首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
To elucidate the difference between subfragment-1 and heavy meromyosin in their interaction with F-actin, we used limited tryptic digestion and cross-linking with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide. The binding of actin to subfragment-1 lowers the susceptibility of the 50K-20K junction of its heavy chain to tryptic digestion. At a molar ratio of one actin to one subfragment-1, all the sites were gradually cleaved by trypsin whereas the sites were completely protected in the presence of a 2-fold molar excess of actin over subfragment-1. In the case of heavy meromyosin, nearly half of the sites were protected completely by the presence of an equimolar amount of actin to its heads suggesting that the two heads of heavy meromyosin bound actin in a different manner. The rate of the cross-linking reaction between subfragment-1 heavy chain and actin with 1-ethyl-3-[3-(dimethylamino) propyl]carbodiimide also depended on the molar ratio of actin to subfragment-1. The rate was maximum at a molar ratio of about 5 actin to 1 subfragment-1. When heavy meromyosin was cross-linked to actin, the maximum rate was observed at a molar ratio of about 3 actin to 1 heavy meromyosin head, the level being about 60% that for subfragment-1 and actin. It was suggested that the presence of the subfragment-2 portion of heavy meromyosin caused these differences by restricting the motion of the two heads.  相似文献   

2.
To determine the reason why the Mg2+-ATPase activity of subfragment-1 prepared with chymotrypsin was activated more by actin than that of subfragment-1 prepared with trypsin was and the reason why the former could enhance the polymerization of actin and the latter could not, we digested subfragment-1, prepared with chymotrypsin, with trypsin and examined the actin activated Mg2+-ATPase activity and the ability to polymerize actin. It was found that cleavage of the heavy chain decreased the actin activated Mg2+-ATPase activity of subfragment-1 prepared with chymotrypsin but did not affect its ability to polymerize actin. Trypsin attacked the subfragment-1 heavy chain at two sites and produced 26 K, 50 K, and 21 K fragments. From the comparison of the time course of tryptic digestion with that of the decrease in actin activation, it was deduced that cleavage of the 50 K-21 K junction was mainly responsible for the decrease in actin activation. We also measured the length and the amount of F-actin polymerized by the addition of different amounts of subfragment-1. It was found that the amount of F-actin increased with the increase in the amount of subfragment-1 added and that the length of F-actin also increased though slightly. We concluded from the results that subfragment-1 enhanced the polymerization not only by facilitating the nucleus formation but also by strengthening the bond between actin monomers in forming F-actin.  相似文献   

3.
The heavy chain of myosin subfragment-1 prepared by chymotrypsin treatment had a molecular weight of about 96 K. It was split into 26 K, 50K, and 21 K fragments on trypsin treatment. The effect of actin binding on the susceptibilities of the junctions between 26 K and 50 K and between 50 K and 21 K, and on that of alkali light chain 1 to trypsin was studied. The addition of actin increased the viscosity of the solution, and the apparent activity of trypsin decreased. We estimated this decrease as 35% by measuring the degradation of gamma-globin heavy chain, which is known not to interact with actin and subfragment-1 but is known to be susceptible to trypsin, in actin-subfragment-1 solution. Taking this value into consideration, we concluded that the 26 K-50 K junction became 5 times more and the 50 K-21 K junction became 3 times less susceptible to tryptic attack upon the binding of actin. We also observed that alkali light chain 1 became resistant to trypsin upon the binding of actin to subfragment-1. The relation between this conformational change in subfragment-1 and the cyclic interaction of subfragment-1 with actin and ATP is discussed.  相似文献   

4.
To examine the spatial relationship between SH1 thiol and actin binding site on subfragment-1 surface, we studied the interaction with actin of subfragment-1 whose SH1 was labeled with an iodoacetate derivative of biotin and covered with avidin. Subfragment-1--avidin complex bound F-actin and its Mg2+ ATPase activity was activated by actin. Considering the size and the location of biotin binding site on avidin, our results suggest that SH1 is separated from the actin binding site on subfragment-1 surface by at least 17-20 A.  相似文献   

