首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differential male reproductive success in Douglas fir   总被引:3,自引:0,他引:3  
Summary Differential male reproductive success was studied in clones at two seed orchards of Douglas fir, Pseudotsuga menziesii (Mirb.) Franco. The performance of tester pollen parents was compared in controlled pollinations with two-parent pollen mixes. Marker pollen homozygous for a rare IDH allele was the genetic marker in each pollen mix. The resulting seeds were analyzed electrophoretically. At both seed orchards, the proportion of seeds sired by tester pollen significantly varied among the tester pollen parents. Tester pollen parents did not perform the same across all seed parents. The significant interaction effect was evidence of male-female complementarity. These results suggest a genetic basis to differential male reproductive success in Douglas fir.  相似文献   

2.
The potential for mycorrhizal formation and Frankia nodulation were studied in soils from six sites in the Pacific Northwest. The sites included young and old alder stands, a 1-year-old conifer clear-cut, a young conifer plantation, and rotation-aged and old-growth conifer stands. A bioassay procedure was used with both red alder and Douglas fir seedlings as hosts. After 6 weeks growth, seedlings of both hosts were harvested every 3 weeks for 21 weeks and numbers of nodules and ectomycorrhizal types estimated. Nodules formed on red alder and ectomycorrhizae formed on both alder and Douglas fir in soil from all sites. Nodulation potential was highest in soil from the alder stands and the conifer plantation. Seven morphologically distinct ectomycorrhizal types were recovered on Douglas fir and five on alder. Only Thelephora terrestris, a broad-host-range mycobiont, formed mycorrhizae on both hosts. New ectomycorrhizal types formed on both hosts throughout the bioassay. Ectomycorrhizal colonization of alder was greatest in the alder and clear-cut soils. Low ectomycorrhizal colonization on alder was found in soils from sites where conifers were actively growing. Ectomycorrhizal colonization of Douglas fir was highest in the young alder and conifer plantation soils and was low in the rotation-aged conifer soil. The highest diversity of ectomycorrhizal types was found on alder in the conifer clear-cut soil and on Douglas fir in the rotation-aged conifer soil. Effects of host specificity, nodulation and mycorrhiza-forming potential and nodule-mycorrhiza interactions on seedling establishment are discussed in relation to seral stage dynamics and attributes of pioneer ectomycorrhizal fungal species.  相似文献   

3.
Summary The extent and type of chloroplast DNA restriction fragment length polymorphism was determined among individual tree samples of coast redwood, Douglas fir, incense-cedar, and loblolly pine. A total of 107 trees was surveyed for three restriction enzymes (BamHI, EcoRI, HindIII) and six chloroplast DNA probes from petunia (P3, P4, P6, P8, P10, S8). The probes comprise 64% of the petunia chloroplast genome. Polymorphisms were detected in all species but loblolly pine. Coast redwood and incense-cedar had a small number of rare variants, whereas Douglas fir had one highly polymorphic region of insertions/deletions in sequences revealed by the P6 probe from petunia. The mutation hotspot is currently being studied by DNA sequence analysis.  相似文献   

