首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effect of isoproterenol on myocardial metabolism in rats was studied using qualitative and quantitative histochemical techniques. The activity and location of 20 enzymes that play a role in the aerobic and anaerobic pathways of energy metabolism were qualitatively examined. The activity and location of some hydrolytic enzymes and the glycogen content were also qualitatively studied. For the quantitative study the activity of 10 enzymes was measured.The isoproterenol injections induced necrosis with inflammatory infiltrates. The muscle fibres in the necrotic regions were characterized by defective aerobic energy metabolism and increased glycolytic capacity. There was a depletion of the glycogen reserves in the necrotic fibres. These fibres showed a markedly increased activity of enzymes belonging to the oxidative branch of the pentose phosphate pathway. The implication of this increase for the metabolism of the myocardial cells is discussed. The activity of acid phosphatase in the pathological muscle fibres was strongly increased. The inflammatory cells in the necrotic areas were characterized by preponderantly anaerobic metabolism.Dedicated to Prof. H. G. Goslar in honour of his 70th birthday.  相似文献   

2.
Summary In this communication, the results of an enzyme histochemical study on the working myocardial fibres and Purkinje fibres of the atrioventricular conducting system of the human heart under ischaemic and inflammatory conditions are presented. The material was selected from patients showing changes which could be classified in three major groups: (1) early changes due to acute ischaemia either in the myocardial fibres or in the conducting system or in both; (2) chronic ischaemic changes due to cardiovascular insufficiency, such as old infarction, or coronary arteriosclerosis or both; and (3) inflammatory conditions such as myocarditis.The activity and location of about 20 enzymes that play a role in the aerobic and anaerobic pathways of energy metabolism were examined. The activity and location of some hydrolytic enzymes and the glycogen and lipid content were also studied.The most important findings were an obvious depletion of the glycogen reserves under acute ischaemic changes in both types of fibre. This was associated with a transient or permanent reduction in activity of many enzymes that play a role in aerobic and anaerobic metabolism. Further, there was an instantaneous and persistent increase in the activity of the NADPH-regenerating enzymes of the pentose phosphate pathway and of glyceraldehyde-3-phosphate dehydrogenase, the rate-limiting enzyme of glycolysis under ischaemic conditions. Chronic ischaemic changes were characterized by a gradual long-term increase in the activity of many anaerobic glycolytic enzymes. Moreover, there was an absence of activity of acetylcholine esterase immediately after the onset of infarction in the fibres of the conducting system. Lastly, a slight increase in lipid content was found in the hypertrophic chronic ischaemic fibres and in old infarcted areas. Cardiac fibres in inflamed areas showed a marked increased activity of the pentose phosphate shunt enzymes and a less pronounced increased activity of most anaerobic and hydrolytic enzymes. In contrast to the cardiac fibres in infarcted areas, the fibres in inflamed areas did not reveal a decrease or absence of activity of aerobic enzymes such as succinate dehydrogenase.  相似文献   

3.
Nam H  Ryu T  Lee K  Kim S  Lee D 《BMB reports》2008,41(8):609-614
The concentrations and catalytic activities of enzymes control metabolic rates. Previous studies have focused on enzyme concentrations because there are no genome-wide techniques used for the measurement of enzyme activity. We propose a method for evaluating the significance of enzyme activity by integrating metabolic network topologies and genome-wide microarray gene expression profiles. We quantified the enzymatic activity of reactions and report the 388 significant reactions in five perturbation datasets. For the 388 enzymatic reactions, we identified 70 that were significantly regulated (P-value < 0.001). Thirty-one of these reactions were part of anaerobic metabolism, 23 were part of low-pH aerobic metabolism, 8 were part of high-pH anaerobic metabolism, 3 were part of low-pH aerobic reactions, and 5 were part of high-pH anaerobic metabolism.  相似文献   

