首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of other components of the initiation complex on Escherichia coli initiation factor IFI binding to 30 S ribosomal subunits were studied. Binding of [14C]IF1 in the absence of other initiation complex components was slight. Addition of either IF2 or IF3 stimulated binding to a variable extent. Maximum binding was observed when both IF2 and IF3 were present. Addition of GTP, fMet-tRNA, and phage R17 RNA caused little or no further stimulation of [14C]IF1 binding. A maximum of 0.5 molecule of [14C]IF1 bound per 30 S subunit in the presence of an excess of each of the three factors over 30 S subunits.Complexes of 30 S subunits, [14C]IF1, IF2, and IF3 were treated with the bifunctional protein cross-linking reagent dimethyl suberimidate in order to identify the ribosomal proteins near the binding site for IF1. Non-cross-linked [14C]IF1 was removed from the complexes by sedimentation through buffer containing a high salt concentration, and total protein was extracted from the pelleted particles. Approximately 12% of the [14C]IF1 was recovered in the pellet fraction. The mixture of cross-linked products was analyzed by polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Autoradiography of the gel showed radioactive bands with molecular weights of 21,000, 25,000, and many greater than 120,000. The results indicate that [14C]IF1 was cross-linked directly to at least two ribosomal proteins. Analysis of the cross-linked mixture by radioimmunodiffusion with specific antisera prepared against each of the 30 S ribosomal proteins showed radioactivity in the precipitin bands formed with antisera against S12 and S19, and in lower yield with those against S1 and S13. Antiserum against IF2 also showed [14C]IF1 in the precipitin band. The results show that [14C]IF1 was present in covalently cross-linked complexes containing 30 S ribosomal proteins S1, S12, S13 and S19, and initiation factor IF2. The same ribosomal proteins have been implicated in the binding sites for IF2 and IF3. The results suggest that the three initiation factors bind to the 30 S subunit at the same or overlapping sites.  相似文献   

2.
3.
The conserved portion in bacterial ribosomal RNA was studied by the DNA-RNA hybridization method. The hybridization percentages were as follows: Bacillus subtilis DNA and B. subtilis 23S rRNA, 0.16; Escherichia coli DNA and E. coli 23S rRNA, 0.15; B. subtilis DNA and E. coli 23S rRNA, 0.03; E. coli DNA and B. subtilis 23S rRNA, 0.04. The RNA's extracted from the heterologous hybrids could be rehybridized with DNA's of B. subtilis and E. coli. The average chain lengths of the RNA's were estimated by sucrose density gradient centrifugation and Sephadex gel filtration. The results suggested that the size might be larger than 30 nucleotides. Nucleotide compositions of the RNA's in the hybrids were also studied. Both RNA's contained higher molar percentages of guanylic acid and cytidylic acid than the whole rRNA's.  相似文献   

4.
Methylation of ribosomal proteins in Bacillus subtilis   总被引:2,自引:1,他引:1       下载免费PDF全文
We measured the methylation of ribosomal proteins from the 30S and 50S subunits of Bacillus subtilis after growing the cells in the presence of [1-14C]methionine and [methyl-3H]methionine. Two-dimensional polyacrylamide gel electrophoretic analysis revealed a preferential methylation of the 50S ribosomal proteins. Proteins L11 and L16, and possibly L9, L10, L18, and L20, were methylated. On the other hand, only two possibly methylated proteins were found on the 30S subunit. A comparison of these results with those for Escherichia coli suggests a common methylation pattern for the bacterial ribosomal proteins.  相似文献   

5.
Ribosomal protein phosphorylation was investigated in isolated ribosomal subunits and polyribosomes from rat cerebral cortex in the presence of [gamma-32P]ATP and purified catalytic subunit of cyclic AMP-dependent protein kinase from the same tissue. Ribosomal proteins that were most readily phosphorylated in isolated cerebral ribosomal subunits included proteins S2, S3a, S6 and S10 of the 40 S subunit and proteins L6, L13, L14, L19 and L29 of the 60 S subunit. These proteins were also phosphorylated in cellular preparations of rat cerebral cortex in situ or in vitro [Roberts & Ashby (1978) J. Biol. Chem. 253, 288-296; Roberts & Morelos (1979) Biochem. J. 184, 233-244]. However, several additional ribosomal proteins were phosphorylated when isolated 40 S or 60 S subunits were separately incubated in the reconstituted system. Analogous results were obtained with an equimolar mixture of cerebral 40 S and 60 S subunits under comparable conditions. In contrast, extensive exposure of purified cerebral polyribosomes to the catalytic subunit resulted in phosphorylation of only those ribosomal proteins of the 40 S subunit that were most highly labelled after the administration of [32P]Pi in vivo: proteins S2, S6 and S10. Ribosomal proteins of 60 S subunits that were readily phosphorylated in isolated cerebral polyribosomes included proteins L6, L13 and L29. These results indicate that polyribosome formation markedly decreases the number of ribosomal protein sites available for phosphorylation by the catalytic subunit of cyclic AMP-dependent protein kinase. Moreover, the findings suggest that, of the ribosomal protein phosphorylations observed in rat cerebral cortex in vivo, proteins S2, S6, S10, L6, L13 and L29 can be phosphorylated in polyribosomes, whereas proteins S3a, S5, L14 and L19 may become phosphorylated only in free ribosomal subunits.  相似文献   

