首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quality of cassava starch, an important trait in cassava breeding programs, determines its applications in various industries. For example, development of waxy (having a low level of amylose) cassava is in demand. Amylose is synthesized by granule-bound starch synthase I (GBSSI) in plants, and therefore, down-regulation of GBSSI expression in cassava might lead to reduced amylose content. We produced 63 transgenic cassava plant lines that express hair-pin dsRNAs homologous to the cassava GBSSI conserved region under the control of the vascular-specific promoter p54/1.0 from cassava (p54/1.0::GBSSI-RNAi) or cauliflower mosaic virus (CaMV) 35S (35S::GBSSI-RNAi). After the screening storage roots and starch granules from field-grown plants with iodine staining, the waxy phenotype was discovered: p54/1.0::GBSSI-RNAi line A8 and 35S::GBSSI-RNAi lines B9, B10, and B23. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that there was no detectable GBSSI protein in the starch granules of plants with the waxy phenotype. Further, the amylose content of transgenic starches was significantly reduced (<5%) compared with the level in starch granules from the wild-type (about 25%). The inner structure of the waxy starch granules differed from that of the untransformed ones, as revealed by transmission electron microscopy analysis as well as morphological changes in the iodine-starch complex. Endothermic enthalpy was reduced in waxy cassava starches, according to differential scanning calorimeter analysis. Except B9, all waxy starches displayed the A-type X-ray diffraction pattern. Amylogram patterns of the waxy cassava starches were analyzed using a rapid viscosity analyzer and found to have increased values for clarity, peak viscosity, gel breakdown, and swelling index. Setback, consistency, and solubility were notably reduced. Therefore, waxy cassava with novel starch in its storage roots was produced using the biotechnological approach, promoting its industrial utilization.  相似文献   

2.
Stem cuttings were produced from Solanum tuberosum L., cv. Desiree, plants and their transgenic forms harboring rolB and rolC genes from Agrobacterium rhizogenes. Plants were cultured on hormone-free Murashige and Skoog nutrient medium (MS) and on MS supplemented with IAA or kinetin. In microtubers developed on these cuttings, we estimated the content of starch and the number and size of starch granules. Expression of rol genes changed these indices: in tubers of rolC transformants, a greater number of small granules were produced, whereas in tubers of rolB transformants, a fewer number of large granules were developed as compared with wild-type plants. Expression of rol genes did not affect starch content during the first three weeks of cutting culturing but increased it by 15–30% in five-week-old tubers. IAA addition to MS medium increased starch content and the size of starch granules in control plants and rolB tubers by 10–30%, whereas kinetin did not exert any significant influence. The effects of rol transgenes on the initiation and termination of starch granule development are discussed.  相似文献   

3.
Seasonal Accumulation of Starch by Components of the Kiwifruit Vine   总被引:2,自引:2,他引:0  
The accumulation of starch by various components of 6-year-oldkiwifruit vines (Actinidia deliciosa var dehciosa cv Hayward)was recorded over one season Twenty vines were harvested periodicallythroughout the year and separated into perennial components(fibrous roots, structural roots, stump, stem, cordon, laterals)and current season's growth (shoots, leaves, and fruit) The concentration of starch in the fibrous roots followed asinusoidal trend Minimum concentrations occurred 98 d afterbudbreak, while the maximum concentrations occurred 182 d laterCorresponding times in the structural roots were approximately42 d earlier In the above-ground perennial components, elevatedconcentrations of starch in the cordon, fruiting wood and barkof the stem were evident at budbreak and fruit harvest (approx220 d later) In the case of the stem, concentrations were greatestat fruit harvest Because the biomass of the perennial componentswas found to be relatively constant throughout the year, starchconcentrations and contents were directly proportional in thesetissues For current season's growth, peak concentrations and contentsin leaves and shoots were observed at fruitset and fruit harvest,respectively For fruit, starch increased continuously untilharvest Approximately 30% of the total starch content accumulated inthe perennial components by leaf abscission was lost duringwinter and early summer Quantitative losses were greatest forthe roots Regeneration of the starch pools in the perennialcomponents of the vine occurred from midseason until leaf abscissionAt the same time, approximately five times more starch was accumulatedby the current season's growth, in particular the fruit, thanby the perennial components As a result of the difference inthe rate of accumulation, the starch content of the currentseason's growth increased from less than 10% midseason to nearly60% of the total starch content of the vine by fruit harvest The results were discussed in relation to the carbon economyof the kiwifruit vine, and compared with seasonal trends instarch concentrations found for other deciduous crops Actinidia deliciosa, kiwifruit, seasonal changes, starch content, whole plant  相似文献   

