首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The 2'-deoxythymidine analogue 2'-deoxy-4'-thiothymidine has been incorporated, using standard methodology, into a series of dodecadeoxynucleotides containing the EcoRV restriction endonuclease recognition site (GATATC). The stability of these oligodeoxynucleotides and their ability to act as substrates for the restriction endonuclease and associated methylase have been compared with a normal unmodified oligodeoxynucleotide. No problems were encountered in the synthesis despite the presence of a potentially oxidisable sulfur atom in the sugar ring. The analogue had very little effect on the melting temperature of the self-complementary oligoeoxynucleotides so synthesised and all had a CD spectrum compatible with a B-DNA structure. The oligodeoxynucleotide containing one analogue in each strand within the recognition site, adjacent to the bond to be cleaved (i.e. GAXATC, where X is 2'-deoxy-4'-thiothymidine), was neither a substrate for the endonuclease nor was recognized by the associated methylase. When still within the recognition hexanucleotide but two further residues removed from the site of cleavage (i.e. GATAXC), the oligodeoxynucleotide was a poor substrate for both the endonuclease and methylase. Binding of the oligodeoxynucleotide to the endonuclease was unaffected but the kcat value was only 0.03% of the value obtained for the parent oligodeoxynucleotide. These results show that the incorporation of 2'-deoxy-4'-thionucleosides into synthetic oligodeoxynucleotides may shed light on subtle interactions between proteins and their normal substrates and may also show why 2'-deoxy-4'-thiothymidine itself is so toxic in cell culture.  相似文献   

2.
B F Li  C B Reese  P F Swann 《Biochemistry》1987,26(4):1086-1093
The carcinogenicity of N-nitroso compounds is believed to result from the alkylation of DNA, particularly on O-6 of the guanine and O-4 of the thymine residues. In order to study the base-pairing properties of 4-O-methylthymidine (T*) residues and the structural changes produced in DNA by the presence of this alkylated nucleoside, the oligodeoxyribonucleotides T*GCG, CGCAAGCTT*GCG, CGCGAGCTT*GCG, and CGCAAGCTTGCG were synthesized by the phosphotriester approach in solution. The 4-O-methylthymidine required for oligonucleotide synthesis was prepared by treating the 4-(3-nitro-1,2,4-triazolo) derivative of 3',5'-bis-O-(methoxyacetyl)thymidine with 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU) in methanol solution. The susceptibility of the 4-O-methyl group of T* toward nucleophiles enables this group of 4-O-methylthymidine-containing oligomers to be labeled by a direct exchange reaction with [13C]- or [14C]methanol in the presence of DBU. Although it has been previously suggested that 4-O-methylthymine forms stable base pairs with guanine, the thermal melting profiles of the double helices formed by these dodecamers suggest that the presence of 4-O-methylthymine paired to either adenine or guanine destablizes the helix. The melting curve of the sequence containing a 4-O-methylthymine residue base paired to guanine was biphasic and similar to that of an analogous sequence containing 6-O-methylguanine paired to thymine.  相似文献   

3.
Oligodeoxyribonucleotides containing a mutagenic base analog, N4-aminocytosine, 5'-AATTGC(am)AATT-3' and 5'-AATTAC(am)AATT-3' (C(am); N4-aminocytosine) were prepared by chemical modification of 5'-AATTGCAATT-3' and 5'-AATTACAATT-3', respectively. The values of Tm were 29 degrees C for 5'-AATTGC(am)AATT-3' and 32 degrees C for 5'-AATTGCAATT-3'. In contrast, no melting was observed for 5'-AATTAC(am)AATT-3' and 5'-AATTACAATT-3'. These data show that the stability of C(am)-purine paris is C(am)-G > C(am)-A and that C(am)-G is less stable than C-G. This property is consistent with the incorporation specificity of N4-amino-dCTP during DNA synthesis in vitro.  相似文献   

