首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interrogation of beta cell gene expression and function in vitro has squarely shifted over the years from the study of rodent tumorigenic cell lines to the study of isolated rodent islets. Primary islets offer the distinct advantage that they more faithfully reflect the biology of intracellular signaling pathways and secretory responses. Whereas the method of islet isolation using tissue dissociating enzyme (TDE) preparations has been well established in many laboratories1-4, variations in the consistency of islet yield and quality from any given rodent strain limit the extent and feasibility of primary islet studies. These variations often occur as a result of the crude partially purified TDEs used in the islet isolation procedure; TDEs frequently exhibit lot-to-lot variations in activity and often require adjustments to the dose of enzyme used. A small number of reports have used purified TDEs for rodent cell isolations5, 6, but the practice is not widespread despite the routine use and advantages of purified TDEs for human islet isolations. In collaboration with VitaCyte, LLC (Indianapolis, IN), we developed a modified mouse islet isolation protocol based on that described by Gotoh7, 8, in which the TDEs are perfused directly into the pancreatic duct of mice, followed by crude tissue fractionation through a Histopaque gradient9, and isolation of purified islets. A significant difference in our protocol is the use of purified collagenase (CIzyme MA) and neutral protease (CIzyme BP) combination. The collagenase was characterized by the use of a6 fluorescence collagen degrading activity (CDA) assay that utilized fluorescently labeled soluble calf skin fibrils as substrate6. This substrate is more predictive of the kinetics of collagen degradation in the tissue matrix because it relies on native collagen as the substrate. The protease was characterized with a sensitive fluorescent kinetic assay10. Utilizing these improved assays along with more traditional biochemical analysis enable the TDE to be manufactured more consistently, leading to improved performance consistency between lots. The protocol described in here was optimized for maximal islet yield and optimal islet morphology using C57BL/6 mice. During the development of this protocol, several combinations of collagenase and neutral proteases were evaluated at different concentrations, and the final ratio of collagenase:neutral protease of 35:10 represents enzyme performance comparable to Sigma Type XI. Because significant variability in average islet yields from different strains of rats and mice have been reported, additional modifications of the TDE composition should be made to improve the yield and quality of islets recovered from different species and strains.  相似文献   

2.
Many obstacles hinder the clinical application of pancreatic islet transplantation as a cure for diabetes mellitus. One of them is the suitable isolation method of sufficient number of healthy islets for transplantation. In this context, liberase enzyme was developed as a purified form of the traditional collagenase. It was the aim of this study to investigate the effect of liberase-digestion on the yield, function and viability of neonatal rat islets, and to compare the new enzyme with the collagenase. Glucose-stimulated insulin secretion was measured as indication of the function, insulin content as indication for the synthetic activity of islet cells and DNA as an indication of cell viability. The results showed no difference between islets isolated either with collagenase or liberase. Glucose stimulated similarly the insulin secretion in both. Stimulation index tended, without significance, to be higher (55%) in liberase-isolated islets compared with the collagenase islets (49%). The viability of both was similar. The insulin synthesis (content) tended also to be better in liberase-isolated islets. It could be concluded that liberase could be non-significantly preferred in the isolation of neonatal rat islets in comparison with collagenase.  相似文献   

3.
Summary The purpose of this study was to develop a nonenzymatic method of isolating adult islets using atrophied pancreata from copper-deficient rats and to analyze their morphologic characteristics and behavior in culture. This unusual model of isolation was studied because islets remain intact in the course of dietary copper deficiency while the acinar glandular component of the pancreas undergoes selective atrophy and lipomatosis. Small fragments containing islets were readily microdissected from atrophied glands and placed in culture. Within 24 h the fragments congealed into small irregular- to spherical-shaped masses within which the darker profile of islets could be distinguished. Within a period of 3 to 5 d, islet tissue began to bud from the lipocytic mass until by Day 7 spherical aggregates of intact islet tissue separated from the residual fragments. Subsequent to further in vitro treatment, these islets could be maintained as free viable spherical masses if periodically agitated, as attached stationary islets which developed monolayer growth if left undisturbed and as aggregated masses of islet tissue forming megaislets if combined in small groups. Grouped islets treated with actinomycin D and cycloheximide did not exhibit aggregation when incubated with these inhibitors. This suggests that megaislet formation was an active process requiring protein-RNA synthesis rather than passive clumping or aggregation that can accompany metabolically altered or dying islets undergoing cellular shedding and adhesion. Immunohistochemical localization demonstrated that insulin, glucagon, somatostatin, and pancreatic polypeptide-immunoreactive cell types were present within the islets derived from this technique. The cellular topography of these islets was not unlike that described by others for islets cultured from enzymatic isolation. This culture model may serve as a resource for mature, viable islets isolated without mechanical or enzymatic disaggregation which can have attenuating effects on islet function. This work was supported by a research grant from the Diabetes Research and Education Foundation.  相似文献   

