首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactive effects of tillage and compaction from wheel traffic were tested on active bacterial and fungal biomass and organic matter decomposition in the planting row at the surface and within the plow layer of a Norfolk loamy sand (fine-loamy, siliceous, thermic Typic Kandiudult). This experiment was arranged in a split plot design with four replications. Main plots were compaction: 1) compaction from wheel traffic and 2) no compaction from wheel traffic; subplots were tilalge system: 1) conventional tillage and 2) no-tillage. Despite a significant increase in bulk density, compaction from wheel traffic and tillage system had no consistent effects on active bacterial or active fungal biomass either in the top 7.5 cm of soil or in the 15–20 cm depth of soil. Active bacteria and fungal biomass at both depths were usually lower in the winter months than the spring, summer or autumn months. Organic matter decomposition, nutrient mineralization and nutrient availability did not differ among soils that received tillage or compaction from wheel traffic. Organic matter decomposition was greater in all treatments when decomposition bags were buried at 15–20 cm than when they were placed on the surface of the soil. The soil that was sampled was an extremely sandy soil so there was probably not a significant effect of compaction on soil aeration and structure.Mention of trade names or commercial products does not constitute endorsement or recommendation of use.Mention of trade names or commercial products does not constitute endorsement or recommendation of use.  相似文献   

2.
Abstract. Recent disturbance models have identified changes in resource availability as factors that control plant community response. Soil nutrient resources typically are assumed to change following forest disturbance, usually with nutrient availablity increasing initially and subsequently decreasing through later stages of succession. We examined the effects of disturbance (clearcut harvesting with a brief recovery period) on soil organic matter, pH and extractable soil nutrients in successional aspen forests of northern lower Michigan to determine relationships of these variables to changes in herbaceous layer vegetation. Two site types were identified: drymesic (glacial outwash sands, low in organic matter) and mesic (calcareous clay till, high in organic matter). Extractable nutrient concentrations were 1.5 to 3 times higher in the A1 horizon of mesic sites than those of dry-mesic sites. Soil pH and cations increased after disturbance on mesic sites, but not on dry-mesic sites. Patterns of change with disturbance were less pronounced in lower horizons on both site types. Herblayer species diversity increased after disturbance on mesic sites, but with decreases in the importance of shade-tolerant tree species and Maianthemum canadense. Species characteristic of open habitats (e.g. Pteridium aquilinum, Rubus spp., Fragaria virginiana, and Diervilla lonicera), increased in importance. Soil factors, species composition and diversity on dry-mesic sites changed little after disturbance, with Pteridium aquilinum and ericaceous species remaining dominant in both mature (55–82 yr) and disturbed (≤ 15 yr) stands. These results suggest that soil nutrient resources do not always change through secondary succession and that patterns of change can be distinctly site-dependent. Disturbance response patterns in the herbaceous layer of these aspen forests are also site-dependent.  相似文献   

3.
Summary Respiration rates of the forest floor, exclusive of the L layer, and of the mineral horizons from three soils developed under pine and hardwoods in the North Carolina Piedmont were measured with a Warburg respirometer. Respiration, based on carbon content of the soil, decreased with depth through the A1 horizon, but subdivisions of the A2 showed no difference. When all soil layers were considered, there were no significant differences in respiration between cover type or soil series. However, in the least decomposed organic layer, the F1, respiration of pine litter was 77 per cent of that of hardwood litter, and respiration of Georgeville or Colfax soils was only 58 per cent of that of Iredell soil. Regression analyses, primarily with inorganic soil nutrient factors, accounted for over 90 per cent of the variation in respiration in the organic layers but for less than 50 per cent in the mineral soil under hardwoods. Up to 15 factors were included in equations, but four factors explained at least 70 per cent of the variation accounted for by regression.Principal Soil Scientists, U. S. Department of Agriculture, Forest Service, South-eastern Forest Experiment Station, Forestry Sciences Laboratory, Research Triangle Park, N. C. Mention of commercial products in this paper does not constitute endorsement by the U. S. Department of Agriculture.  相似文献   