4.
During the spring and early summer of 2002, we examined the relative importance of Borrelia-refractory lizards (Sceloporus occidentalis, Elgaria spp.) versus potential Borrelia burgdorferi sensu lato (s.l.)-reservoirs (rodents) as hosts for Ixodes pacificus immatures in 14 woodland areas (six oak, five mixed oak/Douglas fir, and three redwood/tanoak areas) distributed throughout Mendocino County, California. Lizards were estimated to serve as hosts for 93-98% of all larvae and > or =99.6% of all nymphs infesting lizards or rodents in oak woodlands and oak/Douglas fir sites in the southern part of the county. In redwood/tanoak woodlands and oak/Douglas fir sites in northern Mendocino County, the contribution of rodents to larval feedings reached 36-69% but lizards still accounted for 94-100% of nymphal bloodmeals. From late April to mid-June, I. pacificus larvae were recovered from 95 to 96% of lizards and dusky-footed woodrats (Neotoma fuscipes) and from 59% of Peromyscus spp. mice. In contrast, 99% of lizards but few woodrats (15%) and none of the mice were infested by nymphs. Comparisons of tick loads for 19 lizard-Peromyscus spp. mouse pairings, where the lizard and mouse were captured within 10m of each other, revealed that the lizards harbored 36 times more larvae and >190 times more nymphs than the mice. In oak woodlands, loads of I. pacificus larvae decreased from late April/early May to late June for S. occidentalis lizards but increased for Peromyscus spp. mice. We conclude that the relative utilization of Borrelia-refractory lizards, as compared to rodents, by I. pacificus larvae was far higher in dry oak woodlands than in moister habitats such as redwood/tanoak and oak/Douglas fir woodlands in northern Mendocino County. Non-lizard-infesting potential enzootic vectors of B. burgdorferi s.l. (I. angustus and I. spinipalpis) were recorded from rodents in three of six oak woodland areas, two of five oak/Douglas fir woodland areas, and two of three redwood/tanoak woodland areas.  相似文献   

5.
The integration of fossil and molecular data can provide a synthetic understanding of the ecological and evolutionary history of an organism. We analysed range‐wide maternally inherited mitochondrial DNA and paternally inherited chloroplast DNA sequence data with coalescent simulations and traditional population genetic methods to test hypotheses of population divergence generated from the fossil record of Douglas‐fir (Pseudotsuga menziesii), an ecologically and economically important western North American conifer. Specifically, we tested (i) the hypothesis that the Pliocene orogeny of the Cascades and Sierra Nevada caused the divergence of coastal and Rocky Mountain Douglas‐fir varieties; and (ii) the hypothesis that multiple glacial refugia existed on the coast and in the Rocky Mountains. We found that Douglas‐fir varieties diverged about 2.11 Ma (4.37 Ma–755 ka), which could be consistent with a Pliocene divergence. Rocky Mountain Douglas‐fir probably resided in three or more glacial refugia. More variable molecular markers would be required to detect the two coastal refugia suggested in the fossil record. Comparison of mitochondrial DNA and chloroplast DNA variation revealed that gene flow via pollen linked populations isolated from seed exchange. Postglacial colonization of Canada from coastal and Rocky Mountain refugia near the ice margin at the Last Glacial Maximum produced a wide hybrid zone among varieties that formed almost exclusively by pollen exchange and chloroplast DNA introgression, not seed exchange. Postglacial migration rates were 50–165 m/year, insufficient to track projected 21st century warming in some regions. Although fossil and genetic data largely agree, each provides unique insights.  相似文献   

6.
Swiss needle cast (SNC) is a fungal disease of Douglas‐fir (Pseudotsuga menziesii) that has recently become prevalent in coastal areas of the Pacific Northwest. We used growth measurements and stable isotopes of carbon and oxygen in tree‐rings of Douglas‐fir and a non‐susceptible reference species (western hemlock, Tsuga heterophylla) to evaluate their use as proxies for variation in past SNC infection, particularly in relation to potential explanatory climate factors. We sampled trees from an Oregon site where a fungicide trial took place from 1996 to 2000, which enabled the comparison of stable isotope values between trees with and without disease. Carbon stable isotope discrimination (Δ13C) of treated Douglas‐fir tree‐rings was greater than that of untreated Douglas‐fir tree‐rings during the fungicide treatment period. Both annual growth and tree‐ring Δ13C increased with treatment such that treated Douglas‐fir had values similar to co‐occurring western hemlock during the treatment period. There was no difference in the tree‐ring oxygen stable isotope ratio between treated and untreated Douglas‐fir. Tree‐ring Δ13C of diseased Douglas‐fir was negatively correlated with relative humidity during the two previous summers, consistent with increased leaf colonization by SNC under high humidity conditions that leads to greater disease severity in following years.  相似文献   

