首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
LéJohn, Herbert B. (Purdue University, Lafayette, Ind.), and James S. Lovett. Ribonucleic acid and protein synthesis in Rhizophlyctis rosea zoospores. J. Bacteriol. 91:709-717. 1966.-The uniflagellate zoospores of Rhizophlyctis rosea display active motility and a high endogenous respiratory metabolism, but neither growth nor net ribonucleic acid (RNA) or protein synthesis can be measured by ordinary procedures. Nevertheless, synthesis can be detected with isotopic precursors. Uracil-C(14) is incorporated slowly into both the soluble and ribosomal RNA. Analysis of zoospore extracts (on diethylaminoethyl cellulose columns or sucrose gradients) after various periods of labeling suggested that most of the uracil incorporation represents slow synthesis of ribosomal precursor RNA and, ultimately, ribosomes. Actinomycin D caused an 80% inhibition of uracil incorporation. The most rapidly labeled RNA was susceptible to extensive degradation in cells treated with actinomycin, but the percentage of stable RNA increased with the time of incorporation before addition of the antibiotic. Neither the effects of actinomycin nor the results of chase experiments have established unequivocally the existence of turnover or the presence of a short-lived "messenger" fraction in motile spores. Both leucine and methionine were slowly incorporated into a spectrum of cellular proteins. The methyl group of C(14)-methylmethionine also served as a methyl donor for the methylation of soluble RNA but not of ribosomal RNA. The observations that some of the newly synthesized RNA and protein occur in the intact 82S ribosomes and that actinomycin inhibits the low level of protein synthesis provide some indirect evidence for a very low rate of "messenger" synthesis and turnover in zoospores.  相似文献   

2.
RNA species from the haploid gametophyte generation of the moss Tortula ruralis exhibit typical eukaryotic characteristics. The major ribosomal and soluble RNA species are stable during drying and rehydration. RNA synthesis occurs rapidly on reintroduction of the moss to water and incorporation into high molecular weight RNA fractions was detected after 20 to 30 minutes of rehydration and into low molecular weight fractions after 30-60 minutes. Newly synthesized ribosomal RNA was detected in ribosomes within 2 hours of rehydration, but not in polysomes. It is apparent that the ribosomal and transfer RNA conserved during desiccation is involved in the re-establishment of early protein synthesis during subsequent rehydration and that, initially, there is no requirement for newly synthesized material.  相似文献   

3.
The Kinetics of the Synthesis of Ribosomal RNA in E. coli   总被引:3,自引:0,他引:3       下载免费PDF全文
The kinetics of the synthesis of ribosomal RNA in E. coli has been studied using C14-uracil as tracer. Two fractions of RNA having sedimentation constants between 4 and 8S have kinetic behavior consistent with roles of precursors. The first consists of a very small proportion of the RNA found in the 100,000 g supernatant after ribosomes have been removed. It has been separated from the soluble RNA present in much larger quantities by chromatography on DEAE-cellulose columns. The size and magnitude of flow through this fraction are consistent with it being precursor to a large part of the ribosomal RNA.

A fraction of ribosomal RNA of similar size is also found in the ribosomes. This fraction is 5 to 10 per cent of the total ribosomal RNA and a much higher proportion of the RNA of the 20S and 30S ribosomes present in the cell extract. The rate of incorporation of label into this fraction and into the main fractions of ribosomal RNA of 18S and 28S suggests that the small molecules are the precursors of the large molecules. Measurements of the rate of labeling of the 20, 30, and 50S ribosomes made at corresponding times indicate that ribosome synthesis occurs by concurrent conversion of small to large molecules of RNA and small to large ribosomes.

  相似文献   

4.
During vegetative growth of the cellular slime mold Dictyostelium discoideum, RNA is rapidly labeled by radioactive precursor and both the 25 S and the 17 S ribosomal RNA species appear in the cytoplasm 6–7 min after the onset of labeling. Thirty minutes after further incorporation of radioactive RNA precursors has been blocked, less than 10% of the label in RNA is associated with the nuclear fraction. After aggregation of the slime mold amoebae, RNA appears in the cytoplasm at a reduced rate, the small ribosomal subunit appearing in the cytoplasmic fraction more slowly than the larger ribosomal subunit. Some labeled RNA remains in the nuclei of developing cells long after the incorporation of 3H-uridine is blocked.  相似文献   