4.
This research aims to assess the effect of the application of biosolids compost and phytoremediation on the mobility of total and biodisponibles (DTPA) fractions of cadmium, copper, lead, and zinc from different horizons of a superficially contaminated soil. Leaching experiment in soil columns was proposed. Treatments contemplated application of compost biosolid and phytoremediation. Two destructive samplings were performed. Total and DTPA trace metals were identified in each horizon. The overall performance of the various elements in its total and DTPA forms show greater concentration in horizon A and fewer gradients between horizons Bt and BC, thus assuming that the high content of clay in horizon Bt (62.9%) limits its movement through the horizons. In the mobile nutrients, a greater mobility was evidenced in DTPA fractions if compared to Total fractions. In the horizon A, the more mobile metals, such as Zn and Cd, evidenced a greater percentage of DTPA/Total fractions in all treatments. The application of compost with or without plant diminished the mobilization of Zn, Cu, and Cd Total, thus limiting a potential leaching to inferior horizons. However, this effect was not observed in the DTPA fraction.  相似文献   

5.
Old-growth forest stands of mixed species composition provide the opportunity to study species-specific influences on soil properties. We monitored rates of nitrogen mineralization, nitrification and an index of ammonium and nitrate uptake in a mixed old-growth stand of Douglas-fir (Pseudotsuga menziesii), western hemlock (Tsuga heterophylla) and western redcedar (Thuja plicata) over a two-year period. Litter and mineral soil (0–10-cm depth) were sampled adjacent to ten large trees of each species. After initial characterization of litter and soil, buried bags were incubated in both layers for ca. 2-month intervals. Soil and litter pH was lowest near western hemlocks. Nitrification, nitrate concentrations, and percent uptake as nitrate differed among the tree species; rates were highest near western redcedars. For all species, percent nitrification and nitrate uptake rate were higher in soil than in litter. The results indicate species-specific effects on ammonium and nitrate production and uptake within this forest type.The research described in this article has been funded in part by the US Environmental Protection Agency. This document has been prepared at the EPA Environmental Research Laboratory in Corvallis, Oregon, through Contract No. 68-C8-0006 to ManTech Environmental Technology, Inc. It has been subjected to the Agency's peer and administrative review and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.The research described in this article has been funded in part by the US Environmental Protection Agency. This document has been prepared at the EPA Environmental Research Laboratory in Corvallis, Oregon, through Contract No. 68-C8-0006 to ManTech Environmental Technology, Inc. It has been subjected to the Agency's peer and administrative review and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.  相似文献   

6.
Influence of dolomitic lime on DOC and DON leaching in a forest soil   总被引:3,自引:1,他引:2  
The influence of liming on leaching and distribution of dissolved organic carbon (DOC) and nitrogen (DON) in mineral soil was investigated in a leaching experiment with soil columns. Soil samples from separate horizons (O, A and B horizons) were collected from control and limed plots in a field liming experiment in a spruce forest in southern Sweden. The field liming (0.88 kg m-2) had been carried out 8 years before sampling. To minimize the variation among replicates, soil profiles were reconstructed in the laboratory so that the dry weight was the same for each individual soil horizon regardless of treatment. Two soil column types were used with either the O+A horizons or the O+A+B horizons. One Norway spruce seedling (Picea abies (L.) Karst) was planted in each soil column. Average pH in the leachate water was greater in the limed treatment than in the control treatment (5.0 versus 4.0 for O+A columns and 4.3 versus 3.8 for O+A+B columns). After reaching an approximate steady state, the leaching of DOC was 3--4 times greater from the limed O+A and O+A+B columns than from the corresponding control columns but the leaching of DON increased (3.5 times) only in the limed O+A columns. There was a significant correlation between DOC and DON in the leachates from all columns except for the control O+A+B columns, which indicated a decoupling of DOC and DON retention in the B horizon in the control treatment. This might be explained by a selective adsorption of nitrogen poor hydrophobic compounds (C/N ratio: 32--77) while there was a lower retention of nitrogen rich hydrophilic compounds (C/N ratio: 14--20). Proportionally more hydrophobic compounds were leached from the limed soil compared to the unlimed soil. These hydrophobic compounds also became more enriched in nitrogen after liming so in the limed treatment nitrogen might be adsorbed at nearly the same proportion as carbon, which might explain the fact that there was no decoupling of leached DOC and DON from the B horizon after liming.  相似文献   