4.
Rejection of islet allografts is generally explained by immunologic problems, due to both cellular and antibody mechanisms. But another great problem is in the isolation of intact and viable islets of Langerhans: it is necessary to use a good method of pancreas distention, to determine the optimal concentration of collagenase for digestion, to select an effective technique for purifying the islets. This study correlates the morphology of isolated pancreatic islets of rats and dogs with secretion of insulin. The islets are incubated in a perifusion system and are tested during four periods; the glucose concentrations of the perifusion fluid are: 5.5 mM during the initial 70 min. period, 16.5 mM during the second 60 min. period, 5.5 mM during the third 60 min. period and 16.5 during the fourth 50 min. period. This "double glucose stimulation" is a good test of islet viability. The intact, viable isolated islets showed a significant increase of insulin secretion during the two 16.5 mM glucose periods. Damaged islets with some little morphologic alterations after showed a good insulin release during the first glucose stimulation, but a very poor insulin response to glucose during the second stimulation period.  相似文献   

5.
Human and rodent islets differ substantially in several features, including architecture, cell composition, gene expression and some aspects of insulin secretion. Mouse pancreatic islets are highly vascularized with interactions between islet endothelial and endocrine cells being important for islet cell differentiation and function. To determine whether human islets have a similar high degree of vascularization and whether this is altered with diabetes, we examined the vascularization of islets from normal human subjects, subjects with type 2 diabetes (T2D), and normal mice. Using an integrated morphometry approach to quantify intra-islet capillary density in human and mouse pancreatic sections, we found that human islets have five-fold fewer vessels per islet area than mouse islets. Islets in pancreatic sections from T2D subjects showed capillary thickening, some capillary fragmentation and had increased vessel density as compared with non-diabetic controls. These changes in islet vasculature in T2D islets appeared to be associated with amyloid deposition, which was noted in islets from 8/9 T2D subjects (and occupied 14% ± 4% of islet area), especially around the intra-islet capillaries. The physiological implications of the differences in the angioarchitecture of mouse and human islets are not known. Islet vascular changes in T2D may exacerbate β cell/islet dysfunction and β cell loss.  相似文献   

6.
Islet transplantation represents a viable treatment for type 1 diabetes. However, due to loss of substantial mass of islets early after transplantation, islets from two or more donors are required to achieve insulin independence. Islet-extracellular matrix disengagement, which occurs during islet isolation process, leads to subsequent islet cell apoptosis and is an important contributing factor to early islet loss. In this study, we developed a fibroblast populated collagen matrix (FPCM) as a novel scaffold to improve islet cell viability and function post-transplantation. FPCM was developed by embedding fibroblasts within type-I collagen and used as scaffold for islet grafts. Viability and insulin secretory function of islets embedded within FPCM was evaluated in vitro and in a syngeneic murine islet transplantation model. Islets embedded within acellular matrix or naked islets were used as control. Islet cell survival and function was markedly improved particularly after embedding within FPCM. The composite scaffold significantly promoted islet isograft survival and reduced the critical islet mass required for diabetes reversal by half (from 200 to 100 islets per recipient). Fibroblast embedded within FPCM produced fibronectin and growth factors and induced islet cell proliferation. No evidence of fibroblast over-growth within composite grafts was noticed. These results confirm that FPCM significantly promotes islet viability and functionality, enhances engraftment of islet grafts and decreases the critical islet mass needed to reverse hyperglycemia. This promising finding offers a new approach to reducing the number of islet donors per recipient and improving islet transplant outcome.  相似文献   