5.
Limited tryptic proteolysis of S-1 (A1+A2) or S-1 (A1) and S-1 (A2) converts the heavy chain into 3 fragments of Mr = 27K-50K-20K. As a result the actin-stimulated ATPase activity of the fragmented heads is lost. When the digestion is performed using the complex F-actin-S-1, this ATPase activity is completely preserved and the heavy chain is split into only 2 fragments of Mr = 27K–70K. The specific protection by F-actin of the -COOH terminal region of the heavy chain at the joint 50K-20K against tryptic cleavage and loss of activity suggests that this part of the head can be involved in actin binding site and/or Mg2+ ATP hydrolysis by the acto-S-1 complex.  相似文献   

6.
T Hozumi 《Biochemistry》1992,31(41):10070-10073
It is well known that the structural interactions between S-1 moieties of myosin molecules ("cross bridges") and actin molecules in polymerized ("F") form are thought to underlie muscle contraction. It is surmised that such interactions are unitary (actin:S-1 = 1:1), but actual demonstration thereof is handicapped by intrinsic properties of the proteins. Recently, it has been reported that chemically modified [with m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS)] actin maintains its monomeric ("G") form and makes a stable unitary complex with S-1 but does not activate the S-1 ATPase [Bettache, N., Bertrand, R., & Kassab, R. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6028-6032]. However, we recently showed that when MBS-G-actin and S-1 are covalently cross-linked by 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide (EDC), ATPase activity is restored [Hozumi, T. (1991) Biochem. Int. 23, 835-843]. Here we investigated the interface between MBS-G-actin and S-1 using the techniques of tryptic digestion and EDC-cross-linking. MBS-G-actin specifically protected the N-terminal region of S-1 heavy chain against tryptic cleavage at the 25 kDa/50 kDa junction, which is different from the effect that a protomer within F-actin has on the protection of the 25 kDa/50 kDa junction. In addition, the cross-linking pattern between MBS-G-actin and S-1 was different from that between F-actin and S-1. When MBS-G actin was cross-linked to trypsin-treated S-1, no cross-linked product was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
When myosin chymotryptic subfragment-1 was treated with dimethyl-suberimidate or dithiobis (succinimidylpropionate) under nearly physiological ionic conditions, the alkali light chains A1 and A2 were selectively and intramolecularly cross-linked to the 95K heavy chain. Experimental conditions were developed with both reagents for optimal production of A1 and A2-containing dimers. After conversion of reversibly cross-linked S-1 (A1+A2) into (27K-50K-20K)-S-1 derivative by restricted tryptic proteolysis, the light chains were found to be attached to the NH2-terminal 27K segment of the heavy chain.  相似文献   

8.
F-Actin bindings to subfragment-1 (S-1) and S-1 after limited proteolysis by trypsin (S-1t) were studied in the absence and presence of ATP by means of ultracentrifugation. No significant difference in the affinities for F-actin was observed between S-1 and S-1t in the absence of ATP. In contrast, the affinity for F-actin in the presence of ATP was decreased about 50 times by the limited proteolysis of the S-1 heavy chain. The S-1 whose SH1 and SH2 groups were cross-linked by N,N'-p-phenylenedimaleimide bound F-actin weakly. The affinity for F-actin was similar to that of unmodified S-1 in the presence of ATP and was also decreased markedly by limited proteolysis of the cross-linked S-1. Reciprocals of the dissociation constant of acto-S-1 complex decreased markedly with increase of ionic strength in the presence of ATP, but decreased only slightly at the rigor state. All these results are consistent with our proposal that S-1 has two different actin binding sites, as reported previously (Katoh, T., Imae, S., & Morita, F. (1984) J. Biochem. 95, 447-454). The mechanism of activation of S-1 ATPase by F-actin is discussed.  相似文献   

