首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inactivating mutations of Phex, a phosphate-regulating endopeptidase, cause hypophosphatemia and impaired mineralization in X-linked hypophosphatemia (XLH) and its mouse homologue, Hyp. Because Phex is predominantly expressed in bone and cultured osteoblasts from Hyp mice display an apparent intrinsic mineralization defect, it is thought that reduced expression of Phex in mature osteoblasts is the primary cause of XLH. To test this hypothesis, we studied both targeted expression of Phex to osteoblasts in vivo under the control of the mouse osteocalcin (OG2) promoter and retroviral mediated overexpression of Phex in Hyp-derived osteoblasts (TMOb-Hyp) in vitro. Targeted overexpression of Phex to osteoblasts of OG2 Phex transgenic Hyp mice normalized Phex endopeptidase activity in bone but failed to correct the hypophosphatemia, rickets, or osteomalacia. OG2 Phex transgenic Hyp mice did exhibit a small, but significant, increase in bone mineral density and dry ashed weight, suggesting a partial mineralization effect from restoration of Phex function in mature osteoblasts. Similarly, retroviral mediated overexpression of Phex in TMOb-Hyp osteoblasts restored Phex mRNA levels, protein expression, and endopeptidase activity but failed to correct their intrinsic mineralization defect. In addition, we failed to detect the Phex substrate FGF-23 in osteoblasts. Taken together, these in vivo and in vitro data indicate that expression of Phex in osteoblasts is not sufficient to rescue the Hyp phenotype and that other sites of Phex expression and/or additional factors are likely to be important in the pathogenesis of XLH.  相似文献   

2.
X-linked hypophosphatemia (XLH) is characterized by hypophosphatemia and impaired mineralization caused by mutations of the PHEX endopeptidase (phosphate-regulating gene with homologies to endopeptidases on the X chromosome), which leads to the overproduction of the phosphaturic fibroblast growth factor 23 (FGF23) in osteocytes. The mechanism whereby PHEX mutations increase FGF23 expression and impair mineralization is uncertain. Either an intrinsic osteocyte abnormality or unidentified PHEX substrates could stimulate FGF23 in XLH. Similarly, impaired mineralization in XLH could result solely from hypophosphatemia or from a concomitant PHEX-dependent intrinsic osteocyte abnormality. To distinguish between these possibilities, we assessed FGF23 expression and mineralization after reciprocal bone cross-transplantations between wild-type (WT) mice and the Hyp mouse model of XLH. We found that increased FGF23 expression in Hyp bone results from a local effect of PHEX deficiency, since FGF23 was increased in Hyp osteocytes before and after explantation into WT mice but was not increased in WT osteocytes after explantation into Hyp mice. WT bone explanted into Hyp mice developed rickets and osteomalacia, but Hyp bone explanted into WT mice displayed persistent osteomalacia and abnormalities in the primary spongiosa, indicating that both phosphate and PHEX independently regulate extracellular matrix mineralization. Unexpectedly, we observed a paradoxical suppression of FGF23 in juvenile Hyp bone explanted into adult Hyp mice, indicating the presence of an age-dependent systemic inhibitor of FGF23. Thus PHEX functions in bone to coordinate bone mineralization and systemic phosphate homeostasis by directly regulating the mineralization process and producing FGF23. In addition, systemic counterregulatory factors that attenuate the upregulation of FGF23 expression in Hyp mouse osteocytes are present in older mice.  相似文献   

3.
The X-linked hypophosphatemia (XLH), the most common form of hereditary rickets, is caused by loss-of-function mutations of PHEX (phosphate-regulating gene with homology to endopeptidases on the X chromosome) leading to rachitic bone disease and hypophosphatemia. Available evidence today indicates that the bone defect in XLH is caused not only by hypophosphatemia and altered vitamin D metabolism but also by factor(s) locally released by osteoblast cells (ObCs). The identity of these ObC-derived pathogenic factors remains unclear. In our present study, we report our finding of a prominent protein in the culture media derived from ObC of the hypophosphatemic (Hyp) mice, a murine homolog of human XLH, which was identified as the murine procathepsin D (Cat D). By metabolic labeling studies, we further confirmed that Hyp mouse ObCs released greater amount of Cat D into culture media. This increased Cat D release by Hyp mouse ObCs was unlikely to be due to nonspecific cell damage or heterogeneous cell population and was found to be associated with an increased Cat D expression at the protein level, possibly due to a reduced Cat D degradation. However, we were not able to detect a direct effect of PHEX protein on Cat D cleavage. In support of the involvement of Cat D in mediating the inhibitory effect of Hyp mouse ObC-conditioned media on ObC calcification, we found that exposure to Cat D inhibited ObC (45)Ca incorporation and that inhibition of Cat D abolished the inhibitory effect of Hyp mouse-conditioned media on ObC calcification. In conclusion, results from our present study showed that Hyp mouse ObCs release a greater amount of Cat D, which may contribute to the inhibitory effect of Hyp mouse ObC-conditioned media on ObC mineralization.  相似文献   