4.
Several studies have shown that ionizing radiation generates a wide spectrum of lesions to DNA including base modifications, abasic sites, strand breaks, crosslinks and tandem base damage. One example of tandem base damage induced by @OH radical inX-irradiated DNA oligomers is N -(2-deoxy-beta-d- erythro -pentofuranosyl)-formylamine/8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo). In order to investigate the biological significance of such a tandem lesion, both 8-oxo-7,8-dihydroguanine and formylamine were introduced into synthetic oligonucleotides at vicinal positions using the solid phase phosphoramidite method. For this purpose, a new convenient method of synthesis of 8-oxodGuo was developed. The purity and integrity of the modified synthetic DNA fragments were assessed using different complementary techniques including HPLC, polyacrylamide gel electrophoresis, electrospray and MALDI-TOF mass spectrometry. The piperidine test applied to the double modified base-containing oligonucleotides revealed the high alkaline lability of formylamine in DNA. In addition, various enzymatic experiments aimed at determining biochemical features of such multiply damaged sites were carried out using the synthetic substrates. The pro-cessing of the vicinal lesions by nuclease P1, snake venom phosphodiesterase, calf spleen phospho-diesterase and repair enzymes including Escherichia coli endonuclease (endo) III and Fapy-glycosylase was studied and is reported.  相似文献   

5.
The synthesis and thermal stability of oligodeoxynucleotides (ODNs) containing 4-amino-2,3,5,6-tetraazabenzo[cd]azulen-7-one nucleosides 5 (BaON) with the aim of developing new base pairing motif is described. The tricyclic nucleoside 5 was prepared starting with the 7-deaza-7-iodopurine derivative 1 via a palladium catalyzed cross-coupling reaction with methyl acrylate, followed by an intramolecular cyclization. The resulting nucleoside was incorporated into ODNs, and the base pairing property of the BaON:NaNO (2-amino-7-hydroxy-1,8-naphthyridine nucleoside) pair in the duplex was evaluated by a thermal denaturation study. The melting temperature (Tm) of the duplex containing the BaON:NaNO pair showed a higher value than that of the duplexes containing the adenine:thymine (A:T) and the guanine:cytosine (G:C) pairs, however it was lower than that of the ImON:NaNO (ImON = 7-amino-imidazo[5′,4′:4,5]pyrido[2,3-d]pyrimidin-4(5H)-one nucleoside) pair. A temperature-dependent 1H NMR study revealed that the H-bonding ability of BaON was lower than that of ImON, which would explain why the BaON:NaNO pair was less thermally stable than the ImON:NaNO pair.  相似文献   

6.
Several viologen-tagged oligodeoxynucleotides in the form of covalent linkage at the specific site of the phosphorous backbone were synthesized and characterized. Incorporation of viologen molecules was confirmed by the 31P-NMR, 20% PAGE analysis, enzymatic degradation, and uv, ESR spectra of the derived cation radical. The Tm values and CD spectra of the modified strands with their complementary strands indicate that the introduction of the viologen molecule via linker arm causes no significant perturbation in duplex structure.  相似文献   

7.
2-Aminopurine (P) is a mutagen causing A.T to G.C transitions in prokaryotic systems. To study the base-pairing schemes between P and cytosine (C) or thymine (T), two self-complementary dodecamers containing P paired with either C or T were synthesized, and their protonation equilibria were studied by acid-base titrations and melting experiments. The mismatches were incorporated into the self-complementary sequence d(CGCPCCGGXGCG), where X was C or T. Spectroscopic data obtained from molecular absorption, circular dichroism (CD), and molecular fluorescence spectroscopy were analyzed by a factor-analysis-based method, multivariate curve resolution based on the alternating least squares optimization procedure (MCR-ALS). This procedure allows determination of the number of acid-base species or conformations present in an acid-base or melting experiment and the resolution of the concentration profiles and pure spectra for each of them. Acid-base experiments have shown that at pH 7, 150 mM ionic strength, and 37 degrees C, both C and P are deprotonated. At pH near 4, the majority of species shows C protonated and P deprotonated. Finally, at pH values near 3, the majority of species shows both protonated C and P. These results are in agreement with NMR studies showing a wobble geometry for the P x C base pair and a Watson-Crick geometry for the P x T base pair at neutral pH. Melting experiments were carried out to confirm the proposed acid-base distribution profile. For the sequence including the P x T mismatch, only one transition was observed at neutral pH. However, for the sequence including the P x C mismatch, two transitions were detected by CD but only one by molecular absorption. This behavior agrees with that observed by other authors for oligonucleotides of similar sequence and suggests the following sequence of conformational changes during melting: duplex --> hairpin --> random coil.  相似文献   