4.
Pruning or total removal of in vitro formed roots of grape (Vitis vinifera L.) plantlets at planting offered considerable ease and time economy compared to control plantlets with intact roots. The ex vitro establishment was unaffected by the practice with 90% or higher establishment in each treatment. When observed at 4 weeks from planting, growth was slightly affected by root pruning and significantly by root removal. However, both these treatments showed better adventitious root regeneration at the base compared to control plants, which showed elongation of in vitro formed roots with fewer new roots. Root pruning and root removal treatments reduced the influence of the number of in vitro formed roots on vigour of ex vitro plants since the number of new roots formed was independent of the roots initially present. Consequently, these plants showed more uniformity compared to control plants. With a better root system, root pruned plants showed faster subsequent growth. Root pruning at planting is recommended for easier handling and more uniform plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
《Aquatic Botany》2005,82(4):250-268
Lepidium latifolium L. is an invasive exotic crucifer that has spread explosively in wetlands and riparian areas of the western United States. To understand the ecophysiological characteristics of L. latifolium that affect its ability to invade riparian areas and wetlands, we examined photosynthesis, chlorophyll concentration, carbohydrate partitioning and nutrient uptake in L. latifolium in response to soil flooding. Photosynthesis of flooded plants was about 60–70% of the rate of unflooded controls. Chlorophyll concentrations of flooded plants were about 60–70% of the unflooded plants during 15–50 days of flooding. Flooding resulted in an increase in leaf starch concentration, but root starch concentration was not significantly affected. However, concentrations of soluble sugar were significantly higher in both leaves and roots of flooded plants than unflooded controls. On day 50 after initial flooding, the concentrations of N, P, K and Zn in leaves of flooded plants were lower than in control plants. The concentrations of Mn and Fe in leaves of flooded plants were eight and two times those of control plants, respectively. In contrast, N, P, K and Zn concentrations of roots of flooded plants were slightly higher than in unflooded plants. The concentrations of Fe and Mn in roots of flooded plants were 15 and 150 times those of the control plants, respectively. The transport of P, K, and Zn to shoots decreased and that of Mn increased under flooding. The accumulation of N, K and Zn in roots decreased and that of Mn increased in response to flooding. The results suggested that the maintenance of relatively high photosynthesis and the accumulation of soluble sugar in roots of flooded plants are important adaptations for this species in flooded environments. Despite a reduction in photosynthesis and disruption in nutrient and photosynthate allocation in response to flooding, L. latifolium was able to survive 50 days of flooding stress. Overall, L. latifolium performed like a facultative hydrophyte species under flooding.  相似文献   

6.
In many resprouting plants, carbohydrates are stored as starch in roots and will be mobilized to support above-ground tissue regrowth after shoot damage. Our objective was to determine how activities of starch hydrolytic enzymes change damage-induced starch mobilization in Caragana korshinskii roots after above-ground tissue loss. Zero percent (control), 30% (30% RSL), 60% (60% RSL) of main shoot length, and 25% (25% RSN), 50% (50% RSN), and 100% (100% RSN) of main shoot number were removed. Compared with control plants, clipping accelerated the reduction of starch in the roots, increased sucrose flux per flower per hour and nectar production per flower per day in 30% RSL, 60% RSL, 25% RSN, and 50% RSN treatments, and improved vegetative growth in 100% RSN treatment. All treatments had similar total nonstructural carbohydrate (TNC) concentrations in leaves, shoots, and stems with the exception of 100% RSN with higher TNC concentration in shoots. Both α-, and β-amylase activities were enhanced by clipping, the former being more strongly correlated with starch degradation in the roots than the latter. The other two possible starch-breaking enzymes, α-glucosidase, and starch phosphorylase showed no significant differences in the activities between treatments. The results suggest that starch degradation in the roots of C. korshinskii was regulated by α-amylase activity and more mobilized starch was used to support vegetative growth in 100% RSN treatment and support sexual reproduction followed by other clipping treatments.  相似文献   