4.
A morphometric study of gill structures and of the body musculature during the first weeks after hatching was carried out on larvae of six cyprinid species: Leuciscus cephalus, L. leuciscus, Rutilus rutilus, Alburnus albumus, Chondrostoma nasus and Abramis brama . In all species a unicellular layer of red muscle fibres covers the central muscle mass; this layer is of greatest extent shortly after hatching but diminishes gradually in mass by contracting towards the lateral region of the body until it merges with (or gives rise to) the adult red muscle fibres proper. There is a close relationship between the rate of differentiation of gill structures and the rate at which the larval red muscle layer disappears, the pattern of this relationship reflecting the life style of the species. The longer the larvae delay the start of their free-swimming existence after hatching (which in A. alburnus may be as long as 10 days) the longer does the red layer of muscle fibres serve as the organ of gas exchange and the longer is gill development suppressed. It appears that the metabolism of the swimming muscles is almost entirely aerobic so long as gas exchange takes place across the whole body surface, the glycolytic capacity of the central muscle mass developing only slowly in conjunction with the switch from red layer to gills as the major respiratory organ.  相似文献   

5.
Summary After subcutaneous administration of N,N-dimethyl-para-phenylenediamine (DPPD) in rats, a myogenic myopathy was produced in the skeletal muscles. In this communication, the results of the application of various histochemical techniques for the localization of oxidoreductases, transferases, hydrolases and isomerases and biochemical techniques for the estimation of activities of oxidoreductases in the experimental skeletal muscles are presented. The most striking result was the activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase which increased dramatically during the early phase of the muscle disease. The increase in activity of the pentose phosphate shunt enzymes was the first pathological alteration and was present as early as 8 h after a single injection of DPPD. Histochemical techniques for demonstration of activity of both enzymes are therefore highly suited for the detection of minor diseases and the early onset of major diseases of the neuromuscular system. Some glycolytic enzymes as well as some enzymes of the aerobic part of the metabolism showed an early decrease or increase in activity indicating a metabolic imbalance in the muscle fibres. There were more fibres with an intermediate pattern of the energy yielding enzymes in the experimental muscle specimens then in specimens from the control groups. The activity of the catabolic hydrolytic enzymes was strongly increased in pathological muscles. The aerobic muscles were more vulnerable to DPPD than the anaerobic muscles.  相似文献   

6.
Senile muscles of the rat (28-36 months) show loss of overall activity of glycolytic and aerobic enzymes. However, there is a differential loss and shift of enzyme activity pattern in the three types of muscles. The extensor digitorum longus (EDL) and diaphragm show a decrease of ratios of glycolytic to aerobic-oxidative enzymes. This shift to a more oxidative type of metabolism is not observed in the soleus muscle. Decrease of enzyme activities is least marked in the diaphragm muscle. Biochemical analysis shows a trend to levelling out of metabolic differences between the different muscle types. This trend of 'dedifferentiation' is most marked when comparing EDL and soleus, least marked when comparing EDL and diaphragm muscle. The histochemical analysis shows a shift from the original mixed to a more uniform pattern of muscle fibres in the EDL and soleus muscle; this levelling-out of differences between enzymatic activities of different muscle fibres is not observed in the diaphragm muscle. Preferential atrophy and loss of ATPase activity in II muscle fibres in the soleus muscle and the occurrence of 'type grouping' are further characteristic features of senile muscle change. The findings show general (i.e. loss of enzyme activities) and differential trends of biochemical and histochemical enzyme changes in different types of muscles.  相似文献   

7.
1. Metabolic acclimatization by repeated exposure to a simulated altitude of 4000, 5000 and 6000 m for 2 hr per day throughout 2 to 11 days was evaluated by the increased formation of ketone bodies as a marker of fatty acid oxidation and the decreased production of lactate and uric acid, the indicators of anaerobic metabolism in rats exposed to an altitude of 8000 m. 2. Pre-exposure of rats to an altitude of 5000 m and over caused an acclimatization to hypoxia. The rise of the altitude to which rats were pre-exposed reduced the period until the acquisition of metabolic acclimatization. 3. Acclimatized rats showed an increased activity of mitochondrial glutamate dehydrogenase without changes in glycolytic enzyme activity in skeletal muscle, heart and liver. 4. Acclimatization to high altitude hypoxia is concluded to involve a shift of the anaerobic glycolysis to aerobic metabolism by the increase in the oxidative enzymes.  相似文献   

