首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A V Furano  S M Robb    F T Robb 《Nucleic acids research》1988,16(19):9215-9231
Here we report the DNA structure of the left 1.5 kb of two newly isolated full length members of the rat L1 DNA family (L1Rn, long interspersed repeated DNA). In contrast to earlier isolated rat L1 members, both of these contain promoter-like regions that are most likely full length. In addition, the promoter-like region of both members has undergone a partial tandem duplication. A second internal region of the left end of one of the reported members is also tandemly duplicated. The propensity of the left end of rat L1 elements to undergo this form of genetic rearrangement, as well as other structural features revealed by the present work, is discussed in light of the fact that during evolution the otherwise conserved mammalian L1 DNA families have each acquired completely different promoter-like regions. In an accompanying paper [Nur, I., Pascale, E., and Furano, A. V. (1988) Nucleic Acids Res. 16, submitted], we report that one of the rat promoter-like regions can function as a promoter in rat cells when fused to the Escherichia coli chloramphenicol acyltransferase gene.  相似文献   

2.
3.
Transposable elements (TEs) are present in all organisms and nearly half of the human and mouse genome is derived from ancient transpositions. This fact alone suggests that TEs have played a major role in genome organization and evolution. Studies undertaken over the last two decades or so clearly show that TEs of various kinds have played an important role in organism evolution. Here we review the impact TEs have on the evolution of gene regulation and gene function with an emphasis on humans. Understanding the mechanisms resulting in genomic change is central to our understanding of gene regulation, genetic disease and genome evolution. Full comprehension of these biological processes is not possible without an in depth knowledge of how TEs impact upon the genome.  相似文献   

4.
The bulk of the human genome is ultimately derived from transposable elements. Observations in the past year lead to some new and surprising ideas on functions and consequences of these elements and their remnants in our genome. The many new examples of human genes derived from single transposon insertions highlight the large contribution of selfish DNA to genomic evolution.  相似文献   

5.
6.
The fish species Synbranchus marmoratus is widely distributed throughout the Neotropical region and exhibits a significant karyotype differentiation. However, data concerning the organization and location of the repetitive DNA sequences in the genomes of these karyomorphs are still lacking. In this study we made a physical mapping of the H3 and H4 histone multigene family and the transposable elements Rex1 and Rex3 in the genome of three known S. marmoratus karyomorphs. The results indicated that both histone sequences seem to be linked with one another and are scattered all over the chromosomes of the complement, with a little compartmentalization in one acrocentric pair, which is different from observations in other fish groups. Likewise, the transposable elements Rex1 and Rex3 were also dispersed throughout the genome as small clusters. The data also showed that the histone sites are organized in a differentiated manner in the genomes of S. marmoratus, while the transposable elements Rex1 and Rex3 do not seem to be compartmentalized in this group.  相似文献   

7.
Summary We report here the discovery of a family of transposable elements, which we refer to as Fotl elements, in the fungal plant pathogen Fusarium oxysporum. The first element was identified as an insertion in the gene encoding nitrate reductase. It is 1928 by long, has 44 by inverted terminal repeats, contains a large open reading frame and is flanked by a 2 by (TA) target site duplication. This element shares significant structural similarities with a class of transposons that includes Tc1 from Caenorhabditis elegans and therefore represents a new class of transposable elements in fungi.  相似文献   

8.

Background

Transposable elements form a significant proportion of eukaryotic genomes. Recently, Lexa et al. (Nucleic Acids Res 42:968-978, 2014) reported that plant long terminal repeat (LTR) retrotransposons often contain potential quadruplex sequences (PQSs) in their LTRs and experimentally confirmed their ability to adopt four-stranded DNA conformations.

Results

Here, we searched for PQSs in human retrotransposons and found that PQSs are specifically localized in the 3’-UTR of LINE-1 elements, in LTRs of HERV elements and are strongly accumulated in specific regions of SVA elements. Circular dichroism spectroscopy confirmed that most PQSs had adopted monomolecular or bimolecular guanine quadruplex structures. Evolutionarily young SVA elements contained more PQSs than older elements and their propensity to form quadruplex DNA was higher. Full-length L1 elements contained more PQSs than truncated elements; the highest proportion of PQSs was found inside transpositionally active L1 elements (PA2 and HS families).