7.
Archaeological studies of plant remains have indicated that an increase in seed size is frequently correlated with both intensive cultivation and domestication of seed crop plants. To test if starch granules of domesticated root crops are significantly larger than those of wild or less intensively cultivated plants, archaeological and modern specimens of manioc and sweet potato were sampled for starch granules, and granule size was compared across a temporal sequence. The results indicate that a gross generalization can be made that modern specimens of both manioc and sweet potato yield larger starch granules than some archaeological specimens. It does appear, however, that modern domesticated manioc roots produce significantly larger-sized starch granules than those of its purported wild ancestor. Additionally, there exist two lines of evidence that the coastal Peruvian and lowland Neotropical regional types of manioc differ from one another and have been separate for several millennia. These findings indicate that manioc may have been domesticated more than once.  相似文献   

8.
Accumulation of assimilates in source leaves of magnesium‐deficient plants is a well‐known feature. We had wished to determine whether metabolite concentrations in sink leaves and roots are affected by magnesium nutrition. Eight‐week‐old spinach plants were supplied either with a complete nutrient solution (control plants) or with one lacking Mg (deficient plants) for 12 days. Shoot and root fresh weights and dry weights were lower in deficient than in control plants. Mg concentrations in deficient plants were 11% of controls in source leaves, 12% in sink leaves and 26% in roots, respectively. As compared with controls, increases were found in starch and amino acids in source leaves and in sucrose, hexoses, starch and amino acids in sink leaves, whereas they were only slightly enhanced in roots. In phloem sap of magnesium‐deficient and control plants no differences in sucrose and amino acid concentrations were found. To prove that sink leaves were the importing organs they were shaded, which did not alter the response to magnesium deficiency as compared with that without shading. Since in the shaded sink leaves the photosynthetic production of metabolites could be excluded, those carbohydrates and amino acids that accumulated in the sink leaves of the deficient plants must have been imported from the source leaves. It is concluded that in magnesium‐deficient spinach plants the growth of sink leaves and roots was not limited by carbohydrate or amino acid supply. It is proposed that the accumulation of assimilates in the source leaves of Mg‐deficient plants results from a lack of utilization of assimilates in the sink leaves.  相似文献   

9.
In 1983 and 1984, potato seed tubers of five early and seven maincrop cultivars were inoculated with cultures of Rhizoctonia soluni during planting to simulate severe seed infection. Shoot and stolon infection was assessed in June-August and black scurf on tubers recorded after harvest in October. Almost all shoots of all cultivars had stem canker in both years and disease on shoots, stolons and tubers was more severe in 1984 than in 1983. In 1983 similar amounts of disease developed on all early cultivars and between 11% (Ulster Sceptre) and 32% (Maris Peer) shoots were pruned off. Maris Peer had a stem canker score lower than other cultivars in 1984 but more than half the shoots were pruned off. Shoot pruning on Estima, Ulster Prince and Ulster Sceptre was more common on plants from sprouted than non-sprouted seed. Between 30 and 50% of stolons were pruned off. After harvest in 1985, black scurf was least prevalent on Arran Comet and Maris Peer tubers and in 1984 on Arran Comet and Estima tubers from non-sprouted seed. Of the maincrop cultivars, King Edward plants from sprouted seed had many shoots pruned off in both years. Shoot pruning was also prevalent on Maris Piper and Pentland Squire plants from non-sprouted seed. Record had fewest pruned shoots and stolons and the lowest stem canker score. The disease was more severe on Pentland Crown and Maris Piper plants from non-sprouted than sprouted seed. Black scurf was most common on Cara and King Edward tubers in 1983 and on King Edward and Record tubers in 1984. In both years few shoots but many tubers were infected on plants from non-inoculated seed and the significance of this is discussed.  相似文献   