6.
A procedure for the isolation and purification of a specific hybrid between rat 28S and 18S ribosomal RNA's and nucleolar DNA is described. The method employed includes the following steps: 1) isolation of the nucleolar DNA, 2) hybridization of [14C]rRNA with the nucleolar DNA, and 3) isolation and purification of the rRNA-DNA hybrid complex by chromatography on hydroxylapatite and centrifugation in a CsCl density gradient. In the isolated hybrid complex the RNA:DNA ratio is close to 1:1, and the degree of enrichment of the DNA by the rRNA cistrons is about 1500 times. The hybrid obtained has a sedimentation constant on the order of 20S, is resistant to the action of pancreatic RNase and RNase T1 and sheep brain DNase, and is characterized by high thermostability. Acording to the physicochemical tests used, the rRNA-DNA hybrid complex is a double-stranded poly-nucleotide with an ordered secondary structure.  相似文献   

7.
RIBOSOME SYNTHESIS IN TETRAHYMENA PYRIFORMIS   总被引:9,自引:5,他引:4       下载免费PDF全文
The cellular site of synthesis of ribosomal RNA in Tetrahymena pyriformis was studied by analyzing the purified nuclear and cytoplasmic RNA from cells pulse labeled with uridine-3H. The results of studies using zonal centrifugation in sucrose density gradients show that the ribosomal RNA is synthesized in the nucleus as a large precursor molecule sedimenting at 35S. The 35S molecule undergoes rapid transformation through two main nuclear intermediates, sedimenting at about 30S and 26S. The smaller ribosomal RNA (17S) appears first in the cytoplasm and it seems to be absent from the nucleus. The apparent delay in the appearance of the larger ribosomal RNA (26S) in the cytoplasm is due to the presence of a larger pool of its precursors in the nucleus as indicated by pulse-chase experiments. The newly synthesized ribosomal RNA's appear in the cytoplasm as discrete 60S and 45S ribonucleoprotein particles, before their incorporation into the polysomes.  相似文献   

8.
The capacity of some Escherichia coli (E. coli) ribosomal proteins to bind to tRNA and to hydrolyse their aminoacylated derivatives has been analysed. The following results were obtained: (1) The basic proteins L2, L16 and L33 and S20 bound f[3H]Met-tRNA to a similar extent as the total proteins from 30 S (TP30) or 50 S (TP50) when tested by nitrocellulose filtration, in contrast to the more acidic proteins L7/L12 and S8. (2) The proteins of the peptidyltransferase centre, L2 and L16, showed no distinct specificity, binding various charged tRNAs from E. coli and Saccharomyces cerevisiae (S. cerevisiae). (3) A number of isolated ribosomal proteins hydrolysed aminoacyl-tRNA as assessed by trichloroacetic acid precipitation, in contrast to the TP30 and TP50. (4) The loss of radiolabel from Ac[14C]Phe-tRNA and from [14C]tRNA in the presence of these proteins could not be prevented by RNasin, a ribonuclease inhibitor, whereas that mediated by a sample of non-RNase-free bovine serum albumin was inhibited. (5) When double-labelled, Ac[3H]Phe-[14C]tRNA was incubated with L2 both radiolabels were lost, indicating that this potential candidate for a peptidyltransferase enzyme does not specifically cleave the ester bond between the aminoacyl residue and the tRNA.  相似文献   