4.
5.
Mutation in a gene (symbol Hyp) on the X chromosome causes hypophosphatemia in the mouse. The murine phenotype is a counterpart of X-linked hypophosphatemia in man. Both exhibit impaired renal reabsorption of phosphate in vivo. In vitro studies in the Hyp mouse have shown decreased Na+-dependent phosphate transport at the brush border membrane and abnormal mitochondrial vitamin D metabolism. To determine whether the mutant renal phenotype is intrinsic to the kidney or dependent upon putative extrinsic humoral factor(s) for its expression, we established primary cultures of renal epithelial cells from normal and Hyp male mouse kidneys. The cells are derived from proximal tubule. Initial uptake rates of phosphate and alpha-methyl-D-glucopyranoside (alpha-MG), a metabolically inert analogue of D-glucose, were measured simultaneously in confluent monolayers exhibiting epithelial polarity and tight junctions. The mean phosphate/alpha-MG uptake ratio in Hyp cultures was 82% of that in normal cells (P less than 0.01, n = 96). Moreover, the production of 24,25-dihydroxyvitamin D3 was significantly elevated in confluent cultures of Hyp cells relative to normal cells. These results imply that the Hyp gene is expressed in situ in renal epithelium and suggest that humoral factors are not necessary for the mutant renal phenotype in X-linked hypophosphatemia of mouse and man.  相似文献   

6.
The murine Hyp mutation is a model for X-linked hypophosphatemia (XLH), the most prevalent form of inherited rickets in humans. Although mutations in the murine Phex gene and the human PHEX gene have been identified in both murine and human disorders, the extent of the Hyp deletion on the mouse X chromosome has not been delineated. In the present study we demonstrate that the Hyp deletion starts in the middle of Phex intron 15 and includes approximately 48 kb of the 3' region of the Phex gene and approximately 10 kb of intergenic sequence on the mouse X chromosome. In addition, we show that the Hyp deletion does not involve the downstream spermidine/spermine N1-acetyl transferase (Sat; formerly Ssat) gene and thus is not a contiguous gene deletion syndrome. Our data indicate that the Hyp mouse is a true homolog of XLH in humans and underscore the validity of this murine model in studies of XLH pathophysiology and for testing novel treatment modalities.  相似文献   

7.
The effect of the X-linked Hyp mutation on 25-hydroxyvitamin D3 (25-OH-D3) metabolism in mouse renal cortical slices was investigated. Vitamin D replete normal mice and Hyp littermates fed the control diet synthesized primarily 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3); only minimal synthesis of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) was detected in both genotypes and 1,25-(OH)2D3 formation was not significantly greater in Hyp mice relative to normal littermates, despite hypophosphatemia and hypocalcemia in the mutants. Calcium-deficient diet fed to normal mice reduced serum calcium (p less than 0.01), increased renal 25-hydroxyvitamin D3-1-hydroxylase (1-OHase) activity (p less than 0.05), and decreased 25-hydroxyvitamin D3-24-hydroxylase (24-OHase) activity (p less than 0.05). In contrast, Hyp littermates on the calcium-deficient diet had decreased serum calcium (p less than 0.01), without significant changes in the renal metabolism of 25-OH-D3. Both normal and Hyp mice responded to the vitamin D-deficient diet with a fall in serum calcium (p less than 0.01), significantly increased renal 1-OHase, and significantly decreased renal 24-OHase activities. In Hyp mice, the fall in serum calcium on the vitamin D-deficient diet was significantly greater than that observed on the calcium-deficient diet. Therefore the ability of Hyp mice to increase renal 1-OHase activity when fed the vitamin D-deficient diet and their failure to do so on the calcium-deficient diet may be related to the resulting degree of hypocalcemia. The results suggest that although Hyp mice can respond to a disturbance of calcium homeostasis, the in vivo signal for the stimulation of renal 1-OHase activity may be set at a different threshold in the Hyp mouse; i.e. a lower serum calcium concentration is necessary for Hyp mice to initiate increased synthesis of 1,25(-OH)2D3.  相似文献   