7.
8.
Climate change is likely to have major impacts on the distribution of planted and natural forests. Herein, we demonstrate how a process‐based niche model (CLIMEX) can be extended to globally project the potential habitat suitable for Douglas‐fir. Within this distribution, we use CLIMEX to predict abundance of the pathogen P haeocryptopus gaeumannii and severity of its associated foliage disease, Swiss needle cast. The distribution and severity of the disease, which can strongly reduce growth rate of Douglas‐fir, is closely correlated with seasonal temperatures and precipitation. This model is used to project how climate change during the 2080s may alter the area suitable for Douglas‐fir plantations within New Zealand. The climate change scenarios used indicate that the land area suitable for Douglas‐fir production in the North Island will be reduced markedly from near 100% under current climate to 36–64% of the total land area by 2080s. Within areas shown to be suitable for the host in the North Island, four of the six climate change scenarios predict substantial increases in disease severity that will make these regions at best marginal for Douglas‐fir by the 2080s. In contrast, most regions in the South Island are projected to sustain relatively low levels of disease, and remain suitable for Douglas‐fir under climate change over the course of this century.  相似文献   

9.
Although forestry residuals provide a potentially abundant source of biomass, Douglas fir is a particularly challenging feedstock to utilize in the biochemical conversion to fuels and value-added chemicals due to its high levels of biomass recalcitrance. A greater understanding of the underlying factors behind highly recalcitrant biomass is critical in overcoming this problem. Building on earlier efforts to establish a protocol and a “recalcitrance factor” for screening the recalcitrance of trees, this study attempts to provide the first look into the genetic factors behind recalcitrance in Douglas fir with the possibility of using selective breeding and tree improvement practices to reduce recalcitrance in future generations of our forest products. Samples from over 250 Douglas fir trees in a second-cycle progeny test were collected and subjected to screening. Samples were subjected to a dilute-acid pretreatment and a subsequent enzymatic hydrolysis procedure, ultimately measuring the raw wood density, pretreatment yield, the holocellulose content of pretreated samples, hydrolyzability, and recalcitrance factor. From these data, the heritability, genetic gains, and genetic correlations were estimated. Based on these results, we predict that modifying recalcitrance in tree improvement may be feasible, but would likely require some additional understanding and improved screening techniques.  相似文献   

10.
Nitrogen metabolism of the needles of 40-year-old Douglas fir and Scots pine trees, growing in two forest stands on cation-poor and acidic sandy soil with a relatively high atmospheric nitrogen deposition was studied. The composition of the free amino acid (FAA) pool, the concentrations of total nitrogen and soluble protein and the activities of glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were determined in the needles. An excessive nitrogen supply by a high atmospheric nitrogen deposition in both forest stands was indicated by the high concentrations of total nitrogen and the amino acids arginine, glutamic acid, glutamine and aspartic acid in control trees. In addition the effect of optimal nutrition and water supply (fertigation) on the needle nitrogen metabolism was evaluated. The total concentration of the FAA pool in needles of both tree species was lower in the fertigated than in the non-fertigated (control) trees, except for 1-year-old needles of Scots pine, in which the concentration after fertigation did not differ from the control. The lower total FAA concentration in the fertigated trees could be attributed to arginine, the concentration of which was on average 60% lower than in the control. Neither the concentration of soluble protein nor the activity of GS were influenced by fertigation. The activity of GDH in fertigated trees only differed significantly from the control in October. Scots pine needles had higher concentrations of protein (50%) and higher activities of GS (44%) and GDH (25%) than Douglas fir needles. Possible explanations for the lower vitality of Douglas fir compared to Scots pine are given.  相似文献   