8.
Synopsis In this communication the results of applying various histochemical semipermeable membrane techniques to the localization of several enzymes in bovine and procine heart are presented. The Purkinje fibres of the atrioventricular conducting system of the bovine heart differ from the myocardium proper in containing a greater activity of the glycolytic and gluconeogenetic enzymes—lactate dehydrogenase, glyceraldehyde-phosphate dehydrogenase, hexokinase, glucosephosphate isomerase and phosphoglucomutase, and less activity of the aerobic enzymes-NADH: nitroBT oxidoreductase and isocitrate dehydrogenase (NADP+). The metabolic reactions obtained with Purkinje fibres of the porcine heart are less pronounced. These histochemical findings are in accordance with the impression that Purkinje fibres, compared with the common myocardial fibres, have a higher rate of anaerobic metabolism and a lower rate of aerobic metabolism.The activity of the NADPH regenerating enzymes, glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase (decarboxylating), and the activity of acid hydrolases such as non-specific esterase and acid phosphatase is higher in the Purkinje fibres of both the bovine and porcine heart.  相似文献   

9.
10.
Painted turtles hibernating during winter may endure long-term exposure to low temperature and anoxia. These two conditions may affect the aerobic capacity of a tissue and might be of particular importance to the cardiac muscle normally highly reliant on aerobic energy production. The present study addressed how hibernation affects respiratory characteristics of mitochondria in situ and the metabolic pattern of turtle myocardium. Painted turtles were acclimated to control (25 degrees C), cold (5 degrees C) normoxic and cold anoxic conditions. In saponin-skinned myocardial fibres, cold acclimation increased mitochondrial respiratory capacity and decreased apparent ADP-affinity. Concomitant anoxia did not affect this. Creatine increased the apparent ADP-affinity to similar values in the three acclimation groups, suggesting a functional coupling of creatine kinase to mitochondrial respiration. As to the metabolic pattern, cold acclimation decreased glycolytic capacity in terms of pyruvate kinase activity and increased lactate dehydrogenase (LHD) activity. Concomitant anoxia counteracted the cold-induced decrease in pyruvate kinase activity and increased creatine kinase activity. In conclusion, cold acclimation seems to increase aerobic and decrease anaerobic energy production capacity in painted turtle myocardium. Importantly, anoxia does not affect the mitochondrial functional integrity but seems to increase the capacity for anaerobic energy production and energy buffering.  相似文献   

11.
Metabolic properties of muscle fibers   总被引:2,自引:0,他引:2  
Mammalian skeletal muscles are composed of slow (type I) and fast (type II) twitch fibers, which, as reflected by their enzyme activity patterns, are characterized by specific metabolic properties. Type I fibers are always "oxidative" but nevertheless form a spectrum. Type II fibers likewise form a spectrum but display a wider range with "oxidative" and "glycolytic" extremes. As a result, type I and type II fibers can be classified independently of myofibrillar ATPase histochemistry by their specific enzyme activity profiles. In this context, activity ratios between enzymes of anaerobic and aerobic pathways can be used as discriminative parameters. Similarly, specific ratios of enzymes catalyzing unidirectional reactions in hexose metabolism (hexokinase, phosphofructokinase, fructose-1,6-bisphosphatase) separate the two fiber populations. The histochemically defined IIA and IIB subtypes cannot be separated into distinct metabolic groups. In view of the continuum of metabolic properties, skeletal muscle is an extremely heterogeneous tissue in which each fiber represents a separate metabolic compartment.  相似文献   