7.
We have previously demonstrated that adenoviral gene transfer of the NF-kappaB inhibitor IkappaB to human islets results in protection from interleukin (IL)-1beta-mediated dysfunction and apoptosis. Here we report that human and mouse islets can be efficiently transduced by a cationic peptide transduction domain (PTD-5) without impairment of islet function. PTD mediated delivery of a peptide inhibitor of the IL-1beta-induced IkappaB kinase (IKK), derived from IKKbeta (NBD; Nemo-binding domain), and completely blocked the detrimental effects of IL-1beta on islet function and NF-kappaB activity, in a similar manner to Ad-IkappaB. We also demonstrate that mouse islets can be transduced in situ by infusion of the transduction peptide through the bile duct prior to isolation, resulting in 40% peptide transduction of the beta-cells. Delivery of the IKK inhibitor transduction fusion peptide (PTD-5-NBD) in situ to mouse islets resulted in improved islet function and viability after isolation. These results demonstrate the feasibility of using PTD-mediated delivery to transiently modify islets in situ to improve their viability and function during isolation, prior to transplantation.  相似文献   

8.
The maintenance of viable and functional islets is critical in successful pancreatic islet transplantation from cadaveric sources. During the isolation procedure, islets are exposed to a number of insults including ischemia, oxidative stress and cytokine injury that cause a reduction in the recovered viable islet mass. A novel approach was designed in which streptozotocin (STZ)-damaged rat pancreatic islets (rPIs) were indirectly cocultured with rat bone marrow-derived mesenchymal stem cells (rBM-MSCs) to maintain survival of the cultured rPIs. The results indicated that islets cocultured with rBM-MSCs secreted an increased level of insulin after 14 days, whereas non-cocultured islets gradually deteriorated and cell death occurred. The cocultivation of rBM-MSCs with islets and STZ-damaged islets showed the expression of IL6 and transforming growth factor-β1 in the culture medium, besides the expression of the antiapoptotic genes (Mapkapk2, Tnip1 and Bcl3), implying the cytoprotective, anti-inflammatory and antiapoptotic effects of rBM-SCs through paracrine actions.  相似文献   

9.
WNIN/Ob, a mutant rat strain, developed at the National Center for Laboratory Animal Sciences (NCLAS) facility of National Institute of Nutrition (NIN), is a new animal model to study the metabolic syndrome. These animals have 47% fat in their body and isolation of islets from these animals were compounded due to the formation of amorphous viscous and jelly like material which reduced the islet yield. However, islets isolated from WNIN adult (≥12 months) control rats gave a good islet recovery, under standard isolation procedures using collagenase digestion. In the present study we optimized culture conditions in WNIN/Ob rats to isolate islets with higher yield, and also established primary islet cell cultures from these mutant rats, retaining cellular integrity and functionality.  相似文献   

10.
Rat islet isolation yield and function are donor strain dependent   总被引:1,自引:0,他引:1  
Effective rat islet isolation is pertinent for successful islet transplantation and islet studies in vitro. To determine which rat strain yields the highest number of pure and functional islets, four commonly used rat strains were compared with regard to islet yield, islet purity and islet function. Secretory responses were assessed by stimulation with glucose, and by stimulation with glucose plus 3-isobutyl-1-methylxanthine (IBMX). We show that rat islet function and isolation yield are donor strain dependent. Albino Oxford (AO) rats donated twice as many islets than Wistar, Lewis and Sprague Dawley (SD) rats. Stimulation with glucose plus IBMX resulted in an average five-fold increase of the stimulation index of AO, Lewis, Wistar and SD rats compared to stimulation with glucose only. AO islets had improved secretory responses after a one-week culture period, but required the addition of IBMX to glucose to elicit a distinguished stimulated insulin secretion after 2 days of culture. Islets from SD rats showed inferior results with regard to purity immediately after isolation and with regard to function after short- and after long-time culture. Because Lewis islets possessed the highest secretory response to glucose (without IBMX) immediately after isolation, Lewis rats may be preferred as islet donors for immediate use. The addition of IBMX to glucose for in vitro functional testing is recommended because it elicits high insulin secretory responses of islets regardless of the rat strain. AO rats are preferred for culture experiments since the number of experimental animals is reduced two-fold compared to Lewis, Wistar and SD rats.  相似文献   