11.
Members of the Pinaceae family have complex chemical defense strategies. Conifer defenses associated with specialized cell types of the bark involve constitutive and inducible accumulation of phenolic compounds in polyphenolic phloem parenchyma cells and oleoresin terpenoids in resin ducts. These defenses can protect trees against insect herbivory and fungal colonization. The phytohormone ethylene has been shown to induce the same anatomical and cellular defense responses that occur following insect feeding, mechanical wounding, or fungal inoculation in Douglas fir (Pseudotsuga menziesii) stems (Hudgins and Franceschi in Plant Physiol 135:2134–2149, 2004). However, very little is known about the genes involved in ethylene formation in conifer defense or about the temporal and spatial patterns of their protein expression. The enzyme 1-aminocyclopropane-1-carboxylate oxidase (ACO) catalyzes the final step in ethylene biosynthesis. We cloned full-length and near full-length ACO cDNAs from three conifer species, Sitka spruce (Picea sitchensis), white spruce (P. glauca), and Douglas fir, each with high similarity to Arabidopsis thaliana ACO proteins. Using an Arabidopsis anti-ACO antibody we determined that ACO is constitutively expressed in Douglas fir stem tissues and is up-regulated by mechanical wounding, consistent with the wound-induced increase of ethylene levels. Immunolocalization showed cytosolic ACO is predominantly present in specialized cell types of the wound-induced bark, specifically in epithelial cells of terpenoid-producing cortical resin ducts, in polyphenolic phloem parenchyma cells, and in ray parenchyma cells.J.W. Hudgins and Steven G. Ralph contributed equally to this work.  相似文献   

12.
Climate change is likely to result in novel conditions with no analogy to current climate. Therefore, the application of species distribution models (SDMs) based on the correlation between observed species’ occurrence and their environment is questionable and calls for a better understanding of the traits that determine species occurrence. Here, we compared two intraspecific, trait‐based SDMs with occurrence‐based SDMs, all developed from European data, and analyzed their transferability to the native range of Douglas‐fir in North America. With data from 50 provenance trials of Douglas‐fir in central Europe multivariate universal response functions (URFs) were developed for two functional traits (dominant tree height and basal area) which are good indicators of growth and vitality under given environmental conditions. These trials included 290 North American provenances of Douglas‐fir. The URFs combine genetic effects i.e. the climate of provenance origin and environmental effects, i.e. the climate of planting locations into an integrated model to predict the respective functional trait from climate data. The URFs were applied as SDMs (URF‐SDMs) by converting growth performances into occurrence. For comparison, an ensemble occurrence‐based SDM was developed and block cross validated with the BIOMOD2 modeling platform utilizing the observed occurrence of Douglas‐fir in Europe. The two trait based SDMs and the occurrence‐based SDM, all calibrated with data from Europe, were applied to predict the known distribution of Douglas‐fir in its introduced and native range in Europe and North America. Both models performed well within their calibration range in Europe, but model transfer to its native range in North America was superior in case of the URF‐SDMs showing similar predictive power as SDMs developed in North America itself. The high transferability of the URF‐SDMs is a testimony of their applicability under novel climatic conditions highlighting the role of intraspecific trait variation for adaptation planning in climate change.  相似文献   

13.
Some Effects of Douglas Fir Terpenes on Certain Microorganisms   总被引:5,自引:1,他引:4       下载免费PDF全文
The Douglas fir terpene α-pinene was shown to inhibit the growth of a variety of bacteria and a yeast. Other terpenes of the Douglas fir, including limonene, camphene, and isobornyl acetate, were also inhibitory to Bacillus thuringiensis. All terpenes were inhibitory at concentrations normally present in the fir needle diet of Douglas fir tussock moth larvae. The presence of such terpenes in the diet of these insects was found to strongly influence the infectivity of B. thuringiensis spores for the Douglas fir tussock moth larvae. The terpene α-pinene destroyed the cellular integrity and modified mitochondrial activity in certain microorganisms.  相似文献   

14.
H. Knight 《Plant and Soil》1968,28(3):471-475
Summary Foliar analyses of Douglas fir needles was made in an attempt to evaluate soil fertility and productivity changes caused by logging and slash-burning. No statistically significant differences were found between means of nitrogen, potassium, phosphorus, calcium, and magnesium values of Douglas fir needles from trees growing on logged and logged and slash-burned areas. No nutrient deficiencies appeared in the needles from either area. Needle nutrient contens is compared with regional results in an attempt to estimate optimum levelt for Douglas fir trees. The importance of foliar analyses in determining soil fertility and productivity is discussed and avenues of approach for future studies are suggested.  相似文献   

