 residual fertilizer N was available in the root zone after harvest of first, second and third crops, respectively. The average uptake of the residual fertilizer N was only 7.6% in the second crop and it decreased to 4.5% in the third and to 3.2% in the fourth crop although all these crops were adequately fertilized with unlabelled urea. The basal application of neem coated urea was more effective in controlling the leaching loss of labelled NH4+NO3–N than split application of uncoated urea. In the first 3 seasons in which15N was detectable, the loss of fertilizer N through leaching as NH4+NO3–N amounted to 0.5 kg ha–1 from neem-coated urea, 1.5 kg from split urea and 4.1 kg from coal tar-coated urea. At the end of 4 crops, most of the labelled fertilizer N (about 69% on average) was located in the upper 0–20 cm soil layer showing very little movement beyond this depth. In the profile sampled upto 60 cm depth, totally about 13.8 kg labelled fertilizer N ha–1 from neem-coated urea, 12.7 kg from coal-tar coated urea, and 11.8 kg from split urea were recovered. The average recovery of labelled urea-N in crops and soil during the entire experimental period ranged between 42 and 51%. After correcting for leaching losses, the remaining 47 to 56% appeared to have been lost through ammonia volatilization and denitrification.  相似文献   

12.
The representation of NO3 dynamics within forest growth simulation models could improve forest management. An extensive literature review revealed an 88% probability of measuring a higher relative nitrification index (i.e. RNI = [NO3 ] ÷ [NO3 + NH4 +]) in mineral soil horizons than in forest floors, across a wide range of conifer and hardwood ecosystems. We then hypothesised that humus form and fine root density could be used as two crude variables to predict changes in in situ, potential and relative nitrification rates. Twenty-seven trench plots were established in 1999, across nine contrasting hardwood and coniferous stands in the Eastern Townships of Québec. Forest floor and mineral soil samples were collected from each plot, and from a 1 m radius surrounding each plot, on three dates during summer 2000. In situRNI values increased significantly in trench plots as the season progressed. Potential nitrification rates (i.e. NO3 concentrations following incubation) were two orders of magnitude higher in forest floor than in mineral soil samples. RNI was significantly higher in mineral soil than in forest floor samples after incubations, but the relative increase in RNI due to trenching was higher in forest floor samples. Indices of available C were significantly higher in forest floor than mineral soil samples, and decreased only in forest floor samples during incubations. Likewise, trenching significantly reduced available C in forest floor samples only. Seasonal changes in soil temperature and fine root growth were the most plausible explanations for seasonal changes in NO3 dynamics, whereas other factors such soil acidity and moisture appeared less important in determining NO3 dynamics in this study. We conclude that crude assessments of humus form and fine root density have the potential to be used as calibration parameters for the simulation of NO3 dynamics in forest growth and yield models.  相似文献   

13.
Forest N fertilization is a common practice in areas of Sweden that are not affected by high levels of N deposition. The environmental consequences of high N input to closed forests are fairly well known, but the long-term effects following clear-felling are a lot less well known. Thus, residual effects on soil and planted seedlings of previous N additions at an experimental N gradient 11 years after clear-felling were studied at a naturally nutrient-poor forest site in central Sweden. The experimental N gradient had been established by three repeated applications (in 1967, 1974 and 1981) of six dosages of NH4NO3 with increments of 120 kg N ha–1. Thus, in total, the applied N dose ranged between 0 and 1800 kg N ha–1. The study examined extractable base cations and P, soil pH, total-N, total-C, net N-mineralization and potential nitrification in four soil horizons (the humus layer, and 0–5, 5–10 and 10–20 cm in the mineral soil). We also measured the survival and growth of planted Pinus sylvestris L. seedlings. The applied N had no effect on the amounts of extractable-P or base cations in the soil. The soil pH decreased with increasing N dose in the deeper soil horizons, while in the humus the pH showed a weak but statistically significant increase due to the N application. Both total-C and total-N increased as a result of the N application, while the C/N ratio decreased. In the humus layer and the uppermost mineral soil layer NH4 + was the major inorganic N source, in contrast to the lowest mineral soil horizon where NO3 dominated. For most of the studied horizons, there was a positive linear relationship between applied N dose and amount of inorganic N. Both net N-mineralization and potential nitrification showed increases with increasing N dose. As for the plants, no difference in survival or growth was found between the different N treatments. For doses generally applied in forest fertilization no significant differences in any of the studied properties were found.  相似文献   