Conclusions

Conservation of quadruplexes at specific positions of transposable elements implies their importance in their life cycle. The increasing quadruplex presence in evolutionarily young LINE-1 and SVA families makes these elements important contributors toward present genome-wide quadruplex distribution.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1032) contains supplementary material, which is available to authorized users.  相似文献   

9.
Sol3 transposons are mobile elements defined by long terminal inverted repeats which are found in tomato and potato. Members of the Sol3 family have been isolated from a variety of solanaceous species including Solanum tuberosum (potato), S. demissum, S. chacoense, Lycopersicon esculentum (tomato), and L. hirsutum. While highly conserved elements are found within different species, Sol3 terminal inverted repeats can also flank unrelated sequences. Southern blot analysis indicates that Sol3 elements are less prevalent in the potato (approximately 50 copies) than in the tomato (>100 copies) genome. No Sol3-hybridizing sequences were observed in tobacco. While a number of Sol3 elements ranging in size from 500 bp to 2 kbp were sequenced, no transposase coding domains could be identified within the internal regions of the elements. The data suggest that the Sol3 represent a heterogeneous family of nonautonomous transposable elements associated with an as-yet-unidentified autonomous transposon. Received: 18 September 1996 / Accepted: 11 March 1997  相似文献   

10.
While hundreds of novel microRNA (miRNA) genes have been discovered in the last few years alone, the origin and evolution of these non-coding regulatory sequences remain largely obscure. In this report, we demonstrate that members of a recently discovered family of human miRNA genes, hsa-mir-548, are derived from Made1 transposable elements. Made1 elements are short miniature inverted-repeat transposable elements (MITEs), which consist of two 37 base pair (bp) terminal inverted repeats that flank 6 bp of internal sequence. Thus, Made1 elements are nearly perfect palindromes, and when expressed as RNA they form highly stable hairpin loops. Apparently, these Made1-related structures are recognized by the RNA interference enzymatic machinery and processed to form 22 bp mature miRNA sequences. Consistent with their origin from MITEs, hsa-mir-548 genes are primate-specific and have many potential paralogs in the human genome. There are more than 3,500 putative hsa-mir-548 target genes; analysis of their expression profiles and functional affinities suggests cancer-related regulatory roles for hsa-mir-548. Taken together, the characteristics of Made1 elements, and MITEs in general, point to a specific mechanism for the generation of numerous small regulatory RNAs and target sites throughout the genome. The evolutionary lineage-specific nature of MITEs could also provide for the generation of novel regulatory phenotypes related to species diversification. Finally, we propose that MITEs may represent an evolutionary link between siRNAs and miRNAs.  相似文献   

11.
We report the cloning ofhermit, a member of thehAT family of transposable elements from the genome of the Australian sheep blowfly,Lucilia cuprina. Hermit is 2716 bp long and is 49% homologous to the autonomoushobo element,HFL1, at the nucleic acid level.Hermit has 15 bp terminal inverted repeats that share 10 bp with the terminal inverted repeats ofHFL1. Conceptual translation reveals a 583 residue open reading frame (ORF) that is 64% similar and 42% identical to theHFL1 ORF. However, the sequence of thehermit element contains two frameshifts within the putative ORF, indication thathermit is an inactive element. Analysis ofL. cuprina strains from within and outside Australia suggested thathermit is present as a single copy in all the genomes analysed.  相似文献   

12.
13.
Alfalfa with unstable anthocyanin pigmentation has been independently discovered on six occasions since 1958. Genetic studies showed that each of the six unstable stocks was due to an allele mutable at the basic anthocyanin locus C2 in alfalfa. The alleles are designated c2-m1 through c2-m6. Variegated phenotypes of m1, m2, and m3 are similar and express reversion from the recessive to the dominant state. This reversion produces streaks and sectors of pigment in flower petals and seeds that are otherwise white. Reversion occurs at various times in development and may result in periclinal chimeras. The c2-m4 allele is unique in that it arose during tissue culture, whereas the other mutables were discovered in plant populations. Interestingly, m4 is very stable in planta and only rarely produces a sectored flower, but is very unstable in vitro as measured by about 23% revertant plants regenerated from tissue cultures. Most m4 reversion occurs relatively early in development and results in completely pigmented in vitro revertants, and in large sectors on in planta revertants. Alleles m5 and m6 are phenotypically and genetically similar. Their flowers are basic purple with white streaks thus representing mutation from dominant purple to recessive white. White progeny of m5 and m6 are very stable both in planta and in vitro; reversion of white to purple was never observed. Thus, the loss of function of the dominant allele results in a stable recessive or a deficiency. The absolute stability of m5 white derivatives favors the deficiency model, because transposable element mutations might show reversion. Finally, several mutations are described that reoccur in the mutable populations. It is speculated that they are recent mutations due to transposition of transposable elements.  相似文献   