12.
Enzyme histochemical studies on the conducting system of the human heart   总被引:1,自引:0,他引:1  
Summary In this communication, the results of applying various histochemical techniques for the localization of oxidoreductases, transferases, hydrolases and isomerases in the human heart are presented. The Purkinje fibres of the atrioventricular conducting system of the human heart differ from the myocardium proper in containing a slightly higher activity of most of the glycolytic and gluconeogenetic enzymes investigated. The relatively higher activity of 6-phosphofructokinase, the key enzyme in anaerobic carbohydrate metabolism, is especially noteworthy. On the other hand, the activities of some of the enzymes that play a part in the aerobic energy metabolism is slightly less than those in the myocardium fibres.As for the activity of the NADPH regenerating enzymes, the activity of 6-phosphogluconate dehydrogenase and malate dehydrogenase (oxaloacetate-decarboxylating) is somewhat higher, and the activity of glucose-6-phosphate dehydrogenase similar, in the Purkinje fibres compared to that in the myocardial fibres. The activity of myosin ATPase is similar for both types of fibre. Likewise, the fibres of the conducting system and of the myocardium show a similar activity of acid phosphatase, -glucuronidase, non-specific naphthylesterase and peroxidase. The neurogenic function of the conducting system of the human heart was demonstrated by the high activity of acetylcholinesterase in the Purkinje fibres and in the atrioventricular node. All these histochemical findings in Purkinje fibres are similar at widely differing levels of the conducting system.  相似文献   

13.
Summary Classification of human skeletal muscle into type I and type II fibres is frequently based on their weak or strong staining with the myosin adenosine triphosphatase reaction. In order to evaluate the reliability of this screening technique a combined histochemical and biochemical study was performed on normal and diseased skeletal muscle of human subjects. In the present investigation activities of enzymes which play a role in the aerobic and anaerobic pathways and which can characterize fibre type, were examined in human muscle specimens with disease of the neuromuscular system.Special attention is given to the maximal activities of phosphofructokinase and fructose-1,6-diphosphatase, the rate limiting enzymes for the regulation of the glycolysis and gluconeogenesis respectively. Moreover the activities of enzymes of the pentose phosphate pathway are determined.A most important feature of the biochemical findings is that the constancy of activity ratios of the examined enzymes, as is found apparently normal human skeletal muscle, was frequently not present in diseased human skeletal muscle. From these results and from the histochemical results it can be concluded that for fibre classification in diseased human skeletal muscle the histochemical demonstration of myosin ATPase activity exclusively is not sufficient, but that it is necessary to apply other enzyme histochemical techniques too.Moreover it was found that in diseased human skeletal muscles the activity of the NADPH regenerating enzymes glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase was strongly increased. A third observation was the relative decrease of the activity of the examined aerobic enzymes in affected muscle fibres of neurogenic muscle diseases.  相似文献   

14.
Summary Activities of malate dehydrogenase (MDH), 3-hydroxyacyl-CoA dehydrogenase (HAD) and fructose-1,6-diphosphatase (FDPase) were determined in single fibres dissected from freeze-dried rabbit psoas and soleus muscles. Slow-twitch fibres as determined by qualitative ATPase reaction represent a rather uniform population with regard to HAD and MDH activities. In these fibres the two enzymes are in constant proportions. FDPase is found at extremely low activities in slow-twitch fibres and because of its relatively high activity in fast-twitch fibres of soleus and psoas muscle it might be used as a marker enzyme. Fast-twitch fibres in psoas muscle represent a heterogeneous population with regard to activities of MDH as well as of HAD. The two enzyme activities are not proportional in fasttwitch psoas fibres. These findings suggest the existence of metabolic sub-populations of fast-twitch fibres having a wide range of aerobic oxidative capacities and having differences in their capacity to oxidizing fatty acids.  相似文献   