7.
Leaching of dissolved organic carbon (DOC) from the forest floor and transport in soil solution into the mineral soil are important for carbon cycling in boreal forest ecosystems. We examined DOC concentrations in bulk deposition, throughfall and in soil solutions collected under the O and B horizons in three Norway spruce stands along a climatic gradient in Sweden. Mean annual temperature for the three sites was 5.5, 3.4 and 1.2 °C. At each site we also examined the effect of soil moisture on DOC dynamics along a moisture gradient (dry, mesic and moist plots). To obtain information about the fate of DOC leached from the O horizon into the mineral soil, 14C measurements were made on bulk organic matter and DOC. The concentration and fluxes of DOC in O horizon leachates were highest at the southern site and lowest at the northern. Average DOC concentrations at the southern, central and northern sites were 49, 39 and 30 mg l−1, respectively. We suggest that DOC leaching rates from O horizons were related to the net primary production of the ecosystem. Soil temperature probably governed the within-year variation in DOC concentration in O horizon leachates, but the peak in DOC was delayed relative to that of temperature, probably due to sorption processes. Neither soil moisture regime (dry, mesic or moist plots) nor seasonal variation in soil moisture seemed to be of any significance for the concentration of DOC leached from the O horizon. The 14C measurements showed that DOC in soil solution collected below the B horizon was derived mainly from the B horizon itself, rather than from the O horizon, indicating a substantial exchange (sorption–desorption reactions) between incoming DOC and soil organic carbon in the mineral soil.  相似文献   

8.
Understanding of the pedogenic pathways associated with arsenic (As) transformations in soil is important to understanding arsenic soil chemistry and discriminating between natural background and anthropogenic arsenic (As). Twenty-one soil series, some with multiple pedons, were assessed to determine if the As distributions in soil profiles exhibit discrete maxima that correspond to the presence of agrillic horizons. The majority of pedons exhibiting argillic horizon expression show a Fe-oxyhydroxide and As maxima corresponding precisely with the argillic horizon. Pearson correlation coefficients verify the close correspondence of Fe and As. Soil profiles having cambic horizons, and lacking argillic horizons, may also show As and Fe accumulations at soil depths. Some coarse-textured, well-drained to moderately well-drained Entisols and Inceptisols have Fe-oxyhydroxide accumulation in their cambic horizons, promoting As accumulation. Conversely, silty-textured and poorly drained to somewhat poorly drained Entisols and Inceptisols have C and Cg horizons that show somewhat uniform Fe and As concentrations throughout their soil profiles. Analysis of selected pedons having well-drained to moderately well-drained soil profiles demonstrates that clay fraction Fe and As concentrations are closely correlated and that the As and Fe concentrations are greater than those from the corresponding whole soil. The somewhat poorly drained Crowley pedon exhibited cohesive masses of Fe and Mn accumulation (sand separate) that had greater arsenic concentrations than those of the clay and silt separates. These pedogenic nodules with enhanced arsenic concentrations reveal alternative pathways involving arsenic transformation.  相似文献   

9.
In natural forest, disturbance changes tree species composition which in turn affects soil properties. Two areas in the Central Forest State Biosphere Reserve, in the Russian Southern Taiga Zone, differed in the intensity of disturbance: Norway spruce was the dominant species at one site, while at the other spruce was mixed with broadleaves. The presence of broadleaves was due to large gaps in the canopy having been formed, which have triggered vegetation succession. At both sites, five plots were selected to evaluate how the presence of broadleaves influences the properties of the soils under spruce. Soil samples were taken close to spruce trees and the O, A and E horizons were analysed. A difference in the distribution of organic matter in the soil horizons was evident, with a higher concentration in the O and A horizons at the spruce dominated site, while a more homogeneous distribution was found under spruce at the site where broadleaves were abundant. The organic matter did not only differ in quantity, but also in quality as estimated by the C/N ratio, and therefore affected the CEC and element relative availability. No differences at the two sites were found for water-extractable and exchangeable elements, but the ratio between the exchangeable and the acid-extractable forms were different, suggesting a higher relative availability of the elements at the spruce dominated site, and thus potentially higher leaching. Both theoretical and empirical studies have suggested that podzolisation and accumulation of organic matter in the O horizon are related to stagnation of ecosystem processes and ecosystem decline. Our data suggest that the presence to windthrow sites and the inclusion of broadleaf species acts to slow or even reverse podzolisation even in spruce dominated sites.  相似文献   