9.
The topography of polysomal ribosomes in mock-infected and in Sindbis virus- and vesicular stomatitis virus-infected BHK cells was investigated using a double, radioactive labelling technique. Ribosomal proteins in intact polysomes were surface labelled by reductive methylation using [14C]formaldehyde. Following removal of ribosomal RNA, proteins were denatured in 6 M guanidine and labelled with [3H]borohydride. Labelled ribosomal proteins were separated by electrophoresis in two-dimensional gels and the 3H/14C ratio for each ribosomal protein was taken as an index of its relative surface exposure in intact ribosomes. Comparison of the ratios for individual ribosomal proteins in Sindbis virus-infected vs. control polysomes indicated that proteins L7, L8, L17, L26 and S19 became more 'buried' and others such as L4, L29, L36, S2 and S26 became more 'exposed' in infected cells. Most of the topographical alterations occurred in the large ribosomal subunit. In contrast, infection of BHK cells with vesicular stomatitis virus induced little or no topographical alteration.  相似文献   

10.
The inhibitory effects of ethionine treatment of female rats for 4 h on the protein-synthesizing machineries of 80 S ribosomes and 40 S ribosomal subunits of the liver were investigated. The following results were obtained. (1) The translation of globin mRNA by 80 S ribosomes or 40 S ribosomal subunits, in combination with mouse 60 S subunits, was markedly inhibited by ethionine treatment in a complete cell-free system containing partially purified initiation factors of rabbit reticulocytes and the rat liver pH 5 fraction. (2) The polysome formation of 80 S ribosomes in the complete system described above was inhibited by ethionine treatment. Similar inhibitions by ethionine treatment were observed in the case of incubation of 40 S subunits with reticulocyte lysate, although the polysome formation was rather low even in the case of control 40 S subunits. (3) The pattern of CsCl isopycnic centrifugation of rat liver native 40 S subunits uniformly labeled with [14C]- or [3H]orotic acid showed that the content of non-ribosomal proteins of native 40 S subunits was decreased by ethionine treatment. The analysis of proteins of native 40 S subunits by SDS-polyacrylamide slab gel electrophoresis revealed that eIF-3 subunits and two unidentified protein fractions of molecular weight of 2.3·104 and 2.1·104 were decreased in ethionine-treated rat liver. (4) 40 S subunits from ethionine-treated or control rat livers were labeled with N-[3H]ethylmaleimide or N-[14C]ethylmaleimide, and the 3H to 14C ratios of individual 40 S proteins on two-dimensional polyacrylamide gel electrophoresis were measured. The results suggested that the conformation of rat liver 40 S subunits was changed by ethionine treatment. (5) These results may indicate that ethionine treatment decreases the activity of rat liver 40 S subunits for the interaction with initiation factors, especially eIF-3, as the results of conformational changes of 40 S subunits.  相似文献   

11.
Summary The proteins in the 80S ribosomes of Drosophila melanogaster ovaries and adults have been characterized by two-dimensional polyacrylamide gel electrophoresis. When ribosomal proteins of ovaries and adults were compared with those from embryos, all 3 tissues showed a similar number of proteins. In addition, qualitatively, the electrophoretograms of proteins extracted from the ribosomes of these 3 tissues were found to be indistinguishable. However, apparent quantitative differences in certain acidic proteins were observed between tissues. Using ribosomes from embryos as a standard for comparison, ribosomes from adult flies that were more than 14 days old appeared to have relatively larger amounts of acidic protiens S7 and S9, and relatively smaller amounts of acidic proteins S14 and S25/S27. The transition period occured during the ninth to thirteenth day of adult fly development. Significant differences were not detected between ovarian and embryonic acidic ribosomal proteins. In contrast to the differential ratio of acidic proteins in ovaries, adults, and embryos, a similar distribution of basic proteins was found in these tissues.  相似文献   

12.
Small (30 S) ribosomal subunits from Escherichia coli strain TPR 201 were photoaffinity-labeled with [3H]puromycin in the presence of chloramphenicol under conditions in which more than 1 mol of antibiotic was incorporated per mol of ribosomes. The subunits were than washed with 3 M NH4Cl to yield core particles and a split protein fraction; the split proteins were further fractionated with ammonium sulfate. Subunits were then reconstituted using one fraction (core, split proteins, or ammonium sulfate supernatant) from photoaffinity-modified subunits and other components from unmodified (control) subunits. The distribution of [3H]puromycin in ribosomal proteins was monitored by one-dimensional polyacrylamide gel electrophoresis, and the sites of puromycin binding were visualized by immunoelectron microscopy. Two areas of puromycin binding were identified. A high affinity puromycin site, found on the upper third of the subunit and distant from the platform, is identical to the primary site previously identified (Olson, H. M., Grant, P. G., Glitz, D. G., and Cooperman, B. S. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 890-894). Binding at this site is maximal in subunits reconstituted with high levels of puromycin-modified protein S14, and is decreased when unmodified S14 is incorporated. Because the percentage of antibody binding at the primary site always exceeds the percentage of puromycin label in protein S14, the primary site must include components other than S14. A secondary puromycin site of lower affinity is found on the subunit platform. This site is enriched in subunits reconstituted from puromycin-modified core particles and may include protein S7. Our results demonstrate the feasibility of localizing specifically modified components in reconstituted ribosomal subunits.  相似文献   