11.
Optimizing Conditions for Rat Pancreatic Islets Isolation   总被引:2,自引:0,他引:2  
Many procedures have been described for rat pancreatic islet isolation. Several factors contribute to the pancreatic islet isolation outcome. One of the main problems in islet isolation procedure is the formation of a viscouse, gellike structure during collagenase digestion which entraps the free islets and decrease islet yield after density gradient purification. This issue has not been addressed in most techniques described for rat islet isolation. We examined effect of various factors to eliminate formation of gellike material and improve the islets yields. Islet isolation was performed on 26 adult male Wistar Albino rats weighing between 280 and 350 g. We have observed that several factors affect pancreatic islet isolation. Optimum Collagenase enzyme concentration, maintaining pH range between 7.7 and 7.9 in digestion solution, incubation temperature at 38±1 °C and addition of Calcium ion decreased the formation of gellike materials and increased islet yield. Addition of Glycerol as a gelatin solvent has also been helpful in the reduction or complete elimination of gellike material. Precise optimization of rat islet isolation procedure is useful to improve the islet yield in islet transplantation studies.  相似文献   

12.
13.
Immunoprotection of pancreatic islets for successful allo- or xenotransplantation without chronic immunosuppression is an attractive, but still elusive, approach for curing type 1 diabetes. It was recently shown that, even in the absence of fibrotic overgrowth, other factors, mainly insufficient nutrition to the core of the islets, represent a major barrier for long-term survival of intraperitoneal microencapsulated islet grafts. The use of dispersed cells might contribute to solve this problem due to the conceivably easier nutritional support to the cells. In the present study, purified bovine islets, prepared by collagenase digestion and density gradient purification, and dispersed bovine islet cells, obtained by trypsin and DNAsi (viability > 90%), were entrapped into either 2% (w/v) sodium alginate (commonly used for encapsulation purposes) or (dispersed islet cells only) macroporous gelatin microcarriers (CulthiSpher-S, commonly used for the production of biologicals by animal cells). Insulin release studies in response to glucose were performed within 1 week and after 1 month from preparation of the varying systems and showed no capability of dispersed bovine islet cells within sodium alginate microcapsules to sense glucose concentration changes. On the contrary, bovine islet cells entrapped in CulthiSpher-S microcarriers showed maintained capacity of increasing insulin secretion upon enhanced glucose concentration challenge. In this case, insulin release was approximately 60% of that from intact bovine islets within sodium alginate microcapsules. MTT and hematoxylineosin staining of islet cell-containing microcarriers showed the presence of viable and metabolically active cells throughout the study period. This encouraging functional data prompted us to test whether the microcarriers could be immunoisolated for potential use in transplantation. The microcarriers were embedded within 3% sodium alginate, which was then covered with a poly-L-lysine layer and a final outer alginate layer. Maintained insulin secretion function of this system was observed, which raises the possibility of using microencapsulated CulthiSpher-S microcarriers, containing dispersed pancreatic islet cells, in experimental transplantation studies.  相似文献   

14.
Pancreatic islet transplantation is a promising therapy for Type I Diabetes. For many years the method used worldwide for islet purification in both rodent and human islet isolation has been Ficoll-based density gradients, such as Histopaque. However, it is difficult to purify islets in laboratories with staff limitations when large scale isolations are required. We hypothesized that filtration could be a more simple and fast alternative to obtain good quality islets. Four separate islet isolations were performed per method, comparing filtration and Histopaque purification with handpicking as the gold standard method for islet purity. Different parameters of quality were assessed: yield in number of islets per pancreas, purity by dithizone staining, viability by Fluorescein Diacetate/Propidium Iodide vital staining and in vitro functionality assessed by Glucose Stimulated Insulin Secretion. Time efficiency and cost were also analyzed. The overall quality of the islets obtained both by Histopaque and filtration was good. Filtration saved almost 90 % of the time consumed by Histopaque purification, and was also cheaper. However, one-third of the islets were lost. Since human and rodent islets share similar size but different density, filtration appears as a purification method with potential interest in translation to clinic.  相似文献   