15.
Improving our understanding of the potential of forest adaptation is an urgent task in the light of predicted climate change. Long‐term alternatives for susceptible yet economically important tree species such as Norway spruce (Picea abies) are required, if the frequency and intensity of summer droughts will continue to increase. Although Silver fir (Abies alba) and Douglas fir (Pseudotsuga menziesii) have both been described as drought‐tolerant species, our understanding of their growth responses to drought extremes is still limited. Here, we use a dendroecological approach to assess the resistance, resilience, and recovery of these important central Europe to conifer species the exceptional droughts in 1976 and 2003. A total of 270 trees per species were sampled in 18 managed mixed‐species stands along an altitudinal gradient (400–1200 m a.s.l.) at the western slopes of the southern and central Black Forest in southwest Germany. While radial growth in all species responded similarly to the 1976 drought, Norway spruce was least resistant and resilient to the 2003 summer drought. Silver fir showed the overall highest resistance to drought, similarly to Douglas fir, which exhibited the widest growth rings. Silver fir trees from lower elevations were more drought prone than trees at higher elevations. Douglas fir and Norway spruce, however, revealed lower drought resilience at higher altitudes. Although the 1976 and 2003 drought extremes were quite different, Douglas fir maintained consistently the highest radial growth. Although our study did not examine population‐level responses, it clearly indicates that Silver fir and Douglas fir are generally more resistant and resilient to previous drought extremes and are therefore suitable alternatives to Norway spruce; Silver fir more so at higher altitudes. Cultivating these species instead of Norway spruce will contribute to maintaining a high level of productivity across many Central European mountain forests under future climate change.  相似文献   

16.
Control of Nitrification by Tree Species in a Common-Garden Experiment   总被引:1,自引:0,他引:1  
We studied the effect of tree species on nitrification in five young plantations and an old native beech coppice forest at the Breuil experimental site in central France. The potential net nitrification (PNN) of soil was high in beech, Corsican pine, and Douglas fir plantations (high nitrifying stands denoted H) and low in spruce and Nordmann fir plantations as well as in native forest stands (low nitrifying stands denoted L). We hypothesized that tree species would stimulate or inhibit nitrification in transplanted soil cores within a few years after the cores were transplanted between stands. We first initiated a transplant experiment where soil cores were exchanged between all stands. The PNN remained high in soil cores from H transferred to H and low in soil cores from L transferred to L. The PNN increased considerably after 16 months in soil cores transferred from L to H, whereas the transfer of soil cores from H to L decreased the PNN only slightly after 28 months. In a second transplant experiment, forest floor material was exchanged between the Douglas fir (H) and the native forest (L) stand. Six months later, the forest floor from the native forest had increased the PNN of the Douglas fir soil considerably, whereas the forest floor from Douglas fir did not affect the PNN of the soil in the native forest stand. It was concluded that beech, Corsican pine, and Douglas fir rapidly stimulate soil nitrification by either activation of suppressed nitrifier communities and/or colonization by new nitrifier communities. Conversely, the slow and irregular reduction of nitrification in spruce, Nordmann fir, and native forest was probably due to the low and heterogeneously distributed flux of inhibiting substances per volume of soil. Our experiments suggest that the inhibition of nitrification is not tightly connected to forest floor leachates, but that the forest floor both reflects and maintains the major ongoing processes. In the long term, humus build up and the production of inhibiting substances may completely block the nitrification activity.  相似文献   

17.
Somatic embryogenesis (SE) is expected to play an important role in the future of US forests by providing increased productivity, sustainability, and uniformity. For broad scale implementation to occur, SE technology must work with a variety of genetically diverse trees. Douglas fir (Pseudotsuga menziesii (Mirb) Franco) is the dominant tree in the Pacific Northwest and has great economic and recreational value. We have developed a highly effective medium for initiation of embryogenic tissue of Douglas fir that contains ABA, biotin, brassinolide, folic acid, MES, pyruvic acid and can be used as a gelled medium or in a gelled-liquid medium overlay system. When tested with many high-value crosses over 2 years, initiation tests averaged initiation in the range of 40–57%. Additionally, a time- and labor-saving tetrazolium chloride embryo staining technique was developed to evaluate seed health and screen out seed sources likely to perform poorly in the initiation process.  相似文献   

18.