8.
X-linked hypophosphatemic rickets (XLH) is a dominantly inherited disease characterized by renal phosphate wasting, aberrant vitamin D metabolism, and defective bone mineralization. It is known that XLH in humans and in certain mouse models is caused by inactivating mutations in PHEX/Phex (phosphate-regulating gene with homologies to endopeptidases on the X chromosome). By a genome-wide N-ethyl-N-nitrosourea (ENU)-induced mutagenesis screen in mice, we identified a dominant mouse mutation that exhibits the classic clinical manifestations of XLH, including growth retardation, skeletal abnormalities (rickets/osteomalacia), hypophosphatemia, and increased serum alkaline phosphatase (ALP) levels. Mapping and sequencing revealed that these mice carry a point mutation in exon 14 of the Phex gene that introduces a stop codon at amino acid 496 of the coding sequence (Phex(Jrt) also published as Phex(K496X) [Ichikawa et al., 2012]). Fgf23 mRNA expression as well as that of osteocalcin, bone sialoprotein, and matrix extracellular phosphoglycoprotein was upregulated in male mutant long bone, but that of sclerostin was unaffected. Although Phex mRNA is expressed in bone from mutant hemizygous male mice (Phex(Jrt)/Y mice), no Phex protein was detected in immunoblots of femoral bone protein. Stromal cultures from mutant bone marrow were indistinguishable from those of wild-type mice with respect to differentiation and mineralization. The ability of Phex(Jrt)/Y osteoblasts to mineralize and the altered expression levels of matrix proteins compared with the well-studied Hyp mice makes it a unique model with which to further explore the clinical manifestations of XLH and its link to FGF23 as well as to evaluate potential new therapeutic strategies.  相似文献   

9.
10.
The MEPE (matrix extracellular phosphoglycoprotein) gene is a strong candidate for the tumor-derived phosphaturic factor in oncogenic hypophosphatemic osteomalacia (OHO). X-linked hypophosphatemia (XLH) is phenotypically similar to OHO and results from mutations in PHEX, a putative metallopeptidase believed to process a factor(s) regulating bone mineralization and renal phosphate reabsorption. Here we report the isolation of the murine homologue of MEPE, from a bone cDNA library, that encodes a protein of 433 amino acids, 92 amino acids shorter than human MEPE. Mepe, like Phex, is expressed by fully differentiated osteoblasts and down-regulated by 1,25-(OH)2D3. In contrast to Phex, Mepe expression is markedly increased during osteoblast-mediated matrix mineralization. Greater than normal Mepe mRNA levels were observed in bone and osteoblasts derived from Hyp mice, the murine homologue of human XLH. Our data provide the first evidence that MEPE/Mepe is expressed by osteoblasts in association with mineralization.  相似文献   

11.
Several genes expressed in kidney and other tissues determine phosphate homeostasis in extracellular fluid. The major form of inherited hypophosphatemia in humans involves an X-linked locus (HPDR, Xp22.31-p21.3). It has two murine homologues (Hyp and Gy) which map to closely-linked but separate loci (crossover value 0.4%-0.8%). Both murine mutations impair Na(+)-phosphate cotransport in renal brush border membrane; an associated renal disorder of 1,25-dihydroxyvitamin D3 (1,25(OH)2D) metabolism has been characterized in Hyp mice. Whereas experiments with cultured Hyp renal epithelium indicate that the gene is expressed in kidney, studies showing the development of the mutant renal phenotype in normal mice parabiosed to Hyp mice implicate a circulating factor; these findings can be reconciled if the humoral factor is of renal origin. The gene dose effect of HPDR, Hyp and Gy on serum phosphorus values is consistently deviant and heterozygotes resemble affected hemizygotes. The deviant effect is also seen on renal phosphate transport; all mutant females (Hyp/Hyp and Hyp/+) have similar phenotypes. On the other hand, there is a normal gene dose effect of HPDR in mineralized tissue; tooth PRATIO (pulp area/tooth area) values for heterozygotes are distributed between those for affected males and normals. The tooth data imply that the X chromosome locus is expressed in both renal and non-renal cells. The polypeptide product of the X chromosome gene(s) is still unknown.  相似文献   