9.
P Knight  G Offer 《Biochemistry》1980,19(20):4682-4687
The hypothesis that the subunits of F-actin rotate during interactin with myosin and ATP has been tested by using the specific cross-linking reagent p-phenylene-N,N'-bis(maleimide) (PM). The insertion of cross-links between F-actin subunits does not change the ability of the F-actin to activate the ATPase of either myosin subfragment-1 (S-1) or heavy meormyosin, and its ability to superprecipitate with myosin is unimpaired. We conclude that large-scale rotations of actin subunits are not required for activity. The cross-linking of F-actin by PM is, however, inhibited in a noncooperative fashion by S-1 binding, suggesting that a small local change in actin structure may accompany the binding of S-1 or that S-1 sterically blocks the cross-linking by binding near the contact region between actin subunits.  相似文献   

10.
The K+-EDTA-activated ATPase activity of chymotryptic myosin subfragment-1 (S-1) decreased by 85-90% when S-1 was incubated over a 2-h period at 35 degrees C. Addition of F-actin, ATP, or ATP analogs, such as ADP or PPi, to S-1 before incubation at 35 degrees C prevented the loss of ATPase activity. The decrease in ATPase activity was also accompanied by changes in tryptic sensitivity. Instead of the normal peptide pattern--which is comprised of three heavy chain fragments (27K, 50K, and 20K)--only two fragments (27K and 20K) appeared on the sodium dodecyl sulfate-gel electrophoregram after limited tryptic digestion of thermally treated S-1. Addition of any ligand--e.g. ATP, ADP, pyrophosphate, or actin--which prevented the loss of ATPase activity during incubation at 35 degrees C also prevented the observed change in the tryptic peptide pattern of S-1. Tryptic digested S-1, whose heavy chain has been cleaved to 27K, 50K, and 20K fragments, also lost its ATPase activity upon mild heat treatment. The heat-treated trypsin-digested S-1 was subjected to a second tryptic digestion, which resulted in the disappearance of the 50K fragment, while the 50K fragment of tryptic S-1 not subjected to heat treatment was not susceptible to additional tryptic hydrolysis. The results indicate that the structural changes, that take place specifically in the 50K region of S-1 upon mild heat treatment, lead to both the loss of the ATPase activity and the changed tryptic sensitivity of S-1.  相似文献   

11.
Covalent cross-linking reaction between SH1 and SH2 groups in myosin subfragment-1 (S-1) by N,N'-p-phenylenedimaleimide (pPDM) was followed by the degree of inactivation of NH4+-EDTA ATPase activity. The rate of the cross-linking reaction decreased to less than a 20th in the presence of F-actin. The inhibitory effect of F-actin was not observed in the presence of MgATP. Binding of F-actin to S-1 was measured using ultracentrifugation. S-1 whose SH1 and SH2 were covalently cross-linked by pPDM or 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) did not bind F-actin. After the DTNB-cross-linked S-1 is reduced by dithiothreitol, the ability to bind F-actin is recovered. These results suggest that S-1 has a binding site for F-actin in the region between SH1 and SH2. This site appears to determine the high affinity of acto-S-1 complex at the rigor while decreasing the affinity more than 10(2) times in the presence of MgATP.  相似文献   