15.
Young Wistar rats underwent dynamic (D) or static (S) exercise from the 5th to 35th day after birth. Histochemical and biochemical analysis were performed in the extensor digitorum longus (EDL) and the soleus muscle (SOL). Lactate dehydrogenase (LDH) (regulating anaerobic metabolism) and citrate synthase (CS) and hydroxyacyl-CoA dehydrogenase (HAD) (both regulating aerobic metabolism) activities were determined spectrophotometrically. An increase of the fast oxidative-glycolytic (FOG) muscle fibres was found in the slow SOL muscle in both trained groups, i.e. by 10% in group D and by 7% in group S in comparison with the C group. The EDL muscle fibre distribution did not differ from those of control animals in respect to the slow oxidative (SO) fibre type. A higher percentage of FOG fibres by 19% was found in group D contrary to a decreased number of the fast glycolytic (FG) muscle fibres in this trained group. The greatest increase of CS (EDL 185%, SOL 176%) and HAD (EDL 83%, SOL 178%) activities were found in group D as compared with control group (C). Only small differences were observed in LDH activity. The values of characteristic enzyme activity ratios show that dynamic training resulted in an elevation of oxidative capacity of skeletal muscle, while the static load led preferentially along the glycolytic pathway. It may be concluded that an adaptive response to the training load during early postnatal development is different due to the type of exercise (dynamic or static) and/or the type of skeletal muscle (fast or slow).  相似文献   

16.
为查明雌雄罗氏沼虾应对低氧胁迫的行为生理响应,设置6.46(对照)、4.48和3.27 mg·L-13种溶解氧水平,研究了雌、雄个体在胁迫6 d后肝胰脏和肌肉能量代谢酶活性及游泳和弹跳速度。结果表明: 溶解氧从6.46 mg·L-1降至4.48 mg·L-1,雌雄个体肌肉有氧代谢酶活性及游泳速度均显著下降,且雄性下降幅度小于雌性,厌氧代谢酶活性并无显著变化;溶解氧继续降至3.27 mg·L-1,雌雄个体肌肉有氧代谢酶和厌氧代谢酶活性均显著下降,肝胰脏厌氧代谢酶中的乳酸脱氢酶(LDH)活性及弹跳速度显著下降,且雌性肝胰脏LDH活性下降幅度小于雄性。雌雄罗氏沼虾游泳速度与游泳足肌肉有氧代谢酶活性呈显著正相关,弹跳速度则与腹部肌肉厌氧代谢酶活性呈显著正相关。表明罗氏沼虾可以通过降低能量代谢水平应对低氧胁迫,但这种生理调节会导致运动能力下降,雄性优先将能量分配于肌肉以满足运动,雌性则优先保障肝胰脏能量供应。  相似文献   

17.
The development of muscle innervation pattern was investigated in larvae of the Amazonian fish, the tambaqui Colossoma macropomum. The time to hatching decreased from 28–29 h at 23.5° C to 11–12 h at 31° C. The larvae hatched after the completion of somitogenesis (38-somite stage) at 23.5° C but only at the 33-somite stage at 28–31° C. Embryos were stained for acetylcholinesterase activity and with an acetylated tubulin antibody in order to visualize neural processes. All muscle fibre types were initially innervated at their myoseptal ends. The development of motor innervation to the trunk muscle was delayed with respect to hatching at higher temperatures. At hatching, muscle fibres were innervated only to somites 16–17 at 28–31° C and somite 23–26 at 23.5–25° C (counting from the head), although the larvae swam vigorously to avoid sinking. In contrast, in newly hatched larvae myofibrils were present right along the trunk at all temperatures in both the superficial and inner muscle fibres. At hatching numerous multi-layered membrane contacts with the ultrastructural characteristics of gap junctions, were found between muscle fibres and at the inter-somite junctions, suggesting the somites were initially electrically coupled. These structures disappeared concomitant with the development of muscle endplates right down the trunk. The larvae started feeding 5 days post-hatch at 28° C. First feeding was associated with a dramatic decrease in the volume density of mitochondria and an increase in the volume density of myofibrils in the inner muscle fibres. The polyneuronal and multi-terminal pattern of innervation characteristic of adult slow-muscle fibres also developed around the time of first feeding.  相似文献   