14.
Members of a novel Master family of class II transposons were identified in the carrot genome. Two elements, 2.5 kb long DcMaster1 and 4.4 kb long DcMaster-a, are characterized by 22 bp imperfect terminal inverted repeats and by 3 bp target site duplications. GenBank search revealed that related elements are also present in Medicago truncatula, including a 5.1 kb element MtMaster-a. Both DcMaster-a and MtMaster-a contain open reading frames encoding for putative transposases with the complete DDE domain typical for plant class II transposable elements belonging to PIF/Harbinger superfamily, where the Master elements form a distinct group. Less than 10 copies of the DcMaster element containing the DDE domain are present in genomes of carrot and other Apiaceae, but more copies with internal deletions or insertions may occur. DcMaster elements were associated with putative coding regions in 8 of 14 identified insertion sites. PCR amplification of carrot genomic DNA using a primer complementary to TIRs of DcMaster gave products <400 bp in size. We speculate that these may all represent a MITE-like family of transposable elements that we named Krak, present in the carrot genome in at least 3,600 copies. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession numbers DQ250792 to DQ250807 and DQ353734 to DQ353752.  相似文献   

15.
16.
Recent studies on transposable elements (TEs) have shed light on the mechanisms that have shaped their evolution. In addition to accumulating nucleotide substitutions over evolutionary time, TEs appear to be especially prone to genetic rearrangements and vertical transmissions across even distantly related species. As a consequence of replicating in host genomes, TEs have a significant mutational effect on their hosts. Although most TE-insertion mutations seem to exert a negative effect on host fitness, a growing body of evidence indicates that some TE-mediated genetic changes have become established features of host species genomes indicating that TEs can contribute significantly to organismic evolution.  相似文献   

17.
Deleterious transposable elements and the extinction of asexuals   总被引:4,自引:0,他引:4  
The genomes of virtually all sexually reproducing species contain transposable elements. Although active elements generally transpose more rapidly than they are inactivated by mutation or excision, their number can be kept in check by purifying selection if its effectiveness becomes disproportionately greater as their copy number increases. In sexually reproducing species, such synergistic selection can result from ectopic crossing-over or from homologous recombination under negative epistasis. In addition, there may be controls on transposon activity that are associated with meiosis. Because a sexual lineage that abandons sex must lack such mechanisms, it may be driven to extinction by the unchecked proliferation of deleterious transposons inherited from its sexual progenitor. An important component of the evolutionary advantage of sex over asex may therefore lie in the ability of sex, despite facilitating the spread of deleterious elements within interbreeding populations, also to restrain their intragenomic proliferation.  相似文献   

18.
19.
About maize transposable elements and development   总被引:16,自引:0,他引:16  
N V Fedoroff 《Cell》1989,56(2):181-191
  相似文献   

20.
Le Rouzic A  Dupas S  Capy P 《Gene》2007,390(1-2):214-220
Transposable elements are known to be “selfish DNA” sequences able to spread and be maintained in all genomes analyzed so far. Their evolution depends on the interaction they have with the other components of the genome, including genes and other transposable elements. These relationships are complex and have often been compared to those of species living and competing in an ecosystem. The aim of this current work is a proposition to fill the conceptual gap existing between genome biology and ecology, assuming that genomic components, such as transposable elements families, can be compared to species interacting in an ecosystem. Using this framework, some of the main models defined in the population genetics of transposable elements can then been reformulated, and some new kinds of realistic relationships, such as symbiosis between different genomic components, can then be modelled and explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号