12.
We have developed a rapid and reproducible procedure widely applicable to the preparation of pure aqueous solutions of the complex between an alkali light chain and the COOH-terminal heavy-chain fragments of skeletal myosin chymotryptic subfragment 1 (S-1) split by various proteases. It was founded on the remarkable ethanol solubility of these complexes. A systematic study of the ethanol fractionation of the tryptic (27K-50K-20K)-S-1 (A2) showed the NH2-terminal 27K fragment to behave like a specific protein entity being quantitatively precipitated at a relatively low ethanol concentration. Only the 20K peptide-A2 complex remained in solution when the S-1 derivative was treated with exactly 4 volumes of ethanol in the presence of 6 M guanidinium chloride. At a lower ethanol concentration, a soluble mixture of 50K and 20K peptides together with the light chain was obtained. The isolated 20K fragment-A2 system containing a 1:1 molar ratio of each component was investigated by biochemical and 1H nuclear magnetic resonance (NMR) techniques to highlight its structure and the interaction of the 20K heavy-chain segment with F-actin and with the light chain. During the treatment of the complex with alpha-chymotrypsin, only the 20K peptide was fragmented in contrast to its stability within the whole S-1. The binding of F-actin to the complex led, however, to a strong inhibition of its chymotryptic degradation. 1-Ethyl-3-[3-(dimethylamino)propyl]carbodiimide cross-linking of F-actin to the complex produced covalent actin-20K peptide only, the amount of which was lower relative to that observed with the entire split S-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Glutaraldehyde (GA) and N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ), a hydrophobic, carboxyl group directed, zero-length protein cross-linker, were employed for the chemical cross-linking of the rigor complex between F-actin and the skeletal myosin S-1. The enzymatic properties and structure of the new covalent complexes obtained with both reagents were determined and compared to those known for the EDC-acto-S-1 complex. The GA- or EEDQ-catalyzed covalent attachment of F-actin to the S-1 heavy chain induced an elevated Mg2+-ATPase activity. The turnover rates of the isolated cross-linked complexes were similar to those for EDC-acto-S-1 (30 s-1). The solution stability of the new complexes is also comparable to that exhibited by EDC-acto-S-1. The proteolytic digestion of the isolated AEDANS-labeled covalent complexes and direct cross-linking experiments between actin and various preformed proteolytic S-1 derivatives indicated that, as observed with EDC, the COOH-terminal 20K and the central 50K heavy chain fragments are involved in the cross-linking reactions of GA and EEDQ. KI-depolymerized acto-S-1 complexes cross-linked by EDC, GA, or EEDQ were digested by thrombin which cuts only actin, releasing S-1 heavy chain-actin peptide cross-linked complexes migrating on acrylamide gels with Mr 100K (EDC), 110K and 105K (GA), and 102K (EEDQ); these were fluorescent only when fluorescent S-1 was used. They were identified by immunostaining with specific antibodies directed against selected parts of he NH2-terminal actin segment of residues 1-113.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Fluorescence energy transfer was measured by time-resolved and steady-state fluorimetry in order to investigate the spatial relationships between the nucleotide binding site of actin, the Cys-373 residue of actin, and the SH1 of myosin subfragment-1 in the rigor complex of acto-subfragment-1. N-Iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS) bound to the Cys-373 of actin or the fluorescent ADP analogue 1-N6-ethenoadenosine-5'-diphosphate (epsilon-ADP) bound to F-actin was used as a donor and 4-(N-(iodoacetoxy)ethyl-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazo le (IANBD) or 5-iodoacetamidofluorescein (IAF) bound to SH1 of myosin subfragment-1 was used as an acceptor. Assuming the random orientation factor, K2, to be 2/3, the distance between Cys-373 residue of actin and SH1 of myosin subfragment-1 was calculated to be about 50 A, in agreement with the values previously reported, 60 A (Takashi, R. (1969) Biochemistry 18, 5164-69) and 50 A (Trayer, H.R. and Trayer, I.P. (1983) Eur. J. Biochem. 135, 47-59). The distance between the nucleotide binding site of actin and SH1 of myosin subfragment-1 was calculated to be about 70 A or greater.  相似文献   