13.
Complexes of 30 S subunits and [14C]IF3 were allowed to react with the protein cross-linking reagents, N,N′-p-phenylenedimaleimide or dimethylsuberimidate. Non-cross-linked IF3 was removed from the complex by centrifugation in a buffer containing a high salt concentration, and the total protein was extracted from the pelleted particles. The mixture of cross-linked products was analyzed by radioimmunodiffusion with antisera prepared against all of the individual 30 S ribosomal proteins. Radioactivity was found in the precipitin bands formed with antisera against ribosomal proteins S1, S11, S12, S13, S19 and S21. The results show that IF3 was present in covalent cross-linked complexes containing those 30 S ribosomal proteins and imply that they comprise or are near the binding site for initiation factor IF3.  相似文献   

14.
(1) Poly(A)-containing mRNAs from total polysomal RNA of regenerating rat liver were incubated with [3H]leucine in a wheat germ cell-free system. Ribosomal proteins were purified as described previously [1], and with two-dimensional gel electrophoresis. The proteins on the gel except for less basic protein had appreciable radioactivity, whereas the surrounding areas had very low radioactivity. Acetic acid-soluble proteins labeled in this system were subjected to three-dimensional gel electrophoresis [2]. Except for L1 and L2 proteins, each of the ribosomal proteins, including less basic ones, showed a major radioactive peak coinciding with the protein band on SDS gel. Thus, the wheat germ cell-free system completely translates almost all mRNAs for individual ribosomal proteins. Equimolar amounts of almost all ribosomal proteins were synthesized in the presence of the saturating concentration of mRNAs. (2) Free polysomes from regenerating rat liver were fractionated into three sizes. Each class of polysomes was incubated with [3H]leucine. Ribosomal proteins with molecular weights of 40 000 to 21 000 were mainly synthesized by Fraction B (5-14 monomeric ribosomes), L1 and L2 [2] with 60 000 and 54 000, by Fraction C (greater than 15 monomeric ribosomes) and B, and ribosomal proteins smaller than 20 000 by Fractions A (less than pentamer) and B. (3) mRNAs from rat liver total polysomes were fractionated into seven classes by size and each was translated in the wheat germ extract. Ribosomal proteins with molecular weights of 54 000 to 30 000 were mainly synthesized by mRNAs of 12 to 14.5 S, ribosomal proteins of 35 000 to 22 000 by those of 9.5 to 12 S, ribosomal proteins of 22 000 to 13 000 by those of 7 to 9.5 S, and smaller ribosomal proteins by those smaller than 7 S. These results indicate that individual ribosomal proteins are synthesized by monocistronic mRNAs, the lengths of which are proportional to the molecular weights of the corresponding ribosomal proteins.  相似文献   

15.
Modification of yeast ribosomal proteins. Methylation.   总被引:2,自引:0,他引:2  
Two-dimensional polyacrylamide-gel electrophoretic analysis of yeast ribosomal proteins uniformly labelled in vivo with [methyl-3H]methionine and [1-14C]methionine revealed that four ribosomal proteins are methylated, i.e. proteins S31, S32, L15 and L41. Lysine and arginine appear to be the predominant acceptors of the methyl groups. The degree of methylation ranges from 0.09 to 0.20 methyl group per modified ribosomal protein species.  相似文献   