12.
We purified renal cortex brush-border membranes from mutant hemizygous hypophosphatemic (Hyp/Y) mice and male control (+/Y) littermates. Tenfold purification of mutant and wild-type membranes was obtained. Phosphate enters +/Y brush-border membrane vesicles by a saturable Na+-dependent arsenate-inhibited component and also by a diffusional component observed in the presence of a potassium gradient. Phosphate is not bound or incorporated significantly by mouse brush-border membrane vesicles. Parallel studies with rat renal cortex brush-border membrane vesicles revealed that phosphate and D-glucose transport in rat and mouse vesicles are similar and have the characteristics reported by other workers. Brush-border membrane vesicles prepared from Hyp/Y renal cortex have significant (p less than 0.001) partial loss of phosphate transport on the Na+-dependent arsenate-inhibited component. D-Glucose transport is not affected. Our previous studies reveal that other components of transcellular phosphate flux in kidney are normal. Therefore, we conclude that the mutant gene product in the Hyp mouse is confined to the brush-border membrane. Stability of the X-chromosome in mammalian evolution implied that the same gene product is involved in the classic human disease, familial 'vitamin D 'resistant' X-linked hypophosphatemia.  相似文献   

13.
N S Shetty  R A Meyer 《Teratology》1991,44(4):463-472
X-Linked hypophosphatemia is the most common cause of metabolic rickets in humans and is characterized by a reduced renal TmP/GFR and hypophosphatemia. Clinically, these changes are associated with growth retardation including attenuated craniofacial growth, femoral and tibial bowing, and radiologic and histomorphometric evidence of rickets and osteomalacia. Similar mutations occur in mice at the Hyp and Gy gene loci. Direct craniometric measurements were made on mouse skulls to investigate the pattern of craniofacial growth differences in the Hyp/+, Hyp/Hyp and Gy/+ genotypes and to compare these to littermate normals in the C57BL/6J mouse strain. There was generalized attenuation in craniofacial growth in all mutants. The heterozygous Hyp and Gy mutants showed similar patterns of craniofacial growth with diminished neurocranial length, viscerocranial length, and mandibular height. The Gy/+ was significantly smaller than the Hyp/+ in neurocranial width. The homozygous Hyp mouse was not affected more severely than the heterozygous Hyp except in overall cranial length, nasal bone length, and mandibular length from mandibular foramen to third molar. In summary, the heterozygous Hyp and Gy mutant mice showed similar patterns of craniofacial growth. The homozygous Hyp mouse was not affected more severely than the heterozygous Hyp except in three of the 15 measured variables. Thus, these data demonstrate the almost complete dominance of the Hyp gene. In contrast, the Gy gene is incompletely dominant. The heterozygous Gy females survive, but the hemizygous Gy males do not, on a C57BL/6J background. This suggests that there is a family of closely linked genes on the X chromosome which, while similar in their effects on phosphate homeostasis, have differing mechanisms of action.  相似文献   

14.
Fibroblast growth factor-23 (FGF-23), a recently identified molecule that is mutated in patients with autosomal dominant hypophosphatemic rickets (ADHR), appears to be involved in the regulation of phosphate homeostasis. Although increased levels of circulating FGF-23 were detected in patients with different phosphate-wasting disorders such as oncogenic osteomalacia (OOM) and X-linked hypophosphatemia (XLH), it is not yet clear whether FGF-23 is directly responsible for the abnormal regulation of mineral ion homeostasis and consequently bone development. To address some of these unresolved questions, we generated a mouse model, in which the entire Fgf-23 gene was replaced with the lacZ gene. Fgf-23 null (Fgf-23-/-) mice showed signs of growth retardation by day 17, developed severe hyperphosphatemia with elevated serum 1,25(OH)2D3 levels, and died by 13 weeks of age. Hyperphosphatemia in Fgf-23-/- mice was accompanied by skeletal abnormalities, as demonstrated by histological, molecular, and various other morphometric analyses. Fgf-23-/-) mice had increased total-body bone mineral content (BMC) but decreased bone mineral density (BMD) of the limbs. Overall, Fgf-23-/- mice exhibited increased mineralization, but also accumulation of unmineralized osteoid leading to marked limb deformities. Moreover, Fgf-23-/- mice showed excessive mineralization in soft tissues, including heart and kidney. To further expand our understanding regarding the role of Fgf-23 in phosphate homeostasis and skeletal mineralization, we crossed Fgf-23-/- animals with Hyp mice, the murine equivalent of XLH. Interestingly, Hyp males lacking both Fgf-23 alleles were indistinguishable from Fgf-23/-/ mice, both in terms of serum phosphate levels and skeletal changes, suggesting that Fgf-23 is upstream of the phosphate regulating gene with homologies to endopeptidases on the X chromosome (Phex) and that the increased plasma Fgf-23 levels in Hyp mice (and in XLH patients) may be at least partially responsible for the phosphate imbalance in this disorder.  相似文献   