5.
The biosynthesis of proteins, ribosomal RNA and other components of the rat liver protein-synthesizing system during the reparation and subsequent activation of translation inhibited by a sublethal dose cycloheximide (CHI, 3 mg/kg) was studied. It was found that the incorporation of labeled precursors into proteins and ribosomal rRNA isolated from free and membrane-bound polysomes is repaired already 3 hours after CHI injection. 6-9 hours thereafter, the level of component labeling reaches control values, whereas the total protein biosynthesis is retarded. After 12-24 hours, marked stimulation of ribosome biosynthesis and the integration of ribosomes into polysomes are observed together with an asymmetric accumulation of excessive amounts of newly synthesized 40S subunits into polysomes 12 hours after CHI infection. The putative mechanisms of the activation of expression of the part of the genome responsible for protein and ribosomal rRNA synthesis as well as for the synthesis of other components of the protein-synthesizing system are discussed.  相似文献   

6.
The synthesis and assembly of vimentin was studied in erythroid cells from 10-d-old chicken embryos. After various periods of [35S]methionine incorporation, cells were lysed in a Triton X-100-containing buffer and separated into a soluble and an insoluble (cytoskeletal) fraction. Analysis of these two fractions by two-dimensional gel electrophoresis shows that vimentin is almost exclusively present in the cytoskeletal fraction and that newly synthesized vimentin is rapidly incorporated into this fraction. However, after a short pulse-labeling period, a prominent labeled protein at the position of vimentin is present in the soluble fraction. By immunoautoradiography and immunoprecipitations with vimentin antibodies, this protein was identified as vimentin. The vimentin in the soluble fraction is not sedimented by high speed centrifugation, suggesting that it does not consist of short filaments. After different pulse-labeling periods, assembly of newly synthesized vimentin in the cytoskeletal fraction increases linearly, while the radioactivity in the soluble vimentin remains constant. During a 2-h pulse-chase period, the vimentin in the soluble fraction is chased into the cytoskeletal fraction, with a half-life of 7 min. These results suggest that in chicken embryo erythroid cells newly synthesized vimentin is rapidly assembled into filaments from a soluble precursor.  相似文献   

7.
RIBOSOME SYNTHESIS IN TETRAHYMENA PYRIFORMIS   总被引:9,自引:5,他引:4       下载免费PDF全文
The cellular site of synthesis of ribosomal RNA in Tetrahymena pyriformis was studied by analyzing the purified nuclear and cytoplasmic RNA from cells pulse labeled with uridine-3H. The results of studies using zonal centrifugation in sucrose density gradients show that the ribosomal RNA is synthesized in the nucleus as a large precursor molecule sedimenting at 35S. The 35S molecule undergoes rapid transformation through two main nuclear intermediates, sedimenting at about 30S and 26S. The smaller ribosomal RNA (17S) appears first in the cytoplasm and it seems to be absent from the nucleus. The apparent delay in the appearance of the larger ribosomal RNA (26S) in the cytoplasm is due to the presence of a larger pool of its precursors in the nucleus as indicated by pulse-chase experiments. The newly synthesized ribosomal RNA's appear in the cytoplasm as discrete 60S and 45S ribonucleoprotein particles, before their incorporation into the polysomes.  相似文献   

8.
Studies of newly synthesized ribosomal ribonucleic acid of Escherichia coli   总被引:6,自引:2,他引:4  
1. RNA synthesized by Escherichia coli during one-hundredth of the generation time contains two fractions distinguishable by hybridization with homologous DNA. One fraction, approximately 30% of the newly synthesized RNA, did not compete with ribosomal RNA, being apparently messenger RNA. The other fraction, approximately 70% of the newly made RNA, hybridized as ribosomal RNA. These values are comparable with previous estimates (McCarthy & Bolton, 1964; Pigott & Midgley, 1968). 2. Hybridization-competition experiments showed that the newly made RNA associated with 70s ribosomes and larger ribosome aggregates was a mixture of ribosomal RNA and messenger RNA, whereas that associated with nascent ribosomal subunits consisted exclusively of ribosomal RNA. This observation provides means by which newly synthesized ribosomal RNA can be isolated free from messenger RNA. 3. Newly made ribosomal RNA in nascent ribosomal subunits was sensitive to shear under conditions where ribosomal RNA in mature ribosomes was shear-resistant. Thus, when RNA was extracted from cells of E. coli disrupted by mechanical means, newly made ribosomal RNA appeared heterogeneous in size, sedimenting as a broad peak extending from 8s to 16s. 4. Newly synthesized ribosomal RNA in nascent ribosomal subunits was rapidly degraded in the presence of actinomycin D and during glucose starvation. 5. Newly synthesized ribosomal RNA stimulated amino acid incorporation in a system synthesizing protein in vitro to the same extent as the RNA which contained the messenger RNA fraction.  相似文献   