8.
Described herein is the synthesis and characterization of a tetranucleotide, 5'-dC-phosphonate-T-amide-T-ophosphonate-dC (III), in which the C-T and T-C steps contain a phosphonate backbone bond and T-T is a peptide nucleic acid dimer unit (neutral backbone). The 5'- and 3'-OH groups of the tetramer can be further derivatized and, thus, the compound is a potential building block for longer oligonucleotides which will contain alternating backbone modifications at designated positions. The synthesis involved first the preparation of two hybrid peptide-deoxyribose dinucleotides, CT-CO (I) and N-CT (II) (C and T are nucleobases; CO and N are carboxylic and amino terminal, respectively); each is linked through a phosphonate linkage. A condensation reaction between the two dimers, followed by deprotection, resulted in the formation of a peptide linkage to give the desired tetramer III. The reaction conditions used are mild to afford products in moderate to excellent yields. The DNA-PNA-DNA tetramer, d(CTTC), is a substrate for T4 kinase but fails to give a ligation product, even though NMR shows weak interactions between the tetramer III with its complementary sequence, d(GAAG).  相似文献   

9.
A method is described for the incorporation of 2'-deoxy-2-thiouridine (dS2U) and 2'-deoxy-2-thiothymidine (dS2T) into oligodeoxynucleotides at predetermined positions. This requires N3 or O4-acylation of dS2U and dS2T with toluoyl chloride. These base-protected thiopyrimidines are completely stable toward the aqueous iodine oxidation reagent used in the phosphoramidite DNA synthesis method. The toluoyl protecting group is removed during the standard post-synthetic ammonia treatment. This novel protection strategy allows dS2U and dS2T to be efficiently incorporated into oligodeoxynucleotides at predetermined sites without the usual problem of desulfurization and decomposition. Several 14-mers containing the Eco-RI recognition site (dGGCGGAAXXCCGCC and dGGCGGAAXXCGCGG, where X represents dT, dS2U or dS2T) have been synthesized and characterized by base composition, thermal denaturation, CD spectroscopy and endonuclease substrate activity.  相似文献   

10.
A conformationally locked, 2',4'-C-bridged 2'-deoxyribofuranoside2 was condensed with silylated pyrimidines to give 2',4'-C-bridged bicyclonucleosides, which were converted to the phosphoramidites and incorporated into oligodeoxynucleotides (ODNs). The hybridization data of the modified ODNs to DNA and RNA are presented.  相似文献   

11.
An automated computer-controlled, multipurpose synthesizer, featuring a novel method for the transport of liquids, was constructed and used in the synthesis of oligomers containing some C-nucleoside and 2'-deoxy-2'-fluoronucleoside moieties by the H-phosphonate procedure. The synthetic method and some prospects for biological use are outlined.  相似文献   

12.
Novel nucleotide analogues have been synthesized from morpholine subunits with thiocarbamate linkages. They indicated much stronger interaction with poly U or poly dT than the corresponding natural oligodeoxyribonucleotides. Solubility of the analogues in water was greatly enhanced by introducing sulfate groups at their both ends.  相似文献   

13.
5-Carboxy-2'-deoxycytidine (dC(COO-)) was synthesized as an anion-carrier to seek a new possibility of modified oligodeoxynucleotides capable of stabilization of duplexes and triplexes. The base pairing properties of this compound were evaluated by use of ab initio calculations. These calculations suggest that the Hoogsteen-type base pair of dC(COO-)-G is less stable than that of the canonical C+-G pair and the Watson-Crick-type base pair of dC(COO-)-G is slightly more stable than the natural G-C base pair. The modified cytosine base showed a basicity similar to that of cytosine (pKa 4.2). It turned out that oligodeoxynucleotides 13mer and 14mer incorporating dC(COO-) could form duplexes with the complementary DNA oligomer, which were more stable than the unmodified duplex. In contrast, it formed a relatively unstable triplex with the target ds DNA.  相似文献   

14.
XdT12 and dT5XdT6, where X is 1-(4'-thio-beta-d-ribofuranosyl)-thymine, were synthesized. The first oligonucleotide presents a better stability against calf spleen phosphodiesterase than natural dT12. The second one hybridizes with complementary sequence. However the X:A base pairing stability is lower than natural T:A one.  相似文献   