15.
Studying the response of islet cells to glucose stimulation is important for understanding cell function in healthy and disease states. Most functional assays are performed on whole islets or cell populations, resulting in averaged observations and loss of information at the single cell level. We demonstrate methods to examine calcium fluxing in individual cells of intact islets in response to multiple glucose challenges. Wild-type mouse islets predominantly contained cells that responded to three (out of three) sequential high glucose challenges, whereas cells of diabetic islets (db/db or NOD) responded less frequently or not at all. Imaged islets were also immunostained for endocrine markers to associate the calcium flux profile of individual cells with gene expression. Wild-type mouse islet cells that robustly fluxed calcium expressed β cell markers (INS/NKX6.1), whereas islet cells that inversely fluxed at low glucose expressed α cell markers (GCG). Diabetic mouse islets showed a higher proportion of dysfunctional β cells that responded poorly to glucose challenges. Most of the failed calcium influx responses in β cells were observed in the second and third high glucose challenges, emphasizing the importance of multiple sequential glucose challenges for assessing the full function of islet cells. Human islet cells were also assessed and showed functional α and β cells. This approach to analyze islet responses to multiple glucose challenges in correlation with gene expression assays expands the understanding of β cell function and the diseased state.  相似文献   

16.
The pancreatic islets of Langerhans, and especially the insulin-producing beta cells, play a central role in the maintenance of glucose homeostasis. Alterations in the expression of multiple proteins in the islets that contribute to the maintenance of islet function are likely to underlie the pathogenesis of types 1 and 2 diabetes. To identify proteins that constitute the islet proteome, we provide the first comprehensive proteomic characterization of pancreatic islets for mouse, the most commonly used animal model in diabetes research. Using strong cation exchange fractionation coupled with reversed phase LC-MS/MS we report the confident identification of 17,350 different tryptic peptides covering 2612 proteins having at least two unique peptides per protein. The data set also identified approximately 60 post-translationally modified peptides including oxidative modifications and phosphorylation. While many of the identified phosphorylation sites corroborate those previously known, the oxidative modifications observed on cysteinyl residues reveal potentially novel information suggesting a role for oxidative stress in islet function. Comparative analysis with 15 available proteomic data sets from other mouse tissues and cells revealed a set of 133 proteins predominantly expressed in pancreatic islets. This unique set of proteins, in addition to those with known functions such as peptide hormones secreted from the islets, contains several proteins with as yet unknown functions. The mouse islet protein and peptide database accessible at (http://ncrr.pnl.gov), provides an important reference resource for the research community to facilitate research in the diabetes and metabolism fields.  相似文献   

17.
Rat islets, rat insulinoma cells and islets from three different mouse strains were labelled with 35S-cysteine and/or 35S-methionine. Detergent lysates of the cells were subjected to immunoprecipitation with sera from 5 newly diagnosed diabetic children and 5 control sera. The immunoprecipitates were analysed by sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis followed by autoradiography. One of the sera immunoprecipitated a protein of Mr 64K from lysates of rat islets, rat insulinoma cells, A. TH and NMRI but not CBA/H mouse islets. This protein was not consistently immunoprecipitated by the other diabetic sera, however, it was never found with control sera nor was it detected in rodent lymphocytes. Some proteins of lower molecular weight (59K, 57K, 40K, 29K) were specifically immunoprecipitated by one or more diabetic sera from some of the rodent islet cell preparations. It is concluded that rodent islet cells contain a protein of Mr 64K which may be antigenically related to a 64K protein previously detected in immunoprecipitates of human islet cells with the same diabetic sera. The variable results with rat and mouse islet cell material suggest that the level of cross-reactivity is low. Further studies are needed to clarify whether the lower molecular components detected in some immunoprecipitates represent other antigenic determinants or degradation products of the 64K protein.  相似文献   