16.
The photoincorporation of p-azido[3H]puromycin [6-(dimethylamino)-9-[3'-deoxy-3'-[(p-azido-L-phenylalanyl)amino]-beta-D-ribofuranosyl]purine] into specific ribosomal proteins and ribosomal RNA [Nicholson, A. W., Hall, C. C., Strycharz, W. A., & Cooperman, B. S. (1982) Biochemistry (preceding paper in this issue)] is decreased in the presence of puromycin, thus demonstrating that labeling is site specific. The magnitudes of the decreases in incorporation into the major labeled 50S proteins found on addition of different potential ribosome ligands parallel the abilities of these same ligands to inhibit peptidyltransferase. This result provides evidence that p-azidopuromycin photoincorporation into these proteins occurs at the peptidyltransferase center of the 50S subunit, a conclusion supported by other studies of ribosome structure and function. A striking new finding of this work is that puromycin aminonucleoside is a competitive inhibitor of puromycin in peptidyltransferase. The photoincorporation of p-azidopuromycin is accompanied by loss of ribosomal function, but photoincorporated p-azidopuromycin is not a competent peptidyl acceptor. The significance of these results is discussed. Photolabeling of 30S proteins by p-azidopuromycin apparently takes place from sites of lower puromycin affinity than that of the 50S site. The possible relationship of the major proteins labeled, S18, S7, and S14, to tRNA binding is considered.  相似文献   

17.
Homologous cell-free systems were prepared using free, total bound, tightly bound or KCl-sensitive loosely bound (KCl-sensitive) polysomes from regenerating rat liver. [14C]Leucine was incubated with one kind of polysomes and [3H]leucine with another kind. The reaction mixtures were then combined, and ribosomal structural proteins were purified as described previously [4], using two-dimensional polyacrylamide gel electrophoresis as the final step [5]. The 3H to 14C ratios of the purified fractions were estimated to compare the activities of the two kinds of polysomes for biosynthesis of ribosomal structural proteins. The following results were obtained: (1) The activity of free polysomes for biosynthesis of ribosomal structural proteins was about 3.6 or 2.4 times higher than that of total bound polysomes in two experiments in which 14C and 3H labeling was reversed. The radioactivities incorporated by free polysomes into most of the proteins separated on two-dimensional gel were found to be definitely higher than those in the surrounding areas, suggesting that most of the ribosomal structural proteins were synthesized by free polysomes. The activity of free polysomes for biosynthesis of ribosomal structural proteins was about 7 times higher than that of tightly bound polysomes, which were prepared by washing the microsomal membrane fraction with 0.5 M KCl. The radioactivities incorporated by tightly bound polysomes into the proteins separated on two-dimensional gel were only slightly higher than those in the surrounding areas, indicating that these polysomes had very low synthetic activity. (2) Preferential synthesis of histones by free polysomes was also shown using the same procedures. (3) KCl-sensitive polysomes which were released by washing the microsomal membrane fraction with 0.5 M KCl, were shown to have definitely higher activity than tightly bound polysomes for biosynthesis of ribosomal structural proteins. (4) From these results, it is concluded that most of the ribosomal structural proteins are preferentially synthesized by free and KCl-sensitive polysomes in regenerating rat liver.  相似文献   

18.
Methylation of Ribosomal Proteins in Escherichia coli   总被引:7,自引:4,他引:3  
Escherichia coli was grown in a medium containing [1-(14)C]methionine and [methyl-(3)H]methionine, and the (3)H/(14)C ratio was determined for each of the ribosomal proteins derived from the 70S ribosome. Evidence indicates that six proteins from the 50S subunit were methylated: L7, L9, L11, L12, L18, and L33. Methylation of several other 50S proteins (such as L1, L3, L5, etc.) may also occur. The methylated amino acids in protein L11 have been characterized further and found to be predominately epsilon-trimethyllysine. A small amount of a compound tentatively identified as N(G), N'(G)-dimethylarginine was also detected.  相似文献   

19.
20.
Crude ribosomes from Saccharomyces cerevisiae cultures were phosphorylated in vitro when incubated in the presence of [gamma-32P]ATP. Analysis of the ribosomal proteins with two-dimensional electrophoresis revealed that of the 29 proteins identified in the small subunit, only protein S6 was phosphorylated. Of the 37 proteins identified in the large subunit, one was highly phosphorylated (L3) and two only slightly phosphorylated (L11 and L14). The protein kinase activity associated with the ribosomes was extracted with 1 M KCl and was not dependent on adenosine 3':5'-monophosphate; it preferentially phosphorylated casein and phosvitin, but was less active on histones. Structural ribosomal proteins were also phosphorylated in vivo when the yeast cultures were incubated with [32P]orthophosphate; the radioactivity resistant to hydrolysis by hot perchloric acid was incorporated into the proteins of the two subunits. Radioactive phosphoserine was found by subjecting hydrolysates of ribosomal proteins to high-voltage electrophoresis. After two-dimensional electrophoresis, one poorly phosphorylated protein (S10) was identified in the small subunit. In the large subunit, one protein (L3) was highly labelled, and two proteins (L11 and L24) only slightly labelled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号