Douglas fir (Pseudotsuga menziesii) is one of Europe’s most important non-native tree species due to its drought tolerance as well as timber quality and yield. To obtain superior seed from selected parental trees, breeding programs had been established in seed orchards. Douglas fir seed is used as source material for somatic embryogenesis with the aim to select elite genotypes invaluable for clonal mass propagation. To improve given protocols for somatic embryo initiation, we used immature Douglas fir zygotic embryos as explants and abscisic acid (ABA) as plant growth regulator in contrast to the application of auxins and cytokinins. With ABA supplementation, induction frequencies were slightly but in mean higher than with auxin/cytokinin, showing also a strong genotype effect. This offered the possibility to capture SE cultures from otherwise recalcitrant crosses. Furthermore, we observed remarkable differences between the two sets of plant growth regulators concerning the morphological development of the explants, including the absence of non-embryogenic callus by using ABA as inducer. This simplifies the detection of events and the handling of the obtained cultures. Nevertheless, a histological approach suggested, that the same competent cells are addressed by the different hormonal stimulation. Besides, we studied the influence of different points in time of cone harvest, two different basal media and different genetic backgrounds of the explants as well as the maturation ability of the induced embryogenic cultures. In sum, we were able to improve the first steps of somatic embryogenesis and to maintain a significantly higher number of high-value genotypes.

  相似文献   

19.
《新西兰生态学杂志》2011,35(3):280-286
We compared establishment of Douglas fir (Pseudotsuga menziesii) and Corsican pine (Pinus nigra) seedlings in kanuka (Kunzea ericoides) and manuka (Leptospermum scoparium) shrubland to test the hypothesis that Douglas fir, because of its greater shade tolerance, is better able to establish in woody communities than pine species. Seed of the conifer species was sown under a range of canopy covers at six sites, the cover being low-statured vegetation in openings between stands, stand edges, and moderate and dense canopies. After three growing seasons, survival of Corsican pine seedlings was greatest in the open and declined progressively as canopy cover increased. This contrasted with Douglas fir, where survival was greatest at the canopy edge. Survival of Douglas fir seedlings significantly exceeded that of Corscican pine seedlings under dense canopy positions. Seedling numbers of both species declined significantly with increasing leaf area index of manuka, but not kanuka stands, where seedling numbers were lower. Leaf area index of manuka stands accounted for substantially greater variation in number and survival of Corsican pine than Douglas fir seedlings. It is concluded that Douglas fir is better able to establish in shaded environments in woody communities than Corsican pine; however, further monitoring is required to confirm the long-term survival of both species under the moderate and dense canopy positions in this trial.  相似文献   

20.
We evaluate genetic test plantations of North American Douglas‐fir provenances in Europe to quantify how tree populations respond when subjected to climate regime shifts, and we examined whether bioclimate envelope models developed for North America to guide assisted migration under climate change can retrospectively predict the success of these provenance transfers to Europe. The meta‐analysis is based on long‐term growth data of 2800 provenances transferred to 120 European test sites. The model was generally well suited to predict the best performing provenances along north–south gradients in Western Europe, but failed to predict superior performance of coastal North American populations under continental climate conditions in Eastern Europe. However, model projections appear appropriate when considering additional information regarding adaptation of Douglas‐fir provenances to withstand frost and drought, even though the model partially fails in a validation against growth traits alone. We conclude by applying the partially validated model to climate change scenarios for Europe, demonstrating that climate trends observed over the last three decades warrant changes to current use of Douglas‐fir provenances in plantation forestry throughout Western and Central Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号