9.
The effect of illumination on the incorporation of labeled precursors into RNA of dark-grown maize (Zea mays) leaves was studied using either 32P-phosphate or double labeling with 14C- and 3H-uridine. In the dark, label was preferentially incorporated into etioplast ribosomal RNAs. Incorporation into this fraction and into lower molecular weight fractions was strongly and preferentially stimulated by light during the first 2 hours of illumination. The effect persisted after illumination was terminated. The possibility that light-induced alterations in plastid ribosomal RNA metabolism may not be required for chlorophyll accumulation in maize is discussed.  相似文献   

10.
RNA synthesis in response to exogenous nucleoside precursors was studied in a suspension culture of rose cells. Exponentially growing and resting cells were prelabeled with [3H] uridine, an excess of unlabeled uridine added, and subsequent isotopic incorporation into nuclear and ribosomal fractions measured. The data were compared to control values in cells continuously labeled in the absence of unlabeled uridine. Addition of uridine to the growing culture reduced the further uptake, and incorporation of [3H] uridine into RNA. In contrast, in resting cells, the addition of uridine (or, purine nucleosides) enhanced the apparent utilization of [3H] uridine in RNA synthesis by 2- to 4-fold.  相似文献   

11.
In light-grown wheat (Triticum aestivum L.) seedlings, the amount of chloroplast and cytoplasmic ribosomal RNA increased to a maximum in the first leaf near the end of its growth and declined by about 60% in the following 3 days. While total ribosomal RNA was declining, labeled uracil was still incorporated into cytoplasmic ribosomal RNA, but the rate of incorporation into chloroplast ribosomal RNA fell by more than 80%, as did the incorporation of labeled leucine into fraction I protein. Either there is greater replacement of cytoplasmic ribosomal RNA than chloroplast ribosomal RNA in mature leaves, or chloroplasts are able to repress the incorporation of exogenous precursor when there is no net synthesis of RNA.  相似文献   

12.
Using pulse-chase conditions in culture we have investigated the incorporation of 3H-leucine into tubulin of isolated oviducts from 5 day-old mice. Label appears in soluble, particulate and axonemal fractions minutes after incubation. In the latter two fractions, but not in the soluble fraction, this label is rapidly diluted under chase conditions. The data do not fit a simple model of sequential transfer of radioactively labeled, newly synthesized tubulin from a soluble fraction through centriole precursors to assembled ciliary axonemes.  相似文献   

13.
Experiments were conducted to determine the effect of feeding diets containing leucine-rich proteins on in vitro protein synthesis in porcine muscle. Swine (10 kg initial weight) were fed for 4 weeks diets composed mainly of corn gluten meal, corn and soybean meal, and containing a total of 2.00, 2.33, 2.92, 3.12, 3.53, and 4.01% leucine. At the end of the growing period, six swine fed each diet were killed and samples of biceps femoris, longissimus dorsi, and triceps brachii were excised. Incorporation of [14C]phenylalanine into newly synthesized protein was measured using a cell-free in vitro system following recombination of purified soluble protein and ribosomal fractions. The feeding of diets containing increasing amounts of leucine-rich protein increased the free leucine concentration in plasma and skeletal muscle. There was no significant effect of diet on incorporation of [14C]phenylalanine into muscle protein following simple recombination of soluble protein and ribosomal fractions from the same tissues. Combination of muscle soluble protein from animals fed 2.00% leucine with ribosomal fractions of animals fed increasing quantities of leucine-rich protein, however, indicated increased protein synthetic activity of the ribosomal fraction in all muscles tested. Protein synthetic activity of the soluble protein fraction was not affected by diet. It was concluded that the feeding of leucine-rich dietary proteins beyond requirements for maximal rate of growth can increase the protein synthetic potential of porcine muscle cells although whole body growth is depressed.  相似文献   

14.
Isolated cells from Xenopus laevis neurulae were labeled, and the RNAs extracted from their nuclear and soluble cytoplasmic fractions were analyzed on polyacrylamide gels. In the soluble cytoplasm, 4S RNA emerged very rapidly, and this was immediately followed by the emergence of poly(A)-containing RNA and 18S ribosomal RNA. In contrast, the emergence of 28S ribosomal RNA was delayed by about 2 hr. The size distribution of cytoplasmic poly(A)-containing RNA was much smaller as compared to that of nuclear poly(A)-containing RNA. These results indicate that the newly synthesized RNAs in Xenopus neurula cells are transported from the nucleus to the cytoplasm in a characteristic sequence.  相似文献   