10.
王凯  沈潮  曹鹏  宋立宁  于国庆 《生态学杂志》2018,29(11):3513-3520
以2年生沙地樟子松幼苗为对象,通过持续自然干旱处理,研究当土壤含水量下降到田间持水量的60%、40%、30%、20%和15%时幼苗叶片水势及不同器官(一年生叶、当年生叶、茎、粗根和细根)的可溶性糖、淀粉和非结构性碳水化合物(NSC)的含量,分析沙地樟子松幼苗在干旱致死过程中各器官NSC的分配规律及其适应机制.结果表明: 土壤含水量从田间持水量的40%下降到15%,幼苗叶片凌晨及正午水势无显著变化.当土壤含水量从田间持水量的60%下降到30%,各器官可溶性糖、淀粉、NSC含量和可溶性糖/淀粉先下降后上升.从30%下降到20%,当年生叶、一年生叶、茎和细根可溶性糖、淀粉和NSC含量降低,而粗根可溶性糖含量增加,淀粉和NSC含量减少.从20%下降到15%,当年生叶、一年生叶和茎可溶性糖、淀粉和NSC含量降低,粗根可溶性糖和NSC含量下降,淀粉含量上升,细根可溶性糖含量减少,淀粉和NSC含量增加.沙地樟子松幼苗通过不断调整各器官NSC及其组分含量变化以适应不同干旱环境,土壤含水量下降到田间持水量的30%后,幼苗可溶性糖和NSC含量总体呈下降趋势,淀粉在粗根和细根中积累,幼苗可能因碳耗竭而死亡.  相似文献   

11.
12.
13.
The root systems of wheat seedlings ( Triticum aestivum L. cv. SUN 9E) were pruned to two seminal roots. One of the roots was supplied with a suboptimal level of NO3, the other was deprived of N. Different levels of kinetin were supplied to the NO3-deprived roots. Root respiration and the increment of C and N in the roots were measured to determine the C/N ratio of the phloem sap feeding the NO3-deprived roots. Thus, it was possible to determine retranslocation of N from the shoots to the roots, as affected by the rate of kinetin application. It was calculated that the C/N ratio of phloem sap feeding roots growing without kinetin was ca 61. Kinetin application increased this ratio to ca 75, partly due to decreased translocation of N from the shoots back to the roots. Kinetin application decreased the proportion of N that was retranslocated to the roots after translocation to the shoots. Kinetin increased the rate of NO3 uptake per root and the rate of N incorporation in both roots and shoots by ca 60%, but had no effect on shoot dry matter production. In control plants at most 70% of the N incorporated in the NO3-fed roots could have been imported from the shoots, whilst kinetin application reduced this value to ca 40%. Thus root growth was not fully dependent on a supply of N via the phloem.
It is concluded that cytokinins affect the pattern of N-translocation in wheat plants by increasing incorporation of N in dry matter of the shoot, thus leaving less for export. Cytokinins did not play a major role in the regulation of shoot growth and the shoot to root ratio of the present plants.  相似文献   

14.
Stem canker (Rhizoctonia solani) of maincrop potatoes.   总被引:1,自引:0,他引:1  
In two years, potato plants were sampled at 1- or 2- weekly intervals from plots planted with seed tubers bearing sclerotia of Rhizoctonia solani (black scurf) and with seed without sclerotia either infested or not with cultures of R. solani at planting. Sprouted King Edward seed was used in 1981 and sprouted and non-sprouted King Edward and Pentland Crown seed in 1982. In both years 60–80% of shoots from seed with sclerotia and 90% of shoots from seed inoculated at planting were affected with stem canker. Most disease developed before shoots emerged although it gradually increased later when new shoots arising both from seed tubers or as branches on shoots with damaged apices (pruned shoots) became infected before they emerged. Sprouting seed tubers bearing sclerotia decreased the disease on both cultivars but with soil-applied inoculum the disease was more severe on plants from sprouted than non-sprouted seed. Some stolons were infected by R. solani soon after they developed and incidence of infection later increased. Thirty to 50% of stolons were infected on plants from infected seed tubers and 60% on plants with soil-applied inoculum. With both cultivars and sources of inoculum about 70% of the infected stolons had their apices killed (pruned).  相似文献   