14.
Summary A study of the effects of malathion and parathion applied at 10 and 50 g/g of soil on transformations of urea and (NH4)2SO4–N in a sandy loam showed that the insecticides retarded urea hydrolysis as well as nitrification of urea and (NH4)2SO4–N. At 50 parts/106 rate of the insecticides, inhibition of urea hydrolysis ranged from 44 to 61% after 0.5 week and from 7 to 21% after 3 weeks of application. The insecticides inhibited the conversion of NH4 + to NO2 without appreciably affecting the subsequent oxidation of NO2 to NO3 –N. This resulted in accumulation of higher amounts of NH4 +–N in soil samples treated with ammonium sulfate or urea N.The results suggest that transformations of urea and NH4 + fertilizers in soils may be influenced by the amount of organophosphorus insecticide present and this may affect plant nutrition and fertilizer use.  相似文献   

15.
The effects of litter incorporation and nitrogen application on the properties of rhizosphere and bulk soils of tea plants (Camellia sinensis (L.) O. Kuntze) were examined in a pot experiment. Total of 8 treatments included four levels of tea litter additions at 0, 4.9, 9.8, and 24.5 g kg–1 in combination with two N levels (154.6 mg kg–1 and without). After 18 months of growth the rhizosphere soil was collected by removing the soil adhering to plant roots and other soil was referred to as bulk soil. The dry matter productions of tea plants were significantly increased by N fertilization and litter incorporation. The effect of litter was time-depending and significantly decreased the content of exchangeable Al (Alex, by 1 mol L–1 KCl) and Al saturation at 9 months after litter incorporation whereas soil pH was not affected, although the litter contained high Al content. After 18 months, the contents of extractable Al by dilute CaCl2, CuCl2 + KCl, NH4OAC, ammonium oxalate and sodium citrate (AlCaCl2, AlCu/KCl, AlNH4OAC, AlOxal, and AlCit respectively) and Alex, were not affected by litter application, except that of AlCaCl2 in the rhizosphere soil which was decreased following litter additions. Nitrogen fertilization with NH4 + (urea and (NH4)2SO4) significantly reduced soil pH, the contents of exchangeable Ca, K, Mg and base saturation while raised extractable Al levels (AlCaCl2, AlCu/KCl, AlNH4OAC, and Alex). In the rhizosphere soils exchangeable K accumulated in all treatments while exchangeable Ca and Mg depleted in treatments without litter application. The depletions of Ca and Mg were no longer observed following litter incorporation. This change of distribution gradients in rhizosphere was possibly due to the increase of nutrient supplies from litter decomposition and/or preferable root growth in soil microsites rich in organic matter. Lower pH and higher extractable Al (AlCaCl2, Alex, and AlNH4OAC) in the rhizosphere soils, regardless of N and litter treatments, were distinct and consistent in all treatments. Such enrichments of extractable Al in the rhizosphere soil might be of importance for tea plants capable of taking up large amounts of Al.  相似文献   

16.
The effects of clearcut and partial harvesting of early-seral trembling aspen plots were compared to conventional clearcut harvesting in mid-seral mixedwood and late-seral conifer plots. Twice a year, for three consecutive years, we assessed mineral N and microbial dynamics in the forest floor of these plots to test three hypotheses related to the higher litter quality of aspen leaves and to the sustained inputs of available C on partially harvested plots: (1) the post-clearcutting mineral N flush and the net [(NO3): (NO3 + NH4+)] production ratio (RNI) are higher in aspen plots than in black spruce plots, with intermediate values occurring in mixedwood plots; (2) net N mineralization rates in aspen plots are higher in spring than in autumn; and (3) compared to clearcutting, partial harvesting reduces potential ammonification and nitrification rates. Initial NH4+ and NO3 concentrations respectively ranged between 1.7–4.4 and 0.2–1.5 g N kg–1 Ntotal, net ammonification and nitrification rates (30 d incubations) respectively ranged between 5.3–17.8 and 0.1–27.6 g N kg–1 Ntotal, basal respiration ranged between 20.9–38.9 mg CO2-C kg–1 h–1, and microbial biomass ranged between 6.1–8.7 g Cmic kg–1. Although clearcutting increased NO3 concentrations in aspen plots, the balance of our results did not support our first hypothesis, because NH4+ concentrations increased in conifer plots only, potential ammonification was unaffected by clearcutting, potential nitrification increased in mixedwood plots only, and RNI increased in all plots. In each seral stage, basal respiration, microbial biomass, and metabolic quotient either increased or were unaffected by clearcutting, suggesting that increases in RNI after disturbance were not related to lower microbial immobilisation of NO3 due to lower available C. Forest floors in mid-seral mixedwood plots exhibited a distinct combination of mineral N and microbial properties, suggesting that the functional richness of the forest is enhanced not only by the number of species, but also by the diversity of assemblages that are present. Results supported our second hypothesis and showed, furthermore, that net N mineralization in conifer stands is greater in autumn than in spring. Partial harvesting in aspen stands resulted in lower potential mineralization of N and lower RNI, compared to clearcutting. Further lysimetry studies are needed to confirm whether partial harvesting mitigates NO3 leaching following disturbance.  相似文献   