15.
Embryos of Xenopus laevis at stage 6 were labeled with 14CO2 for 4 hr and then allowed to develop under nonradioactive conditions until they reached stage 9, 10, 11 or 12. RNA was extracted and electrophoresed on a polyacrylamide-agarose gel. From the pattern of newly synthesized RNAs, the incorporation into 18S and 28S ribosomal RNAs was measured. At the same time, the specific radioactivity of nucleoside triphosphates in the acid-soluble fraction was determined. On the basis of the results obtained, the absolute amounts of the RNAs synthesized were calculated. The results show that the synthesis of the ribosomal RNAs begins, or is at least markedly activated, around stage 10. Moreover, cytological examination has shown that cells with nucleolated nuclei appeared between stages 9 and 10 and increased thereafter.
Thus, from the results of these studies along two different lines, it can safely be concluded that the initiation of 18S and 28S RNA synthesis takes place around stage 10.  相似文献   

16.
The accumulation of labeled phosphorus into newly synthesized nucleic acids or peanut cotyledon slices incubated with chloramphenicol, puromycin, or 2,4-dichlorophenoxyacetic acid (2,4-D) was reduced. Promotion of nucleic acid synthesis was not noted by any of these chemicals. Chloramphenicol completely inhibited the synthesis of the DNA-RNA fraction at 1.25 × 10−3 m while soluble and ribosomal RNA was inhibited by 70% and 80%, respectively. At the same concentration messenger RNA was inhibited by only 40%. These effects suggest that chloramphenicol inhibit nucleic acid synthesis in peanut cotyledons in a differential manner. Similar results were noted for DNA at low concentrations of 2,4-D. However, at high concentrations of 2,4-D, DNA as well as RNA fractions were inhibited in a similar manner at a given concentration. Puromycin did not differentially inhibit nucleic acid synthesis except at 2 × 10−3 m where DNA was least inhibited.  相似文献   

17.
The in vitro synthesis of RNA in the human placental tissue, incubated in organ culture, was investigated. We followed the synthesis of the poly A(-) and poly A(+) RNA fractions, and investigated the distribution of the newly synthesized RNA among the subcellular fractions isolated from first and third trimester placentas.The poly A(-) RNA was the major fraction of the RNA synthesized in vitro. The incorporation of [3H]uridine into the poly A(+) RNA fraction was very low.As protein synthesis occurred during the entire incubation period, we suggest the presence of a pool of mRNA molecules in the form of mRNP particles.  相似文献   

18.
The labeling of RNA in young and adult rat brain has been studied by measuring in vitro (tissue slices incubation) the incorporation of labeled uridine into RNA of total tissue and of the various subcellular fractions purified from cerebral hemispheres of 1- and 10-month-old rats. Gel electrophoretic analysis of the newly synthesized nuclear and microsomal RNA was also accomplished. An active metabolism of RNA in adult animals was found; moreover, distinct differences in ribosomal RNA processing in cerebral hemispheres of 1- and 10-month-old rats, with a more rapid processing in the brain of adult animals, were obtained.  相似文献   

19.
RAPID TRANSPORT OF FUCOSYL GLYCOPROTEINS TO NERVE ENDINGS IN MOUSE BRAIN   总被引:4,自引:3,他引:1  
Abstract— Mice were injected intracerebrally with mixtures of [3H]fucose and [14C]gluco-samine, and incorporation into macromolecules in various subcellular fractions of brain was studied at 1, 2, 3 and 4 h after administration of the precursors. There was a lag of several hours between the incorporation of [3H]fucose into the glycoproteins of the whole brain fractions and of that into the soluble and particulate glycoproteins of the nerve ending fractions. In contrast, no lag was observed between the incorporation of [14C]glucosamine into the macromolecules of the whole brain fractions and of that into the soluble macro-molecules of the nerve ending fraction. We conclude that fucosyl glycoproteins of the nerve ending fraction were synthesized in the nerve cell bodies and transported to nerve endings by rapid axoplasmic transport, whereas a substantial proportion of the glucosamine in the soluble macromolecules of the nerve ending fraction was incorporated by the nerve endings themselves. In addition, our evidence indicates that cyclobeximide inhibited fucose incorporation into brain glycoproteins by inhibiting the synthesis of acceptor proteins rather than fucosyl transferase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号