15.
Previous field and glasshouse studies suggested that oilseed rape (Brassica napus L.) was especially sensitive to zinc (Zn) deficiency in the recovery period following transplanting. However, it is not clear whether transplanting, per se, or root damage during transplanting was primarily responsible. Three glasshouse experiments were carried out to test the hypothesis that transplanting increases external Zn requirement of canola cv. Hyola 42 during its post-transplanting recovery. Canola was either directly sown into Zn-treated soils or transplanted at four-leaf stage, and grown until harvest at 7- and 10-leaf stages. In a second experiment with chelate-buffered solution culture, direct-sown and transplanted plants were treated with three concentrations of Zn. In the third experiment, plants were given three levels of Zn supply, and either direct-sown into soils or transplanted at four-leaf stage with pruned (50% of roots removed) or unpruned root systems. Transplanted plants required higher soil Zn supply for maximum root length and root dry weight than direct-sown plants. By contrast, shoots required similarly low external Zn for maximum dry weight in both direct-sown and transplanted plants in soil. Direct-sown plants were more efficient in utilizing soil supplied Zn than transplanted plants particularly compared to those transplanted with a pruned root system, and achieved maximum growth at 100 μg Zn kg?1 soil compared to 500 μg Zn kg?1 required by transplanted plants. Since the higher external Zn requirement for the growth of transplanted plants was also obtained in well-stirred solution culture, it was concluded that it was related to the time required for transplanted plants to recover from root injury and re-establish a favourable shoot: root ratio rather than to rhizosphere modification processes. Both transplanting, per se, and root damage during transplanting appeared to contribute to higher external Zn requirements for canola growth compared to direct-sown plants.  相似文献   

16.
Both photoautotrophic and heterotrophic plant cells are capable of accumulating starch inside the plastid. However, depending on the metabolic state of the respective cell the starch-related carbon fluxes are different. The vast majority of the transitory starch biosynthesis relies on the hexose phosphate pools derived from the reductive pentose phosphate cycle and, therefore, is restricted to ongoing photosynthesis. Transitory starch is usually degraded in the subsequent dark period and mainly results in the formation of neutral sugars, such as glucose and maltose, that both are exported into the cytosol. The cytosolic metabolism of the two carbohydrates includes reversible glucosyl transfer reactions to a heteroglycan that are mediated by two glucosyl transferases, DPE2 and PHS2 (or, in all other species, Pho2).In heterotrophic cells, accumulation of starch mostly depends on the long distance transport of reduced carbon compounds from source to sink organs and, therefore, includes as an essential step the import of carbohydrates from the cytosol into the starch forming plastids.In this communication, we focus on starch metabolism in heterotrophic tissues from Arabidopsis thaliana wild type plants (and in various starch-related mutants as well). By using hydroponically grown A. thaliana plants, we were able to analyse starch-related biochemical processes in leaves and roots from the same plants. Within the roots we determined starch levels and the morphology of native starch granules. Cytosolic and apoplastic heteroglycans were analysed in roots and compared with those from leaves of the same plants. A. thaliana mutants lacking functional enzymes either inside the plastid (such as phosphoglucomutase) or in the cytosol (disproportionating isoenzyme 2 or the phosphorylase isozyme, PHS2) were included in this study. In roots and leaves from the three mutants (and from the respective wild type organ as well), starch and heteroglycans as well as enzyme patterns were analysed.  相似文献   