15.
Hypophosphatemic vitamin D-resistant rickets is the most common form of vitamin D-resistant rickets in man. The hypophosphatemic mouse model (Hyp) is phenotypically and biochemically similar to the human disease. Biochemically, hypophosphatemia is the hallmark of this disorder. The cause of the hypophosphatemia is thought to be secondary to a defect in the renal and/or intestinal Na(+)-phosphate transporter. The current studies were designed to investigate and characterize the localization of the defect in the Na(+)-phosphate transporter in this disorder. Phosphate uptake by renal brush border membrane vesicles (BBMV) showed a significant decrease in the slope of the initial rate of phosphate uptake in (Hyp) compared with control mice (0.009 versus 0.013, respectively). The slopes representing initial rates of phosphate uptake by jejunal BBMV were similar in (Hyp) and control mice (0.004 and 0.004, respectively). Kinetics of jejunal Na(+)-dependent phosphate uptake showed a Vmax of 0.63 +/- 0.12 and 0.64 +/- 0.12 nmol/mg protein/15 s in (Hyp) and control mice, respectively, whereas Km values were 0.12 +/- 0.08 and 0.2 +/- 0.11 mM, respectively. Similar kinetic analysis in the kidney showed a Vmax of 0.32 +/- 0.06 and 1.6 +/- 0.1 (p less than 0.01) and Km of 0.07 +/- 0.06 and 0.39 +/- 0.05 (p less than 0.02) in (Hyp) and control mice, respectively. Na(+)-dependent D-glucose uptake by BBMVs of intestine and kidney showed typical overshoot phenomena in (Hyp) and control mice. In order to explore these findings further, Na(+)-phosphate transporter expression from intestine and kidney was accomplished by microinjection of 50 ng of poly(A)+ RNA into Xenopus laevis oocytes. Na(+)-dependent phosphate uptake was expressed 6 days after the microinjection of intestinal and kidney poly(A)+ RNA from control mice. However, expression of the transporter from (Hyp) mice occurred only from the intestine, and not from the kidney. The decrease in the expression of the Na(+)-dependent phosphate transporter was not secondary to accelerated efflux of phosphate or decreased metabolism in oocytes injected with poly(A)+ RNA from (Hyp) mice.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate.   总被引:23,自引:0,他引:23  
Oncogenic osteomalacia (OOM), X-linked hypophosphatemia (XLH), and autosomal dominant hypophosphatemic rickets (ADHR) are phenotypically similar disorders characterized by hypophosphatemia, decreased renal phosphate reabsorption, normal or low serum calcitriol concentrations, normal serum concentrations of calcium and parathyroid hormone, and defective skeletal mineralization. XLH results from mutations in the PHEX gene, encoding a membrane-bound endopeptidase, whereas ADHR is associated with mutations of the gene encoding FGF-23. Recent evidence that FGF-23 is expressed in mesenchymal tumors associated with OOM suggests that FGF-23 is responsible for the phosphaturic activity previously termed "phosphatonin." Here we show that both wild-type FGF-23 and the ADHR mutant, FGF-23(R179Q), inhibit phosphate uptake in renal epithelial cells. We further show that the endopeptidase, PHEX, degrades native FGF-23 but not the mutant form. Our results suggest that FGF-23 is involved in the pathogenesis of these three hypophosphatemic disorders and directly link PHEX and FGF-23 within the same biochemical pathway.  相似文献   

17.
Effects of parathyroid hormone (PTH), low phosphate environment, and 12-O-tetradecanoyl phorbol-13-acetate (TPA) on the phosphate reabsorption by the renal tubular cells from mutant hemizygous hypophosphatemic (Hyp/Y) mice and their littermates (+/Y) were studied using a phosphate accumulation system which had been developed recently. This system mimics phosphate transport at the renal tubules. When cultured in a normal phosphate medium, the characteristics of the phosphate accumulation by Hyp cells was almost identical with that by normal cells; a PTH-induced inhibition and a TPA-induced stimulation of phosphate accumulation. However, when preincubated in a low phosphate medium, the accumulation of phosphate by normal cells increased significantly, while that by Hyp cells did not. These results indicate that the adaptation to the low phosphate environment is defective in Hyp cells and it may be one of the cause of renal phosphate leakage in the Hyp mouse.  相似文献   