15.
To probe the molecular properties of the actin recognition site on the smooth muscle myosin heavy chain, the rigor complexes between skeletal F-actin and chicken gizzard myosin subfragments 1 (S1) were investigated by limited proteolysis and by chemical cross-linking with 1-ethyl-3-[3-(dimethyl-amino)propyl]carbodiimide. Earlier, these approaches were used to analyze the actin site on the skeletal muscle myosin heads [Mornet, D., Bertrand, R., Pantel, P., Audemard, E., & Kassab, R. (1981) Biochemistry 20, 2110-2120; Labbé, J.P., Mornet, D., Roseau, G., & Kassab, R. (1982) Biochemistry 21, 6897-6902]. In contrast to the case of the skeletal S1, the cleavage with trypsin or papain of the sensitive COOH-terminal 50K-26K junction of the head heavy chain had no effect on the actin-stimulated Mg2+-ATPase activity of the smooth S1. Moreover, actin binding had no significant influence on the proteolysis at this site whereas it abolished the scission of the skeletal S1 heavy chain. The COOH-terminal 26K segment of the smooth papain S1 heavy chain was converted by trypsin into a 25K peptide derivative, but it remained intact in the actin-S1 complex. A single actin monomer was cross-linked with the carbodiimide reagent to the intact 97K heavy chain of the smooth papain S1. Experiments performed on the complexes between F-actin and the fragmented S1 indicated that the site of cross-linking resides within the COOH-terminal 25K fragment of the S1 heavy chain. Thus, for both the striated and smooth muscle myosins, this region appears to be in contact with F-actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The rotational motions of F-actin filaments and myosin heads attached to them have been measured by saturation transfer electron paramagnetic resonance spectroscopy using spin-labels rigidly bound to actin, or to the myosin head region in intact myosin molecules, heavy meromyosin, and subfragment-1. The spin-label attached to F-actin undergoes rotational motion having an effective correlation time of the order of 10?4 seconds. This cannot be interpreted as rotation of the entire F-actin filament or local rotation of the spin-label, but must represent an internal rotational mode of F-actin, possibly a bending or flexing motion, or a rotation of an actin monomer or a segment of it. The rate of this rotational motion is reduced approximately fourfold by myosin, HMM or S-1; HMM and S-1 are equally effective, on a molar basis, in slowing this rotation and both produce their maximal effect at a ratio of about one molecule of HMM or S-1 per ten actin monomers. With chymotryptic S-1, the effect is partially reversed at higher concentrations. With S-1 prepared with papain in the presence of Mg2+, the reversal is smaller, while with HMM or myosin there is no reversal at higher concentrations. Tropomyosin slightly decreases the actin rotational mobility, and the addition of HMM to the actin-tropomyosin complex produces a further slowing. The rotational correlation time for acto-HMM is the same whether the spin-label is on actin or HMM, indicating that the rotation of the head region of HMM when bound to F-actin is controlled by a mode of rotation within the F-actin filaments.  相似文献   

17.
The heavy chain of subfragment-1 prepared by chymotrypsin treatment had a molecular weight of about 96K. The heavy chain was split into 26 K, 50 K, and 21 K fragments by trypsin. When the trypsin-treated subfragment-1 was cross-linked with dimethyl suberimidate, cross-linked products of 26 K, 50 K, and 21 K fragments and of 50 K and 21 K fragments appeared, but there was little cross-linked product of 26 K and 50 K fragments or of 26 K and 21 K fragments. When the cross-linking experiments were carried out in the presence of actin, a new band appeared and the amount of cross-linked product of 26 K, 50 K, and 21 K fragments decreased by about 50%. The molecular weight of the new band was lower than that of the cross-linked product of 26 K, 50 K, and 21 K fragments, and higher than that of the dimer of actin. Based on this and some other results, we suggest that this band represented a cross-linked product of actin and the 50 K fragment. We also suggest that the decrease in the amount of cross-linked product of 26 K, 50 K, and 21 K fragments reflected the conformational change in subfragment-1 due to the binding of actin.  相似文献   