10.
The effects of whole-tree clear-cutting on soil processes and streamwater chemistry were examined in a northern hardwood forest at the Hubbard Brook Experimental Forest, New Hampshire. Soil processes were examined by monitoring soil solution chemistry collected using zero-tension lysimeters from the Oa, Bh and Bs horizons at three sites along an elevational/vegetation gradient. Whole-tree clear-cutting created a severe ecosystem disturbance leading to leaching losses of nutrients from the soil profile, increased acidification, and elevated concentrations of Al-ions in soil solutions and streamwater. The response was driven by the process of nitrification that led to production of nitric acid in both the forest floor and mineral soil horizons. This acidity was largely neutralized by release and leaching of basic cations and inorganic monomeric Al-ions leaching with the NO3-ions. The major source of nutrient loss was from the forest floor. The chemical response to the clear-cut was most intense during the second year following the treatment and declined to near reference concentrations in 4–5 years. High elevation sites showed the greatest response to disturbance and the slowest recovery of soil solution concentrations to pre-cut concentrations. Shallow soils and a slower recovery of vegetation at the upper elevation sites were the primary factors contributing to the enhanced disturbance and delayed recovery (and enhanced response to disturbance in the upper elevation sites).  相似文献   

11.
Soil microorganisms living in close contact with minerals play key roles in the biogeochemical cycling of elements, soil formation, and plant nutrition. Yet, the composition of microbial communities inhabiting the mineralosphere (i.e., the soil surrounding minerals) is poorly understood. Here, we explored the composition of soil microbial communities associated with different types of minerals in various soil horizons. To this effect, a field experiment was set up in which mineral specimens of apatite, biotite, and oligoclase were buried in the organic, eluvial, and upper illuvial horizons of a podzol soil. After an incubation period of two years, the soil attached to the mineral surfaces was collected, and microbial communities were analyzed by means of Illumina MiSeq sequencing of the 16S (prokaryotic) and 18S (eukaryotic) ribosomal RNA genes. We found that both composition and diversity of bacterial, archaeal, and fungal communities varied across the different mineral surfaces, and that mineral type had a greater influence on structuring microbial assemblages than soil horizon. Thus, our findings emphasize the importance of mineral surfaces as ecological niches in soils.  相似文献   

12.
The parent material of a soil determines the original supply of those nutrient elements that are released by weathering and influences the balance between nutrient loss and retention. Organic acids and exudates produced by microorganisms and plants enhance the weathering of minerals and the release of nutrients. Nutrients may be stored in organic cycles or as ions adsorbed to clay and organic matter. Nutrients are lost mainly by leaching, both as dissolved ions and when associated with soluble organic components. Soil formation evidently affects these processes and modifies the environment at different depths as soil horizons develop. Strong interactions between mineral and organic colloids occur where most residues are added below ground, as in grasslands, or mixed with mineral soil by faunal activity, as in some forests. These systems tend to be nutrient conserving. The addition of organic residues to the soil surface often results in slow decomposition, the tie-up of many nutrients in biologically resistant humic materials, and the generation of organic acids that are active in leaching and chelation. These soils tend to lose nutrients by leaching and become strongly acidic with time. Leaching is strongest in uplands with net downward flows to deep water tables, and may be dampened or obviated in lowlands with strong upward fluxes due to artesian pressure or capillary rise from a water table that is close to the surface. Pedogenic features such as clayeyB horizons or duripans may alter water flow. Simonson's concepts that all basic soil-forming processes occur to some degree in all soils are critical to developing models describing soil formation and nutrient cycles.  相似文献   

13.
广西猫儿山不同海拔土壤碳氮磷生态化学计量特征   总被引:2,自引:0,他引:2  
为探究我国华南地区山地土壤有机碳(C)、氮(N)、磷(P)含量垂直分布特征,阐明土壤C、N、P生态化学计量特征对海拔和土层深度的响应,以广西猫儿山为研究对象,选取不同海拔的10个地点,采集了不同发生层的土壤,测定有机C、N、P、pH、容重和机械组成等土壤性质,探讨了不同海拔及深度土壤C、N、P生态化学计量特征及其影响因素.结果表明: 随着海拔升高,土壤C、N、C/P、N/P均呈增加趋势,土壤P呈先增后降趋势,C/N则呈先增后保持平稳趋势;随着土壤深度增加,土壤C、N、P、C/P、N/P均呈显著降低趋势,C/N无显著变化,C、N在不同发生层土壤间具有较高的耦合性(C/N变异系数为4.0%);土壤P在空间上的变异较小(不同海拔、发生层间变异系数分别为31.0%和22.0%).冗余分析结果显示,前2个排序轴反映了土壤C、N、P化学计量特征变异信息量的74.8%,土壤pH、容重和海拔对土壤C、N、P化学计量特征有显著影响,而黏粒、粉粒和砂粒影响效果不显著.  相似文献   

14.
Abstract

This study was conducted to investigate the chemical speciation of yttrium and scandium in selected types of soils and also determined the total content and profile distribution of those elements. The research was performed on soil samples from forest areas in Puszcza Borecka (Poland) known as a non-contaminated site. Soil samples were collected from natural brown, lessive and rusty soil profiles.