17.
Summary Inhibitory effect of potassium chloride on nitrification of ammonium sulfate and urea in acid, neutral and calcareous soils was observed in an incubation study. In acidic soil, NO 3 –N production in soil treated with urea was retarded by addition of KCl. NO 3 –N concentration was much less even in comparison to control where ammonium sulfate and KCl were added together which might be due to cumulative effect of Cl and SO 4 –2 ions. In neutral and calcareous soils, nitrification inhibition was less conspicuous.  相似文献   

18.
Summary A study of changes in NH4 + and NO3 –N in Maahas clay amended with (NH4)2SO4 and subjected to 4 water regimes in the presence and absence of the nitrification inhibitor N-Serve (Nitrapyrin) showed that the mineral N was well conserved in the continoous regimes of 50% and 200% (soil weight basis) but suffered heavy losses due to nitrification-denitrification under alternate drying and flooding. N-Serve was effective in minimizing these losses.Another incubation study with 3 soils showed that after 10 cycles of flooding and drying (either at 60°C or 25°C), the ammonification of soil N was enhanced. Nitrification of soil as well as fertilizer NH4 + was completely inhibited upto 4 weeks by the treatments involving drying at high temperature. Flooding and air drying at 25°C, on the other hand, enhanced ammonification of soil N but retarded nitrification. These treatments, however, enhanced both ammonification and nitrification of the applied NH4 + fertilizer N. Under flooded conditions rate of NH4 + production was faster in soils that were dried at 60°C or 25°C and then flooded as compared to air dried soils.It is concluded that N losses by nitrification-denitrification and related N transformations may be considerably altered by alternating moisture regimes. Flooding and drying treatments seem to retard nitrification of soil N but conserve that of fertilizer NH4 + applied after these treatments.  相似文献   

19.
Identification of Heterotrophic Nitrification in a Sierran Forest Soil   总被引:23,自引:9,他引:14       下载免费PDF全文
A potential for heterotrophic nitrification was identified in soil from a mature conifer forest and from a clear-cut site. Potential rates of NO2 production were determined separately from those of NO3 by using acetylene to block autotrophic NH4+ oxidation and chlorate to block NO2 oxidation to NO3 in soil slurries. Rates of NO2 production were similar in soil from the forest and the clear-cut site and were strongly inhibited by acetylene. The rate of NO3 production was much greater than that of NO2 production, and NO3 production was not significantly affected by acetylene or chlorate. Nitrate production was partially inhibited by cycloheximide, but was not significantly reduced by streptomycin. Neither the addition of ammonium nor the addition of peptone stimulated NO3 production. 15N labeling of the NH4+ pool demonstrated that NO3 was not coming from NH4+. The potential for heterotrophic nitrification in these forest soils was greater than that for autotrophic nitrification.  相似文献   

20.
Tomato root growth and distribution were related to inorganic nitrogen (N) availability and turnover to determine 1) if roots were located in soil zones where N supply was highest, and 2) whether roots effectively depleted soil N so that losses of inorganic N were minimized. Tomatoes were direct-seeded in an unfertilized field in Central California. A trench profile/monolith sampling method was used. Concentrations of nitrate (NO3 -) exceeded those of ammonium (NH4 +) several fold, and differences were greater at the soil surface (0–15 cm) than at lower depths (45–60 cm or 90–120 cm). Ammonium and NO3 - levels peaked in April before planting, as did mineralizable N and nitrification potential. Soon afterwards, NO3 - concentrations decreased, especially in the lower part of the profile, most likely as a result of leaching after application of irrigation water. Nitrogen pool sizes and rates of microbial processes declined gradually through the summer.Tomato plants utilized only a small percentage of the inorganic N available in the large volume of soil explored by their deep root systems; maximum daily uptake was approximately 3% of the soil pool. Root distribution, except for the zone around the taproot, was uniformly sparse (ca. 0.15 mg dry wt g-1 soil or 0.5 cm g-1 soil) throughout the soil profile regardless of depth, distance from the plant stem, or distance from the irrigation furrow. It bore no relation to N availability. Poor root development, especially in the N-rich top layer of soil, could explain low fertilizer N use by tomatoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号