18.
Influence of a cold (10 degrees C) or warm (35 degrees C) environment and a high or low level of energy intake on respiratory enzyme activities has been investigated in porcine skeletal muscle. Scanning microdensitometry was used to measure the reaction products from mitochondrial enzymes in individual slow- and fast-twitch muscle fibres. A cold environment was found to increase the activity of succinate dehydrogenase in both types of muscle fibre (P less than 0.001 for dark fibres, P less than 0.01 for light fibres) from young growing animals. Enzyme activity was also increased in animals on a low compared with a high energy intake (P less than 0.01) when living at 10 degrees C but not at 35 degrees C. Similar findings were obtained for NADH diaphorase and cytochrome oxidase aa3. The numbers of slow-twitch muscle fibres also increased after exposure to cold (P less than 0.01) and as a result of a low energy intake (P less than 0.01). These results are similar to those obtained in other species after exercise or as a result of peripheral arterial insufficiency. The extent to which they could be related to local tissue hypoxia or to changes in metabolic hormones is discussed.  相似文献   

19.
Comparative physiologists and ecologists have searched for aspecific morphological, physiological or biochemical parameterthat could be easily measured in a captive, frozen, or preservedanimal, and that would accurately predict the routine behavioror performance of that species in the wild. Many investigatorshave measured the activity of specific enzymes in the locomotormusculature of marine fishes, generally assuming that high specificactivities of enzymes involved in aerobic metabolism are indicatorsof high levels of sustained swimming performance and that highactivities of anaerobic metabolic enzymes indicate high levelsof burst swimming performance. We review the data that supportthis hypothesis and describe two recent studies we have conductedthat specifically test the hypothesis that biochemical indicesof anaerobic or aerobic capacity in fish myotomal muscle correlatewith direct measures of swimming performance. First, we determinedthat the maximum speed during escapes (C-starts) for individuallarval and juvenile California halibut did not correlate withthe activity of the enzyme lactate dehydrogenase, an index ofanaerobic capacity, in the myotomal muscle, when the effectsof fish size are factored out using residuals analysis. Second,we found that none of three aerobic capacity indices (citratesynthase activity, 3-hydroxy-o-acylCoA dehydrogenase activity,and myoglobin concentration) measured in the slow, oxidativemuscle of juvenile scombrid fishes correlated significantlywith maximum sustained speed. Thus, there was little correspondencebetween specific biochemical characteristics of the locomotormuscle of individual fish and whole animal swimming performance.However, it may be possible to identify biochemical indicesthat are accurate predictors of animal performance in phylogeneticallybased studies designed to separate out the effects of body size,temperature, and ontogenetic stage.  相似文献   

20.
1. In rat kidney cortex, outer and inner medulla the development of activities of seven enzymes was investigated during postnatal ontogeny (10, 20, 30, 60 and 90 days of age). The enzymes were selected in such a manner, as to characterize most of the main metabolic pathways of energy supplying metabolism: hexokinase (glucose phosphorylation, HK), glycerol-3-phosphate dehydrogenase (glycerolphosphate metabolism or shunt, GPDH), triose phosphate dehydrogenase (glycolytic carbohydrate breakdown, TPDH), lactate dehydrogenase (lactate metabolism, LDH), citrate synthase (tricarboxylic acid cycle, aerobic metabolism, CS), malate NAD dehydrogenase (tricarboxylic acid cycle, intra-extra mitochondrial hydrogen transport, MDH) and 3-hydroxyacyl-CoA-dehydrogenase (fatty acid catabolism, HOADH). 2. The renal cortex already differs metabolically from the medullar structures on the 10th day of life. It displays a high activity of aerobic breakdown of both fatty acids and carbohydrates. Its metabolic capacity further increases up to the 30th day of life. 3. The outer medullar structure is not grossly different from the inner medulla on the 10th day of life. Further it differentiates into a highly aerobic tissue mainly able to utilize carbohydrates. It can, however, to some extent, also utilize fatty acids aerobically and produce lactate from carbohydrates anaerobically. 4. The inner medullar structure is best equipped to utilize carbohydrates by anaerobic glycolysis, forming lactate. This feature is already pronounced on the 10th day of life, its capacity increases to some extent during postnatal development, being highest between the 10th and the 60th day of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号