17.
18.
A pot experiment was conducted to study the effects of root pruning at the stem elongation stage on the growth and water use efficiency (WUE) of winter wheat (Triticum aestivum). The results showed that stomatal conductance (g) and transpiration (E) of wheat were very sensitive to root pruning. After root pruning, they declined rapidly and but returned to pre-pruning values 15 days after treatment. Under well-watered conditions, there was no significant difference in leaf water potential (ψleaf) between root pruned and control plants after root pruning. Under moderate drought stress, ψleaf of root pruned plants declined significantly compared to the control 3 days after root pruning. After 15 days, ψleaf of root pruned plants was similar to the controls. Under different soil moisture levels, net assimilation rate (A) of root pruned plants was lower than controls 3–7 days after root pruning, but was similar to the controls 15 days after pruning. At anthesis (50 days after root pruning), root pruned plants showed significantly higher A compared with the control. Leaf area per tiller and tiller number of root pruning plants was significant lower than the control at booting stage, which showed that root pruning restrained the growth of plants in the early growing stage, but leaf area per stem, of root pruned plants, was similar to the control at anthesis. Under both soil moisture levels, there was no significant difference in grain yield between root pruned and the control plants in the monoculture. In mixture with the control plants, the root pruned plants was less productive and had a lower relative yield (0.92 and 0.78, respectively) compared with the control (1.13 and 1.19, respectively), which suggested that the pruned plants lost some of its competing ability and showed a lower ability to acquire and use the same resources in the mixture compared with the control plant. Over the whole growing cycle, root pruning reduced water consumption (by 10% under well-watered conditions and 16% under moderate drought stress) of wheat significantly compared to the control (< 0.05), and but there was no significant difference in grain yield between root pruned and control plants. Therefore root pruned wheat had a higher WUE with respect to grain yield compared with the controls. In conclusion, lowering water consumption by root pruning in the early growing stage is an effective way to improve water use efficiency in arid and semi arid areas.  相似文献   

19.
Starch obtained from yellow and white plantain varieties were subjected to proximate analysis, physicochemical and rheological characterization in order to evaluate their properties. Yellow plantain variety gave higher yield of starch than the white variety. The two varieties differed in the purity of starch extract; white plantain starch contained: ash (1.09%), protein (0.640%) and fat (0.276%) while yellow plantain starch contained: ash (0.95%), protein (0.325%) and fat (0.403%). The amylose content of yellow plantain starch (24.36% (apparent), 26.13% (total)) was similar to that of white plantain starch (24.24% (apparent), 26.01% (total)). Scanning electron microscopy revealed bimodal irregular shaped granules (3.74–7.00 and 10.00–33.00 μm) in white plantain starch and elliptical granules (11.22–41.00 μm) in yellow plantain starch. Both starches differed markedly in their physicochemical properties. Their differences in gelatinization temperature (yellow plantain, 64.99–73.90 °C; white plantain, 68.08–77.15 °C), swelling and solubility patterns, and pasting characteristics indicated that yellow plantain starch had weaker granule architecture compared with white plantain starch. Further evidence of differences in properties was obtained from flow and viscoelastic properties of the starch gels, paste clarity and freeze–thaw stability.  相似文献   

20.
Zellnig G  Zechmann B  Perktold A 《Protoplasma》2004,223(2-4):221-227
Summary. Selected cell organelles were investigated at a high level of resolution with the transmission electron microscope, using ultrathin serial sections to create three-dimensional reconstructions. On the basis of these reconstructions, morphological data of chloroplast fine structures, mitochondria, and peroxisomes from control and drought-stressed spinach leaves were evaluated and compared. Mesophyll cell chloroplasts of control plants contained 60% stroma, 23% thylakoids, and 16% starch. In drought-stressed plants, the volume of both the stroma and the thylakoids increased to 68% and 32%, respectively. The amount of plastoglobuli was about 0.3% in both samples. Chloroplasts of stressed plants differed from control plants not only in the thylakoid and stroma values but also in the lack of starch grains. Mitochondria occurred in variable forms in control and stressed samples. In stressed plants, mitochondria had only 65% of the volume compared with control plants. Peroxisomes were inconspicuous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号