15.
3'-Deoxy-3'-C-methyleneuridine nucleoside 1 has been incorporated into oligodeoxynucleotides. Relative to the unmodified references, oligomers containing nucleoside 1 displayed reduced binding affinities towards complementary DNA and RNA with a tendency towards RNA-selective hybridization.  相似文献   

16.
17.
The synthesis of N4-methyl-2'-deoxycytidine and its fully protected mononucleotide, suitable for the oligonucleotide synthesis by phosphotriester method is described. A set of octanucleotides - d(CGCGCGCG), d(CG5mCGCGCG), d(CG4mCGCGCG) and dodecanucleotides - d(GGACCCGGGTCC), d(GGA5mCCCGGGTCC), d(GGA4mCCCGGGTCC) has been synthesized in a solution. Physical characterization of the oligonucleotide duplexes by means of UV and CD spectrometry provides the evidence that 4mC similarly to 5mC favours the B--greater than Z transition, although both of these methylated cytosines inhibit the B--greater than A conformational change. N4-Methylcytosine in contrast to 5-methylcytosine reduces the DNA double helix thermal stability.  相似文献   

18.
A route to prepare the cyanoethyl-phosphoramidite monomer of O4-alkylthymine and a method for the routine solid-phase synthesis of oligodeoxynucleotides containing O4-alkylthymine are described. This method has been used to make DNA sequences up to 48 bases in length. The amino function of the adenine and guanine in the sequence were protected with the phenoxyacetyl group, and that of cytosine with the isobutyryl group. The phosphodiesters were protected with the cyanoethyl group. This allowed complete deprotection of the oligomer with alkoxide ions (methanol/1,8- diazabicyclo[5.4.0]undec-7-ene (DBU) for the oligomers containing O4-methylthymine, or ethanol/DBU for those containing O4-ethylthymine) thus avoiding the use of ammonia which is known to attack the O4-alkylthymine to form 5-methylcytosine. There was no detectable loss of the alkyl group to form thymine.  相似文献   

19.
R L Saxl  G S Anand  A M Stock 《Biochemistry》2001,40(43):12896-12903
CheB is a response regulator protein in the bacterial chemotaxis two-component signal transduction pathway. Methylesterase CheB functions together with methyltransferase CheR to modulate the level of glutamate methylation in transmembrane chemoreceptors in response to environmental stimuli. The level of glutamate methylation in turn indirectly controls the direction of flagellar rotation. Like most two-component response regulators, CheB is activated in vivo by phosphorylation of a single aspartate, Asp 56, in its regulatory domain. Extensive biochemical and crystallographic studies have been completed on the inactive, unphosphorylated form of CheB. Because of the inherent lability of aspartyl phosphate bonds and the intrinsic phosphatase activity of CheB, the activated, phosphorylated form of CheB cannot be isolated for further characterization. We present a synthetic scheme to prepare an analogue of phosphorylated CheB using site-specific mutagenesis and chemical modification strategies. Initially, the two native cysteines found in CheB were substituted by serines and a cysteine was substituted for Asp 56 to yield D56C/C207S/C309S CheB. The unique cysteine in the substituted form of CheB was modified by sodium thiophosphate, Na(3)SPO(3), using two sequential disulfide bond exchange reactions. The analogue, D56C/C207S/C309S CheB-SPO(3), contained a thiophosphate group covalently bonded to the protein through a disulfide linkage at residue 56. Mass spectrometry showed that the protein was singly modified. Reverse phase chromatography showed that greater than 95% of the protein was modified under optimized conditions and that the analogue had a half-life of 28 days. In in vitro methylesterase assays in the presence of Mg(2+), the analogue exhibited activity equivalent to that of fully phosphorylated C207S/C309S CheB. Thus, D56C/C207S/C309S CheB-SPO(3) is a stable analogue that may be useful for characterization of the active form of CheB.  相似文献   

20.
Oligodeoxynucleotides containing a 2-fluoro-2'-deoxyinosine residue substituting normal 2'-deoxyguanosine residue were synthesized. Upon treating with ethanol solution of polyamine, the fluorine atom in the oligomers were readily substituted with the polyamine. The thermal stabilities of the duplexes consisted of the polyamine-bearing oligomers and their cDNAs as well as their RNA cleaving activity were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号