18.
D Applegate  A Azarcon  E Reisler 《Biochemistry》1984,23(26):6626-6630
The method of limited tryptic proteolysis has been used to compare and contrast the substructure of bovine cardiac myosin subfragment 1 (S-1) to that of skeletal myosin S-1. While tryptic cleavage of cardiac S-1, like that of skeletal S-1, yields three fragments, the 25K, 50K, and 20K peptides, the digestion of cardiac S-1 proceeds at a 2-fold faster rate. The increased rate of cleavage is due entirely to an order of magnitude faster rate of cleavage at the 25K/50K junction of cardiac S-1 compared to that of skeletal, with approximately equal rates of cleavage at the 50K/20K junctions. Actin inhibits the tryptic attack at this latter junction, but its effect is an order of magnitude smaller for the cardiac than for the skeletal S-1. Furthermore, the tryptic susceptibility of the 50K/20K junction of cardiac S-1 in the acto-S-1 complex is increased in the presence of 2 mM MgADP. This effect is not due to partial dissociation of the cardiac acto-S-1 complex by MgADP. Our results indicate that in analogy to skeletal S-1, the cardiac myosin head is organized into three protease-resistant fragments connected by open linker peptides. However, the much faster rate of tryptic cleavage of the 25K/50K junction and also the greater accessibility of the 50K/20K junction in the cardiac acto-S-1 complex indicate substructural differences between cardiac and skeletal S-1.  相似文献   

19.
H Onishi  T Maita  G Matsuda  K Fujiwara 《Biochemistry》1989,28(4):1905-1912
In the rigor complex between rabbit skeletal muscle F-actin and chicken gizzard heavy meromyosin (HMM), the direct contact between two HMM heads was demonstrated by using a zero-length cross-linker 1-ethyl-3-[3-(dimethylamino)propyl]maleimide (EDC) [Onishi, H., Maita, T., Matsuda, G., & Fujiwara, K. (1989) Biochemistry (preceding paper in this issue)]. Here, the 60K peptide which was a product of the EDC cross-linking between two 24K heavy chain (tryptic) fragments of HMM was further fragmented with cyanogen bromide, and the location of the cross-linking sites on the amino acid sequence of the HMM heavy chain was investigated. The result showed that one site resided within the 77-residue peptide region (residues 1-77) on one head of HMM, whereas the other site belonged to the 40-residue peptide region (residues 164-203) on the other head. This finding suggests that the two HMM heads are in contact with each other at different sites. Ultracentrifugal fractionation revealed that the head-to-head cross-linked gizzard HMM could be reversibly released from F-actin in the presence of Mg-ATP. The yield of the head-to-head cross-linking was not significantly changed with the acto-HMM complex between actin/HMM head molar ratios of 1 and 4, and it was very slightly decreased even at a molar ratio of 8, where HMM molecules were attached sparsely to actin filaments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
《The Journal of cell biology》1983,96(6):1761-1765
Tomato activation inhibiting protein (AIP) is a molecule of an apparent molecular weight of 72,000 that co-purifies with tomato actin. In an assay system containing rabbit skeletal muscle F-actin and rabbit skeletal muscle myosin subfragment-1 (myosin S-1), tomato AIP dissociated the acto-S-1 complex in the absence of Mg+2ATP and inhibited the ability of F-actin to activate the low ionic strength Mg+2ATPase activity of myosin S-1. At a molar ratio of 5 actin to 1 AIP, a 50% inhibition of the actin-activated Mg+2ATPase activity of myosin S-1 was observed. The inhibition can be reversed by raising the calcium ion concentration to 1 X 10(-5) M. The AIP had no effect on the basal low ionic strength Mg+2ATPase activity of myosin S-1 in the absence of actin. The protein did not bind directly to actin nor did it cause depolymerization or aggregation of F-actin but appeared, instead, to interact with the actin binding site on myosin S-1. Since AIP is a potent, reversible inhibitor of the rabbit acto-S-1 ATPase activity, it is postulated that it may be responsible for the low levels of actin activation exhibited by tomato F-actin fractions containing the AIP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号