18.
Culture of isolated rodent islets is widely used in diabetes research to assess different endpoints, including outcomes requiring histochemical staining. As islet yields during isolation are limited, we determined the number of islets required to obtain reliable data by histology. We found that mean values for insulin-positive β-cell area/islet area, thioflavin S-positive amyloid area/islet area and β-cell apoptosis do not vary markedly when more than 30 islets are examined. Measurement variability declines as more islets are quantified, so that the variability of the coefficient of variation (CV) in human islet amyloid polypeptide (hIAPP) transgenic islets for β-cell area/islet area, amyloid area/islet area and β-cell apoptosis are 13.20% ± 1.52%, 10.03% ± 1.76% and 6.78% ± 1.53%, respectively (non-transgenic: 7.65% ± 1.17% β-cell area/islet area and 8.93% ± 1.56% β-cell apoptosis). Increasing the number of islets beyond 30 had marginal effects on the CV. Using 30 islets, 6 hIAPP-transgenic preparations are required to detect treatment effects of 14% for β-cell area/islet area, 30% for amyloid area/islet area and 23% for β-cell apoptosis (non-transgenic: 9% for β-cell area/islet area and 45% for β-cell apoptosis). This information will be of value in the design of studies using isolated islets to examine β cells and islet amyloid.  相似文献   

19.
Clinical studies have demonstrated that islet transplantation may be a useful procedure to replace beta cell function in patients with Type 1 diabetes. Islet transplantation faces many challenges, including complications associated with the procedure itself, the toxicity of immunosuppression regimens, and to the loss of islet function and insulin-independence with time. Despite the current successes, and residual challenges, these studies have pointed out an enormous scarcity of islet tissue that precludes the use of islet transplantation in a clinical setting on a wider scale. To address this problem, many research groups are trying to identify different islet growth factors and intracellular molecules capable of improving islet graft survival and function, therefore reducing the number of islets needed for successful transplantation. Among these growth factors, hepatocyte growth factor (HGF), a factor known to improve transplantation of a variety of organs/cells, has shown promising results in increasing islet graft survival and reducing the number of islets needed for successful transplantation in four different rodent models of islet transplantation. Protein kinase B (PKB)/Akt, a pro-survival intracellular signaling molecule is known to be activated in the beta cell by several different growth factors, including HGF. PKB/Akt has also shown promising results for improving human islet graft survival and function in a minimal islet mass model of islet transplantation in diabetic SCID mice. Increasing our knowledge on how HGF, PKB/Akt and other emerging molecules work for improving islet transplantation may provide substrate for future therapeutic approaches aimed at increasing the number of patients in which beta cell function can be successfully replaced.  相似文献   

20.
Basement membranes (BM) in the pancreatic islet are important for islet survival and function, but supplementation of isolated islets with these components have had limited success. Currently, little is understood about which BM components and proteoglycans are essential to maintaining islet homeostasis. This study therefore aimed to characterize the BM components and proteoglycans of the islet in the mouse, rat and rabbit species. The BM of the mouse islet was varied in continuity around the islet and was discontinuous in the rat and rabbit islets. The BM consisted of collagen IV, laminin, fibronectin and perlecan in the mouse and was in tight association with the underlying islet endothelium. None of these components were found directly associated with the β-cells in tissue and in the MIN6 β-cell line. In contrast, heparan sulfate (HS) was distributed throughout the islet in all three species in a pattern distinctly different to that of perlecan and was observed mainly on the β-cells and not the α-cells in the mouse and rat. Similarly, syndecan-4 showed a staining pattern almost identical to that of HS and was mostly observed on the β-cells, not α-cells, in the mouse and rat. Both HS and syndecan-4 were also observed in the MIN6 β-cell line. The mouse islet and MIN6 syndecan-4 were both ~37?kDa in size, after deglycosylation with heparitinase. These results indicate that syndecan-4 may play an important role in β-cell function and that the cell-surface HS proteoglycans may be the missing link to maintaining islet longevity after isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号