The sequential extraction procedure was applied to separate fractions of scandium and yttrium according to the Tessier method. The range of total content of scandium and yttrium was respectively: 0.63-6.48 mg kg-1 and 2.25 to 27.93 mg kg-1. Scandium and yttrium occurred predominantly in residual fraction (F5) in each genetic horizon. Also both elements occurred mainly in fraction bound to organic matter (F4). The mean percentage content of scandium measured in mobile fractions (∑F1-F2) reached about 3% (in Bbr, Bt horizons) to 14% (in Bv horizons) in relation to the total content of the element in the analysed soils. The percentage content of yttrium measured in mobile fractions reached about 4% (in A, Bv horizons) to 28% in Bt horizons in relation to the total content of the element in forest soils of Puszcza Borecka.  相似文献   

15.
This study examined the biotic and abiotic processes controlling solution chemistry and cycling of aluminum (Al) in the organic horizons of a northern coniferous forest ecosystem. A mass balance budget indicated that aboveground inputs of Al to the O horizon averaged 0.9 kg ha–1 1 yr–1, with major inputs accounted for by litterfall (69%), followed by precipitation (21%), and net canopy throughfall plus stemflow (10%). Estimated leaching losses of Al from the O horizon averaged 2.1 kg Al ha-1 yr1. We hypothesize that the difference between measured Al inputs and outputs can be accounted for by Al release from weathering of soil minerals admixed into the O horizon. Variations in O horizon solution Al chemistry were influenced by a number of factors, including pH, Al equilibria with different solid-phase organic exchange sites, and Al complexation with humic ligands in soil solution.  相似文献   

16.
Bacteria from forest surface organic matter and mineral soil horizons were cultivated using four methods and characterized by fatty acid methyl ester (FAME) analysis. Soil samples from a British Columbia Ministry of Forests Long-Term Soil Productivity (LTSP) installation were collected during winter and summer from two disturbance treatments (whole-tree harvesting with no soil compaction (plot N) and whole-tree harvesting plus complete surface organic matter removal with heavy soil compaction (plot S)) and from an unlogged reference plot (REF). Seventy-five percent of 1795 bacterial isolates were affiliated with 42 genera representing beta- and gamma-Proteobacteria, Actinobacteria, the Bacillus/Clostridium group, and the Cytophaga-Flexibacter-Bacteroides group. Approximately half of the culture collection represented genetic diversity confined to four bacterial genera: Pseudomonas, Bacillus, Paenibacillus, and Arthrobacter. A significantly higher proportion of bacterial isolates belonging to Actinobacteria, and the member genus Arthrobacter, were isolated from plot S soil samples compared with soil samples from plots N and REF. Twenty-five percent of bacterial isolates were not conclusively identified to genus with FAME analysis. Sherlock Tracker cluster analysis and partial 16S rRNA gene sequence analysis enabled classification of a subset of these isolates.  相似文献   

17.
Volume Contents   总被引:5,自引:1,他引:4  
Rasse  Daniel P.  Smucker  Alvin J.M. 《Plant and Soil》1998,204(2):203-212
Distribution of root systems through soils and recolonization of root channels by successive crops are fundamental, though difficult to study, processes of soil ecology. This article reports a minirhizotron (MR) study of corn and alfalfa root systems throughout the soil profile of Kalamazoo loam (fine-loamy, mixed, mesic Typic Hapludalf) monolith lysimeters for a three-year succession of corn, alfalfa and corn. Multiple-date comparisons within and between years were conducted to estimate total root densities in each soil horizon. Root recolonization was assessed by comparing every video frame of paired minirhizotrons, from recordings conducted one growing season apart. Distributions of corn root systems were modified by tillage practices. In 1994, root populations of corn in the Bt1 horizon peaked 75–90 days after planting (DAP). Numbers of corn roots per m2 in the Bt1 horizon were consistently higher for no-tillage (NT) than for conventional tillage (CT) lysimeters, in 1994 and 1996. Distribution of alfalfa roots within the soil profile was not significantly modified by tillage. However, alfalfa root decomposition rates responded to conventional and no-tillage practices and were specific for each soil horizon. Corn root systems growing in soils previously cropped with alfalfa presented similar patterns of root distribution by horizons as that of the previous alfalfa crop. Successive corn root systems did not display similar distribution patterns throughout the soil profile from one growing season to the next. Proportions of roots of the current crop recolonizing root induced macropores (RIMs) of the previous crop averaged 18% for corn after corn, 22% for alfalfa after corn and 41% for corn after alfalfa, across Bt horizons and tillage treatments. In conclusion, distribution of corn root systems appeared to be modified by tillage practices and root recolonization of RIMs was controlled by the preceding crop.  相似文献   