18.
Uncertainty exists regarding the physiologically relevant fibroblast growth factor (FGF) receptor (FGFR) for FGF23 in the kidney and the precise tubular segments that are targeted by FGF23. Current data suggest that FGF23 targets the FGFR1c-Klotho complex to coordinately regulate phosphate transport and 1,25-dihydroxyvitamin D [1,25(OH)(2)D] production in the proximal tubule. In studies using the Hyp mouse model, which displays FGF23-mediated hypophosphatemia and aberrant vitamin D, deletion of Fgfr3 or Fgfr4 alone failed to correct the Hyp phenotype. To determine whether FGFR1 is sufficient to mediate the renal effects of FGF23, we deleted Fgfr3 and Fgfr4 in Hyp mice, leaving intact the FGFR1 pathway by transferring compound Fgfr3/Fgfr4-null mice on the Hyp background to create wild-type (WT), Hyp, Fgfr3(-/-)/Fgfr4(-/-), and Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice. We found that deletion of Fgfr3 and Fgfr4 in Fgfr3(-/-)/Fgfr4(-/-) and Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice induced an increase in 1,25(OH)(2)D. In Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice, it partially corrected the hypophosphatemia (P(i) = 9.4 ± 0.9, 6.1 ± 0.2, 9.1 ± 0.4, and 8.0 ± 0.5 mg/dl in WT, Hyp, Fgfr3(-/-)/Fgfr4(-/-), and Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice, respectively), increased Na-phosphate cotransporter Napi2a and Napi2c and Klotho mRNA expression in the kidney, and markedly increased serum FGF23 levels (107 ± 20, 3,680 ± 284, 167 ± 22, and 18,492 ± 1,547 pg/ml in WT, Hyp, Fgfr3(-/-)/Fgfr4(-/-), and Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice, respectively), consistent with a compensatory response to the induction of end-organ resistance. Fgfr1 expression was unchanged in Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice and was not sufficient to transduce the full effects of FGF23 in Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice. These studies suggest that FGFR1, FGFR3, and FGFR4 act in concert to mediate FGF23 effects on the kidney and that loss of FGFR function leads to feedback stimulation of Fgf23 expression in bone.  相似文献   

19.
The involvement of a hypocalcemic hormone calcitonin (CT) in the expression of hepatic Ca2+-binding protein regucalcin mRNA was investigated. The change of regucalcin mRNA levels was analyzed by Northern blotting using liver regucalcin complementary DNA (0.9 kb). A single oral administration of calcium chloride (100 mg Ca/100 g body weight) to rats induced a remarkable increase in the serum calcium concentration and a corresponding elevation of the liver calcium content during 120 min after the administration. Thyroparathyroidectomy (TPTX) did not cause a significant increase in the liver calcium content after calcium administration. Hepatic regucalcin mRNA level was markedly elevated by calcium administration; the level was about 180% of controls at 60 min after the administration. This increase was completely abolished by TPTX. A single subcutaneous administration of CT (synthetic eel CT; 25–100 MRC mU/100 g) to TPTX rats received oral administration of calcium (100 mg/100 g) produced a remarkable increase in hepatic regucalcin mRNA levels; the level was about 280% of controls with the dose of 25 MRC mU CT/100 g. The present finding suggests that the expression of hepatic mRNA is stimulated by CT, and that the hormonal effect is mediated through Ca2+ in rat liver.  相似文献   

20.
We previously showed that a phosphate-deficient diet resulting in hypophosphatemia upregulated the catalytic subunit p36 of rat liver glucose-6-phosphatase, which is responsible for hepatic glucose production. A possible association between phosphate and glucose homeostasis was now further evaluated in the Hyp mouse, a murine homologue of human X-linked hypophosphatemia. We found that in the Hyp mouse as in the dietary Pi deficiency model, serum insulin was reduced while glycemia was increased, and that liver glucose-6-phosphatase activity was enhanced as a consequence of increased mRNA and protein levels of p36. In contrast, the Hyp model had decreased mRNA and protein levels of the putative glucose-6-phosphate translocase p46 and liver cyclic AMP was not increased as in the phosphate-deficient diet rats. It is concluded that in genetic as in dietary hypophosphatemia, elevated glucose-6-phosphatase activity could be partially responsible for the impaired glucose metabolism albeit through distinct mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号