18.
Commercial fuel ethanol production facilities were previously shown to have characteristic populations of bacterial contaminants which reduce product yield and are difficult to eradicate. Bacterial contaminants were found, for the first time, to form biofilms under laboratory conditions. Fermentor samples from a commercial fuel ethanol production facility were used to inoculate a biofilm reactor and purified bacterial isolates were identified. Biofilms were composed of many of the same species present in production samples, with lactic acid bacteria predominating. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

19.
We present results on changes in soil properties following land use change over an approximately 55‐year period at Fort Benning, Georgia, U.S.A. Soil cores were taken at 129 locations that were categorized as reforested (field/bare ground in 1944 and forest in 1999), disturbed (field/bare ground in 1944 and 1999), or reference forests (forest in 1944 and 1999). Soil disturbance included historic agriculture (pre‐1944) and military training (post‐1944). Density in mineral soils exhibited a historic land use legacy effect (reference < reforested < disturbed). Rates of change in bulk density decreased with depth and estimated total times to reach reference forest levels ranged from 83 (0–10 cm) to 165 (30–40 cm) years. A land use legacy effect on C stock was apparent in the O‐horizon and in 30‐ to 40‐cm soil increment (reference > reforested > disturbed). Soil C stock in all other increments and in particulate organic matter was affected by disturbance; however, no legacy was apparent (reference = reforested > disturbed). For the entire soil profile (O‐horizon to 40 cm), rate of C accrual was 28 g m−2 yr−1 (1.5%/yr). Nitrogen stocks were affected by disturbance in the O‐horizon and 0‐ to 10‐cm increment; however, no legacy effect was detected (reference = reforested > disturbed). Nitrogen accumulated at 0.56 g m−2 yr−1 (0.6%/yr) for the entire soil profile. At Fort Benning, soil C and N stocks of reforested stands were similar to those of reference forested stands after approximately 55 years. However, soil bulk density was greater on reforested stands than reference forest stands at 55 years and may require an additional century to reach reference levels.  相似文献   

20.
Soils retain large quantities of carbon, thereby slowing its return to the atmosphere. The mechanisms governing organic carbon sequestration in soil remain poorly understood, yet are integral to understanding soil‐climate feedbacks. We evaluated the biochemistry of dissolved and solid organic carbon in potential source and sink horizons across a chronosequence of volcanic soils in Hawai'i. The soils are derived from similar basaltic parent material on gently sloping volcanic shield surfaces, support the same vegetation assemblage, and yet exhibit strong shifts in soil mineralogy and soil carbon content as a function of volcanic substrate age. Solid‐state13carbon nuclear magnetic resonance spectra indicate that the most persistent mineral‐bound carbon is comprised of partially oxidized aromatic compounds with strong chemical resemblance to dissolved organic matter derived from plant litter. A molecular mixing model indicates that protein, lipid, carbohydrate, and char content decreased whereas oxidized lignin and carboxyl/carbonyl content increased with increasing short‐range order mineral content. When solutions rich in dissolved organic matter were passed through Bw‐horizon mineral cores, aromatic compounds were preferentially sorbed with the greatest retention occurring in horizons containing the greatest amount of short‐range ordered minerals. These minerals are reactive metastable nanocrystals that are most common in volcanic soils, but exist in smaller amounts in nearly all major soil classes. Our results indicate that long‐term carbon storage in short‐range ordered minerals occurs via chemical retention with dissolved aromatic acids derived from plant litter and carried along preferential flow‐paths to deeper B horizons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号